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Role of the promyelocytic leukaemia protein in
cell death regulation

P Salomoni*,1, M Dvorkina1 and D Michod1

The promyelocytic leukaemia gene PML was originally identified at the t(15;17) translocation of acute promyelocytic leukaemia,
which generates the oncogene PML-retinoic acid receptor a. PML epitomises a subnuclear structure called PML nuclear body.
Current models propose that PML through its scaffold properties is able to control cell growth and survival at many different
levels. Here we discuss the current literature and propose new avenues for investigation.
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Promyelocytic Leukaemia (PML) and Cancer

Haematological malignancies. The majority of acute
promyelocytic leukaemia (APL) cases are characterised by
the t(15;17) chromosomal translocation that juxtaposes the
PML gene and the retinoic acid receptor a (RARa).1–5 This
translocation is reciprocal and balanced, and produces two
fusion genes, PML-RARa and RARa-PML. PML-RARa is the
main oncogene of APL and is able to transform haemopoietic
precursors.1–3 On one hand, PML-RARa suppresses RARa
transcriptional function, thus blocking differentiation at the
promyelocytic stage.1–3 On the other hand, PML-RARa
disrupts the PML nuclear bodies (PML-NBs) through forma-
tion of PML-RARa/PML heterodimers.1–3 It is still debated
whether this interaction is crucial for leukaemogenesis in
vivo. At least in vitro, the PML moiety within the oncogenic
fusion protein has been proposed to only function to promote
formation of multimers that cause transcriptional repression
and ultimately transformation.6 However, loss of PML
increases the incidence and accelerates the onset of
leukaemia in a mouse model of APL,7 thus suggesting that
its inactivation is important for promoting neoplastic
transformation in vivo. Interestingly, two mutations of the
remaining PML allele have been found in APL, which
generate a premature stop codon and are predicted to
encode truncated cytoplasmic proteins.8,9 PML has been
found translocated to the PAX5 locus to generate a PAX5-
PML fusion gene in childhood acute lymphoblastic
leukaemia,10 which disrupts both PML and Pax5 function,
thus suggesting that disruption of PML function could have a

role in non-APL tumours. Indeed, it has been reported that
PML expression is lost in other haematological malignancies,
such as in 83% diffuse large cell lymphomas (DLCL) and
77% follicular lymphomas.11 It would be very important to
address the impact of PML loss in non-APL tumours. Overall,
these studies suggest that PML works as tumour suppressor
in the haemopoietic system. However, chronic myeloid
leukaemia (CML) represents a notable exception. PML
expression has been shown to act as positive regulator of
self-renewal in CML-initiating cells.12 As a result, PML loss
leads to exhaustion of the leukaemic stem cell pool and
reduced disease progression. Accordingly, PML expression
correlates with poor overall survival in CML patients. This
report constitutes a change in paradigm in the field of PML
research, as it suggests a potential oncogenic role of PML.
This is reminiscent of the role played by the growth
suppressor p21 in leukaemic stem cells.13 Further research
is needed to fully dissect the mechanisms underlying PML
function in cancer stem cells.

Solid tumours. It is becoming clear that PML expression is
altered in many solid tumours. In this respect, the study by
Gurrieri et al.11 showed that PML expression is absent in 17%
of colon adenocarcinomas, 21% of lung tumours, 27% of
prostate adenocarcinomas, 31% of breast adenocarcinomas,
49% of CNS tumours (100% medulloblastomas and over 90%
oligodendroglial tumours), 49% of germ cell tumours and 68%
of non-Hodgkin’s lymphomas (83% DLCL and 77% follicular
lymphomas). Other studies have shown that PML expression
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is lost in breast carcinomas,14 gastric cancer,15 small cell
lung carcinoma16 and in invasive epithelial tumours.17

Interestingly, Gurrieri et al.11 showed that loss of PML
expression correlates with a higher tumour grading in breast
adenocarcinomas and prostate carcinomas. It has to be
noted that this study was conducted using an antibody
against a PML epitope reported as fixation-sensitive,14 thus
suggesting that some of the tumours could have been
erroneously classified as negative. Despite the lack of
expression at protein levels, there is little evidence that
PML is regulated at the transcriptional level in cancer.11 In
addition, mutations in non-APL tumours are extremely rare.11

As a result, research efforts have been focused on studying
posttranslational regulation of PML stability. In this respect,
PML has been shown to be degraded by the proteasome in
lung, colon and gastric cancer cell lines.11,18 In addition,
recent studies have demonstrated that the E3 ligase
RNF4 mediates PML ubiquitylation and degradation.19,20

Interestingly, this process appears to rely on disulphide
bonds formation and subsequent SUMOylation of PML in
PML-NBs.21 This work opens a completely new field for the
investigation of redox-dependent and SUMO-dependent
degradation of nuclear proteins. Given the importance of
posttranscriptional/translational regulation of gene expression
in cancer, it is conceivable that PML translation could be
regulated in cancer cells. In this respect, it is presently unclear
whether PML translation is controlled by microRNAs or RNA-
binding proteins in normal versus cancer cells. This warrants
an urgent investigation.

PML Function(s)

PML has been proposed to transduce various growth
suppressive signals. Several studies have implicated PML in
the regulation of cellular senescence and programmed cell
death. Most of them focused on PML nuclear splice variants,22

but it is becoming clear that cytoplasmic localisation of PML
can affect growth suppression and cell death. This review will
focus on the role of PML in cell death control and will discuss
the impact of most recent discoveries in the field.

PML and death receptors. PML has been shown to
regulate apoptosis induced by FAS ligand (FASL) and
tumour necrosis factor (TNF) a, which are key regulators of
immunity and inflammation.23–27 In particular, PML-deficient
lymphocytes show decreased cell death following treatment
with FASL.28 Furthermore, bone marrow cells from PML�/�
animals are resistant to TNFa treatment. In both cases, this
correlates with decreased caspase activation. It is worth
noting that PML has been shown to regulate cell death in a
caspase-independent manner, thus suggesting that its role is
not confined to caspase-dependent cell death.29 Finally, PML
role is not limited to FASL and TNF, as it has been shown to
potentiate interferon a-triggered cell death through induction
of TRAIL,30 a death receptor expressed in cancer cells.31–37

PML and pro-apoptotic transcription factors. More
recent studies have shown that PML regulates the tumour
suppressor p53, a major regulator of apoptosis.38–40 In
particular, it controls p53 degradation through the inhibition of

Mdm2, which is the major p53 E3 ubiquitin ligase.41–45 This
function appears to be in part PML-NB independent and
occurs through sequestration of Mdm2 into nucleoli, thus
promoting p53 activation upon DNA damage.41 The PML-
interacting protein DAXX46,47 has been shown to control
p53 ubiquitylation by inhibiting MDM2 degradation.48,49 PML
can also control p53 by promoting its acetylation50 and
phosphorylation at multiple residues.33,51–53 cPML isoforms
have been shown to negatively regulate PML function,54 thus
suggesting that balance between nuclear and cytoplasmic
isoforms could dictate the response to growth suppressive
signals. PML can also regulate DNA damage response in a
p53-independent manner. In this respect, PML is under the
control of the ATM/Chk2 pathway for induction of cell death
upon genotoxic stress.55,56 Finally, PML has been shown to
regulate cell death induced by HIV infection.57 In particular,
PML transduces ATM/p53-dependent pro-apoptotic signals
in HIV-induced syncytia.58,59 Overall, these findings indicate
that PML can regulate p53 function by acting at different
levels of the p53 pathway. It remains to be established
whether these different regulatory routes are stimulus- and/or
tissue-specific.

PML regulates the function of other members of the p53
family. In this respect, PML has been shown to inhibit the
degradation of the p53 family member p73.60–67 More recent
studies have further dissected the functional consequences
of PML/p73 interaction.68–71 Notably, the shorter, growth-
promoting isoform DN-p73 is regulated by the APL oncogene
PML-RARa, thus adding another level of complexity.72 Finally,
PML is known to regulate the remaining member of the family,
p63,73–80 which has a key role in development and home-
ostasis of different epithelia.81

PML interacts also with c-Jun upon UV irradiation, and
modulates its pro-apoptotic function through c-Jun-N-terminal
kinase (JNK)-dependent phosphorylation,82 a pathway im-
plicated in the regulation of apoptosis.67,83–85 UV causes
dramatic PML-NB reorganisation, which leads to formation of
multiple microspeckles positive for both phosphorylated c-Jun
and PML.82 Interestingly, DAXX has been shown to regulate
JNK in human fibroblasts,46 thus suggesting that PML could
regulate the JNK/c-Jun pathway via DAXX.

PML, PTEN and AKT. Recent evidence has implicated PML
in the regulation of the PI-3K pathway at multiple levels.86

This work predominantly comes from the Pandolfi’s group.
First, PML has been shown to promote PTEN nuclear
localisation by affecting its interaction with HAUSP and
its ubiquitylation status.87 Second, PML is able to inhibit
Akt function by promoting its PP2A-dependent dephos-
phorylation.88 Notably, we have shown that PML interacts
with another phosphatase PP1, and promotes PP1-
dependent dephosphorylation of retinoblastoma protein
(pRb) in neural stem cells.89 Finally, PML directly interacts
with mTOR and induces its localisation to the PML-NBs, thus
inhibiting its function. Taken together, these findings indicate
that PML has an important role in regulation of the PI-3K
pathway. In this respect, PML has been shown to regulate
the intracellular degradation mechanism autophagy,90–103

which is negatively regulated by mTOR, and has been
implicated in cancer development and longevity. It is

Promyelocytic leukaemia protein in cell death regulation
P Salomoni et al

2

Cell Death and Disease



therefore possible that PML through inhibition of mTOR could
promote induction of autophagy. As mentioned above, it is
still unclear whether these regulatory nodes exist in the same
cell or whether they vary depending on the cell type or
extracellular environment.

PML and transforming growth factor (TGF) b. TGFb is
known to control key tumour suppressive functions in normal
cells, whereas in cancer cells it has been proposed to bear
pro-metastatic functions.104,105 The group led by Pier Paolo
Pandolfi has shown that in PML-deficient fibroblasts the
response to TGFb is blunted, with both senescence and
apoptosis being severely impaired.106 Surprisingly, this effect
was mainly caused by loss of PML cytoplasmic isoforms
(cPML). In particular, cPML regulates endosomal trafficking
of TGFb receptors by promoting the association of Smad2/3
and Smad anchor for receptor activation. Interestingly,
this pathway can be modulated by nuclear retention of
cPML via a mechanism involving TG-interacting factor
(TGIF-) and c-Jun.107,108 In turn, TGIF is inhibited by PML
competitor for TGIF association (PCTA), thus activating
cPML tumour suppressive function.108 A recent study has
demonstrated that the nuclear corepressor SnoN, a known
regulator of TGFb, controls p53 stabilisation via interaction
with PML and PML-NBs and independent of Smads.109 This
study suggests that nuclear PML is also involved in
regulation of the TGFb pathway. Further research efforts
are needed to fully dissect the role of different PML isoforms
in regulation of this pathway.

PML and the endoplasmic reticulum. A very recent study
from Pandolfi’s group has proposed a novel role for PML
in the cytoplasm.110,111 PML appears enriched at the
endoplasmic reticulum and at the mitochondria-associated
membranes, which constitute ER-to-mitochondria communi-
cation sites involved in transport of Ca2þ and induction of
apoptosis.110–112 At these sites, PML interacts with the 1,4,5-
triphosphate receptor (IP3R), AKT and PP2A. In the absence
of PML, AKT-dependent phosphorylation of IP3R is
increased, whereas Ca2þ release from the ER is impaired,
resulting in blunted apoptosis. These data suggest that PML
can affect both nuclear and cytoplasmic functions of AKT
through its interaction with PP2A, thus promoting its
inactivation and apoptosis induction. Mitochondria act as
crucial regulators of cell death through a complex interplay
of pro- and anti-apoptotic proteins associated with these
organelles. The tumour suppressor p53 has been demon-
strated to localise to mitochondria and promote apoptosis via
regulation of BCL-2 family members.113–118 It is conceivable
that PML could regulate p53 not only in the nucleus but also
in mitochondria. Further studies are needed to address a
potential functional interaction between PML and p53 in
mitochondria, and the impact of this interaction on BCL-2
family members and apoptosis induction.

Overall, studies in the last few years indicate that PML,
through interaction with PP1 and PP2A phosphatases in the
nucleus and the cytoplasm, could affect key tumour suppres-
sive (pRb, see below) and oncogenic pathways (AKT). It
remains to be established whether the function of p53 and
c-Jun could also be modulated by PML-mediated regulation

of PP1 and/or PP2A (Figure 1). Finally, it is conceivable that
PML itself could be a target for PP1 and/or PP2A-mediated
dephosphorylation as part of a positive or negative feedback
loop.

PML Function in Stem Cells: what is the Contribution of
Cell Death Regulation?

PML has emerged as an important factor regulating stem cell
function within multiple tissues. In particular, our work has
shown that PML regulates neural stem cell (NSC) function
during corticogenesis by a mechanism involving PP1 and
pRb.89 In the bone marrow, PML loss affects self-renewal in
haemopoietic stem cells (HSCs) potentially through its action
on the mTOR pathway.12 Finally, PML regulates mammary
gland development and its loss results in skewing of
mammary progenitor subtypes.119,120 It is presently unclear
whether the phenotypes caused by PML loss in these different
tissues is in part due to alterations of cell death. For instance,
increased NSC number in PML�/� cortices during develop-
ment could be because of increased cycling as well as
decreased cell death. Vice versa, reduction in neuronal
numbers in PML-deficient cortices could be because of
increased cell death following commitment of neural progeni-
tors to neuronal fate. In the haemopoietic system, the
increased proliferation of PML�/� committed progenitors
could be caused by impaired cell death (Figure 2). Finally,
altered cell death pathways could explain the increased
generation of ERaþ luminal progenitors in PML-deficient
mammary glands.108,109

The last few years of PML research have produced
fascinating results. However, the increasing complexity of
PML function and its promiscuous interactions raise a number
of key questions: (i) Are these interactions tissue- or context-
specific? (ii) Does PML work differently in normal cells versus
immortalised or transformed cells? (iii) How is the interplay
between cPML and nuclear functions regulated? The field is in
need of more refined mouse models, such as knockin and
conditional knockouts, which will help addressing these
important points.

PP1 PP2A

PTEN

PML

PI-3K

AKT

mTOR 

pRb 

p53

Ac, P
Mdm2

Ca2+ release

Figure 1 Multifaceted role of PML in regulation of apoptosis and growth
suppression. PML activates pRb and inhibits AKT via interactions with PP1 and
PP2A phosphatases, respectively. In addition, it negatively affects the PI-3K
pathway by inhibiting mTOR and activating PTEN. cPML retains the ability to
promote PP2A-dependent AKT inhibition, thus causing Ca2þ release at contact
sites between the mitochondria and the ER. Finally, PML positively regulates p53 by
acting at different levels (that is, acetylation, phosphorylation and Mdm2-dependent
degradation). It is presently unclear whether sequestration of PP1 and PP2A into
PML-NBs can inhibit their function
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