
Glucocorticoids induce long-lasting effects in neural
stem cells resulting in senescence-related alterations
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Alterations in intrauterine programming occurring during critical periods of development have adverse consequences for whole-
organ systems or individual tissue functions in later life. In this paper, we show that rat embryonic neural stem cells (NSCs)
exposed to the synthetic glucocorticoid dexamethasone (Dex) undergo heritable alterations, possibly through epigenetic
mechanisms. Exposure to Dex results in decreased NSC proliferation, with no effects on survival or differentiation, and changes
in the expression of genes associated with cellular senescence and mitochondrial functions. Dex upregulates cell cycle-related
genes p16 and p21 in a glucocorticoid receptor(GR)-dependent manner. The senescence-associated markers high mobility
group (Hmg) A1 and heterochromatin protein 1 (HP1) are also upregulated in Dex-exposed NSCs, whereas Bmi1 (polycomb ring
finger oncogene) and mitochondrial genes Nd3 (NADH dehydrogenase 3) and Cytb (cytochrome b) are downregulated. The
concomitant decrease in global DNA methylation and DNA methyltransferases (Dnmts) suggests the occurrence of epigenetic
changes. All these features are retained in daughter NSCs (never directly exposed to Dex) and are associated with a higher
susceptibility to oxidative stress, as shown by the increased occurrence of apoptotic cell death on exposure to the redox-cycling
reactive oxygen species (ROS) generator 2,3-dimethoxy-1-naphthoquinone (DMNQ). Our study provides novel evidence for
programming effects induced by glucocorticoids (GCs) on NSCs and supports the idea that fetal exposure to endogenous
or exogenous GCs is likely to result in long-term consequences that may predispose to neurodevelopmental and/or
neurodegenerative disorders.
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Epidemiological and experimental studies have shown that
alterations in the intrauterine programming occurring during
critical periods of development may have adverse conse-
quences in later life.1 Morphometrical analyses have corre-
lated certain patterns of intrauterine growth, particularly
growth retardation, to specific postnatal outcomes with
increased incidence of cardiovascular, metabolic, renal and
endocrine disorders.2 Interestingly, recent clinical studies
have shown a correlation between intrauterine growth
retardation and the development of attention-deficit hyper-
active disorder (ADHD)3 and depression.4 Hormones such as
glucocorticoids (GCs) have a critical role in intrauterine
programming. During development, GCs control fetal growth
of all tissues and organs, and have a critical role in intrauterine
programming,5 exerting their action by changing the expres-
sion of receptors, enzymes, ion channels, transporters,
various growth factors, cytoarchitectural proteins, binding
proteins and components of intracellular signalling pathways.
They can function directly on genes and/or indirectly,
affecting, for example, the bioavailability of other hormones.6

Most of the prenatal challenges known to have programming
effects have been associated with high levels of GCs in utero.1

Fetal exposure to elevated GC levels can occur when
exogenous GCs are administered for therapeutic purposes
or in response to severe maternal stress. Normally, the fetus
is protected from maternal GCs by placental 11 beta
hydroxysteroid dehydrogenase type 2 (11b-HSD2). However,
high maternal levels exceeding the limit of placental
11b-HSD2 or pathological conditions impairing placental
functions might lead to fetal exposure to excess GCs.5

It is well established that GCs, although critical for
adaptation to stress, can have adverse effects on the nervous
system when secreted in excess.7,8 Animal models have
provided compelling evidence that fetal exposure to high
levels of GCs alter brain development, causing persistent
structural and functional changes and also affecting fetal
neurogenesis.9–11 Certain regions of the adult brain retain
neurogenic potential 12 and several studies have shown that,
in the adult hippocampus, GCs negatively affect neuro-
genesis.13,14 Relevantly, the effects of early exposure to an
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increased level of GCs, as induced by prenatal stress, are
long lasting, resulting in reduced neurogenesis in later life in
rodents and non-human primates.9,15

In previous studies, we observed that prenatal exposure to
high levels of synthetic GC dexamethasone (Dex) induces
long-lasting alterations in rat neuronal cells characterized by
an increased susceptibility to oxidative stress,16 which we
also observed in adult NSCs.17 All together, the data pointed
to a programming effect of Dex, which induced long-term
changes in cells never directly exposed to it. In light of the
central role that NSCs have in the developing and also adult
nervous system, we designed the present study to investigate
the molecular mechanisms responsible for the long-lasting
effects induced by GCs in primary cultures of embryonic
cortical NSCs.

Results

GC-induced effects were investigated in parent NSCs (P1)
exposed to 1 mM Dex for 48 h, and in daughter cells (D) from
passage 2 (D2) and 3 (D3), which were never directly exposed
to Dex (see Figure 1 for details).

Dex decreases proliferation of NSCs without interfering
with cell viability or differentiation. Live cell imaging
revealed that Dex-exposed P1 had more processes and
tended to grow disjointed, whereas control cells grew in
clusters with tight cell–cell contacts (Figure 2a and b). In
addition, Dex exposure led to a significant reduction in total
cell number, as observed in P1 cells, as well as in D2 and D3
cells (Figure 2c), without a concomitant increase in necrotic
(data not shown) or apoptotic cells (Supplementary Figure
S1). As shown by the immunocytochemical staining for
the proliferation marker Ki67 (green colour), Dex exposure
significantly decreased proliferation in P1 (Figure 3a and b)
and this effect persisted in D (Figure 3c).
To clarify whether the reduction in cell proliferation was

associated with an increase in differentiation, we performed
immunocytochemical analyses in control and Dex P1, D2 and
D3 cells using markers for NSCs (nestin, green colour), early
neurons (TuJ1, green colour) and glia progenitor cells (GFAP,
red colour). Nearly 100% of the control, as well as Dex P1
(Figure 3d and e), D2 and D3 cells, were nestin positive,
whereas no TuJ1- or GFAP-positive cells were detected at
any passage (Supplementary Figure S2).

Dex increases gene expression of cell-cycle inhibitors
and hallmarks of senescence. Gene expression analyses
by quantitative real-time PCR (q-PCR) in P1 cells revealed a
significant Dex-induced upregulation of the cell-cycle
regulating genes p16 (fold change 1.98±0.08) (Figure 4a)
and p21 (fold change 2.14±0.15) (Figure 4b) that persisted
in D2 (p16 fold change 2.02±0.2, p21 fold change 1.75±0.06)
and D3 NSCs (p16 fold change 1.89±0.13, p21 fold change
2.17±0.31). Preexposure to the glucocorticoid receptor (GR)
antagonist Mifepristone (RU486) significantly inhibited the p16
(fold change 1.23±0.05) (Supplementary Figure S3A) and p21
(fold change 1.42±0.07) (Supplementary Figure S3B) upregu-
lation, without altering GR expression (fold change 0.92±0.2)
(Supplementary Figure S3C), pointing to a GR-mediated mech-
anism. siRNA nucleofection to knock down GR (efficiency
about 50–70%, fold change 0.3±0.01) (Supplementary Figure
S3D) blocked Dex-induced p16 (fold change 1.45±0.13)
(Figure 4c) and p21 (fold change 1.32±0.09) (Figure 4d)
upregulation significantly.
In light of the fact that p16 and p21 upregulation has been

linked to cellular senescence, we analysed Dex-induced
effects on the expression of senescence markers by q-PCR
and immunocytochemistry. Interestingly, Dex repressedBmi1
(polycomb ring finger oncogene) expression in P1 (fold
change 0.33±0.03), D2 (fold change 0.32±0.03) and D3
NSCs (fold change 0.46±0.06) (Figure 5a) and upregulated
high mobility group A1 (Hmga1) in D2 (fold change
2.09±0.26) and D3 cells (fold change 2.06±0.22)
(Figure 5b). In contrast, we did not detect significant changes
in Hmga2 expression (P1 fold change 1.36±0.1, D2 fold
change 0.89±0.03, D3 fold change 1.12±0.15) (Supple-
mentary Figure S4). In addition, Dex led to an enrichment of
heterochromatin protein 1 gamma (HP1g) (green colour) in so-
called senescence-associated heterochromatin foci (SAHF)
(Figures 5c and d).

Dex alters the expression of mitochondrial respiratory
chain genes. Cellular senescence has been associated
with impaired mitochondrial functions. Interestingly, gene
expression analyses by q-PCR showed a long-lasting
downregulation of mitochondrial genes NADH dehydro-
genase 3 (Nd3) (P1 fold change 0.41±0.06, D2 fold
change 0.41±0.03, D3 fold change 0.43±0.05) (Figure 6a)
and cytochrome b (Cytb) (P1 fold change 0.47±0.05, D2 fold
change 0.48±0.04, D3 fold change 0.45±0.03) (Figure 6B).

Dex modifies global DNA methylation. Methylation
measurements revealed a significant decrease in global
DNA methylation in P1 (B33%) and D2 (B40%) NSCs
(Figure 7a) associated with a decreased expression in DNA
methyltransferases (Dnmts). In parent cells, a significant
downregulation in Dnmt1 (fold change 0.53±0.02), Dnmt3a
(fold change 0.62±0.01) and Dnmt3b mRNA levels (fold
change 0.5±0.01) was detected (Figure 7b), whereas D
showed a decrease in Dnmt1 (fold change 0.69±0.01) and
Dnmt3a expression (fold change 0.68±0.01) (Figure 7c).

Dex induces a long-lasting susceptibility to oxidative
stress. We then wanted to test the hypothesis that the long-
lasting senescence and mitochondrial alterations would be
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Figure 1 Experimental model. After cortice dissection and cell plating, NSCs
were cultured for 5 days before passaging in order to obtain parent cells (P1). After 3
days in culture, P1 cells were exposed to Dex (1 mM) for 48 h. To investigate
the long-lasting (heritable) effects of Dex, P1 NSCs were passaged to get daughter
cells (D). D2¼ daughter NSCs from passage 2; D3¼ daughter NSCs from
passage 3
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associated with a higher vulnerability to oxidative stress.
We challenged daughter NSCs with the oxidative stress
inducer 2,3-dimethoxy-1,4-naphthoquinone (DMNQ, 3mM)
and observed an increased reactive oxygen species (ROS)
production in Dex-NSCs, compared with control cells
(Figure 8a), which were associated with a higher incidence
of cell death, as shown by the twofold increase in the number
of apoptotic NSCs (Figure 8b).

Discussion

The novelty of our findings is the demonstration that, in
NSCs, GCs induce heritable alterations, including a
decrease in proliferation and changes in the expression of
genes related to senescence and mitochondrial functions.
The decrease in global DNA methylation suggests that
epigenetic mechanisms may have a critical role in the onset
of Dex-induced effects. In addition, both parent cells and D
exhibited an increased susceptibility to oxidative stress. All
together, the data open new translational perspectives.
Considering the central role that NSCs have in the developing
nervous system, it is conceivable that, in vivo, the alterations
induced by GCs on cortical NSCs can negatively affect
neurogenesis with a subsequent unfavourable functional
outcome in terms of cognitive abilities.18,19 Both human and
animal studies have demonstrated that disruptions in prenatal
and early postnatal brain development can cause mental

retardation and cognitive dysfunctions,20 and disruption of
developmental neurogenesis has been linked to schizophre-
nia.21 It is well established that NSCs are also present in the
adult nervous system, where they may have a role in learning,
memory and in the response to injuries.12 Thus, the long-
lasting impairment induced by GCs in NSCs can have
negative consequences in adulthood as well.
In terms of cellular mechanisms, the decrease in NSC

number induced by Dex that we observed was not associated
with an increase in cell death or differentiation, clearly pointing
to an alteration in the proliferation rate, in agreement with
Sundberg et al.22 Gene expression analyses revealed an
upregulation of cell-cycle regulating genes p16 and p21,
which represent potent inhibitors of cyclin-dependent kinases
and D-type cyclins in various cell types, thereby leading to cell
cycle arrest.23,24 By blocking GR with the non-selective
antagonist Mifepristone or through knockdown experiments
targeting GR expression, we could prevent the upregulation of
both p16 and p21. Gene expression regulation by GR can
mechanistically occur in two distinct ways: (1) the ligand-
activated GR interacts directly with GC-responsive elements
(GREs) that are present in promoter regions of target genes;
(2) GR-mediated stimulation of gene expression takes
place by GR interaction with other DNA-bound proteins,
without direct binding to the DNA itself or by interaction with
other molecules involved in intracellular signalling.25 For p21,
GC-responsive regions have been identified in the rat
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Figure 2 Dex exposure decreases NSC proliferation. Phase contrast images of control (a) and Dex-exposed (1mM Dex for 48 h) (b) P1 NSCs. Scale bar¼ 50mm.
(c) Total cell number (expressed as percentage from cell counts of control cells) of parent (P1) and D2 and D3 cells. Values are shown as mean±S.E.M. *Po0.05
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promoter sequence that requires the presence of a C/EBP
DNA binding site and the expression of a functional C/EBPa
transcription factor.26,27 Thus, Dex-induced p21 upregulation
might be occurring via functional protein interactions between
GR and C/EBPa in a tethering mechanism.
The upregulation of p16 and p21 has been linked to cellular

and in vivo senescence,28,29 and our data point to Dex
promoting senescence in NSCs, an effect that is passed from
parent cells to D. Cellular senescence is accompanied by
SAHFs containing a variety of chromatin proteins, such as
K9-methylated histone H3, macro H2A, HP1 and HMGA

proteins.30 Gene expression analyses of Hmga1 and protein
analyses via immunocytochemistry against HP1g showed
that both senescence markers are increased in daughter
Dex-NSCs. Further, we also detected a downregulation of
Bmi1 that is also assumed to be an indicator of senescence
based on the fact that normal embryonic fibroblasts from
Bmi1�/�mice show a premature senescence phenotype that
correlates with an increased expression of p16.31

Cellular senescence is associated with mitochondrial
dysfunctions as shown in several different cell types, including
fibroblasts, epithelial, mesothelial and hippocampal cells.32–35
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Particularly, increased ROS content and decreased mito-
chondrial energetic competences to produce ATP are two
major events underlined in the mitochondrial hypothesis
of ageing.36 Mitochondria are known to be a primary target
of GCs, as the mitochondrial genome contains six putative
GREs. Gel shift analysis proved binding of the GR to the
mitochondrial genome after GC challenge,37 which results in
transcriptional regulation of several mitochondria-encoded
genes.38 In our cell model, we observed a transcriptional
repression of the mitochondrial-respiratory chain enzymes
of complex I (Nd3) and complex III (Cytb) induced by Dex in
parent cells and D. Notably, a study on adrenalectomized rats
has shown that several mitochondrial genes, including Cytb,
are GC responsive and are downregulated in response to low
doses of corticosterone.38

In our studies, all the effects induced by Dex persisted from
parent cells to D. The changes in global DNA methylation
accompanied by a decreased expression of Dnmt1, Dnmt3a
andDnmt3b suggest that the heritable effects induced by Dex
might be due to epigenetic reprogramming of NSCs. The
identification of gene-specific alterations in DNA methylation
is the aim of ongoing studies.
In agreement with our previous data,16,17 Dex induces a

long-lasting increased susceptibility to oxidative stress, as

shown by the higher number of cells undergoing apoptosis,
associated with higher levels of intracellular ROS. However,
the long-lasting alterations induced by GCs do not interfere
with the viability of NSCs, unless they are challenged by an
adverse stimulus, such as oxidative stress.
In conclusion, our data provide novel evidence for

programming effects induced by Dex in NSCs and support
the idea that conditions associated with fetal exposure to high
levels of GCs are likely to have long-term consequences that
may predispose to neurodevelopmental disorders and/or to
neurodegenerative processes.

Materials and Methods
Embryonic cortical NSCs culture and exposure
procedures. Primary cultures of NSCs were prepared as previously
described.39,40 Cells were obtained from embryonic cortices (n¼ 6–8/cell
prepartion) dissected in HBSS (Life technologies, Carlsbad, CA, USA) from timed
pregnant Sprague Dawley rats (n¼ 20) (Harlan Laboratories, Harlan, The
Netherlands) at E15 (the day of copulatory plug defined as E0). The tissue was
mechanically dispersed, and meninges and larger cell clumps were allowed to
sediment for 10 min. The cells were plated at a density of 40.000/cm2 on dishes
precoated with poly-L-ornithine and fibronectin (both from Sigma-Aldrich, St. Louis,
MO, USA; Stockholm, Sweden). Cells were maintained in enriched N2 medium with
10 ng/ml of basic fibroblast growth factor (R&D systems, Minneapolis, MN, USA)
added every 24 h and medium changed every alternate day to keep the cells in an
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undifferentiated and proliferative state. Cells were passaged by detaching through
scraping in HBSS. Thereafter, the cells were gently mixed in N2 medium, counted,
and plated at a desired density. With these culture conditions, doubling time of
NSCs was B20 h. For counting and evaluation of cell viability, cells were harvested
in HBSS, stained with 0.4% Trypan blue solution (Sigma-Aldrich) and analysed
under a phase-contrast microscope using a Neubauer improved counting chamber.
Cells with a damaged cell membrane (necrotic cells) stained blue, whereas cells
with intact plasma membrane (healthy or apoptotic cells) remained unstained. To
investigate Dex long-lasting effects, we exposed P1 NSCs (see Figure 1) to Dex
(1mM) for 48 h. P1 cells were harvested at the end of the exposure to Dex. Heritable

effects were investigated in D2 and D3 NSCs (see Figure 1) at different time points,
depending on the type of analysis.

For the investigation of GR-dependent mechanisms, P1 NSCs were incubated
with 200 nM Mifepristone for 30 min before exposure to Dex. To induce oxidative
stress, we used DMNQ (Calbiochem, Darmstadt, Germany). D2 NSCs (72 h after
passaging) were exposed to 3mM DMNQ for up to 24 h. All experiments were
performed in triplicate and repeated at least five times.

Immunocytochemistry. NSCs were fixed in 4% paraformaldehyde (PF)
(Sigma-Aldrich) for 1 h at 41C, followed by washing in phosphate-buffered saline
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(PBS). Primary antibodies were diluted in PBS containing 0.3% Triton X-100 and
0.5% bovine serum albumin (BSA, Boehringer Mannheim, Mannheim, Germany).
NSCs were incubated with primary antibodies rabbit anti-Ki67 (1 : 1000; Novocastra
Laboratories Ltd, Wetzlar, Germany); mouse antinestin (1 : 200; Chemicon,
Billerica, MA, USA); rabbit antiglial fibrillary acidic protein (GFAP, 1 : 800;
Dakocytomation, Glostrup, Denmark); mouse antitubulin III (Tuj1, 1 : 400;
Convance, Princeton, NJ, USA); and rabbit anti-HP1g (1 : 1000; Cell Signaling,
Danvers, MA, USA), overnight in a humid chamber at 41C. Cells were then rinsed
with PBS and incubated with appropriate secondary FITC- or Texas-red-conjugated
antibodies for 1 h at room temperature (RT) (1 : 200; Alexa, Invitrogen, Carlsbad,
CA, USA). Cell nuclei were counterstained with Hoechst 33342 (1 mg/ml, Sigma-
Aldrich). After rinsing with PBS, coverslips were mounted onto slides with
Vectashield mounting medium (Vector Laboratories, Inc, Burlingame, CA, USA).
Images were captured using an Olympus BX60 fluorescence microscope (Olympus,
Tokyo, Japan) equipped with a Hamamatsu digital camera (C4742-95-10sc,
Hamamatsu Photonics Norden AB, Solna, Sweden). All experiments were
performed in triplicate and repeated at least three times. Semiquantitative
analyses were performed by counting at least 100 cells/coverslip in triplicate.

Extraction of total RNA, cDNA synthesis and real-time PCR. Total
RNA was isolated from NSCs using the RNeasy Mini Kit (Qiagen, VWR, Stockholm,
Sweden). Integrity and concentration of extracted RNA were measured using a
NanoDrop 1000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA).
cDNA was prepared using 1mg total RNA and 0.5mg of Oligo-dT primer following
the instructions of the Superscript II first strand cDNA synthesis kit (Invitrogen Inc).
Amplification reactions were performed with 1ml cDNA, SYBR Green Mix (Applied
Biosystems, Stockholm, Sweden) and 0.2mM of forward and reverse primers. The
reaction volume was adjusted to 25ml with DEPC water. Negative control reactions

contained water instead of cDNA as template. q-PCR was performed using an ABI
Prism 7000 Sequence Detection System with SDS version 2.1 software (Applied
Biosystems). The PCR cycle conditions were 501C for 2 min, 951C for 10 min, 951C
for 15 s and 601C for 1 min (40 cycles). To evaluate the amplification of a specific
sample, final melting curve (from 601C up to 951C) was added under continuous
fluorescence measurements. All expression values were normalized against
the housekeeping gene hypoxanthine phosphoribosyltransferase (Hprt)
(DCT¼CTtarget gene–CTHprt). Relative expression levels were calculated as
DDCT¼DCTDex–DCTcontrol and relative expression changes were calculated as
2�DDCT. Representative values are shown as mean±S.E.M. Statistical
significance was set to Po0.05. All experiments were conducted in triplicate and
repeated at least three times. PCR primer sequences are available in
Supplementary Table S1.

siRNA nucleofection. siRNA targeting rat GR (50-CAUGUUAGGUGGG
CGUCAA-30) and negative siRNA control sequence (50-UUGACGCCCACCUA
ACAUG-30) were purchased from Qiagen. siRNA was delivered by using a
Nucleofactor device and the Nucleofactor kit according to the supplier’s protocol
(Amaxa, Lonza, Switzerland). At 3 h after nucleofection, NSCs were treated with
1 mM Dex for 24 h. Thereafter, the cells were harvested for gene expression
analysis. Knockdown efficiency was analysed by q-PCR analysis. All experiments
were carried out in triplicate and repeated at least three times.

Global DNA methylation assay. DNA was prepared using the GeneElute
Mammalian Genomic DNA Miniprep Kit (Sigma-Aldrich) according to the
manufacturer’s instructions. DNA quality and concentration were measured by a
NanoDrop 1000 spectrophotometer (Thermo Scientific). Global DNA methylation
was determined with a MethylAMP Global DNA Methylation Quantification Kit
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Figure 8 Dex increases NSC susceptibility to oxidative stress. D2 cells exposed to the oxidative stress inducer DMNQ for 8 h showed a significant increase in ROS
accumulation (a) and an increased number of TUNEL-positive apoptotic cells, 24 h after DMNQ exposure (b). Values are shown as mean±S.E.M. *Po0.05
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(Epigenetek, New York, NY, USA) as instructed by the manufacturer, including
methylated DNA standard as positive control. Global cytosine methylation levels
were determined by measuring optical density (OD) in a microplate reader at
450 nm. The percentage of cytosine methylation was calculated in Dex-treated cells
relative to untreated control cells, according to the manufacturer’s instructions.

Measurement of intracellular ROS levels. D2 NSCs were seeded in 96-
well plates. At 72 h after seeding, cells were exposed to 3 mM DMNQ for 8 h, then
washed with HBSS buffer and incubated with 10 mM 5-(and-6)-carboxy-20,70-
dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA) (Image-iT Live Green
ROS Detection Kit, Molecular Probes, Carlsbad, CA, USA) for 30 min under 5% CO2

atmosphere. The non-fluorescent carboxy-H2DCFDA permeates live cells and is
deacetylated by nonspecific intracellular esterases. In the presence of ROS, the
reduced fluorescein compound is oxidized and emits bright green. The fluorescence
intensity of cells from each well was analysed by Fluoroscan Ascent FL (Thermo
Scientific) at an excitation wavelength of 495 nm and emission wavelength of
529 nm, followed by determination of the protein content of the respective well using
the NanoDrop 1000 spectrophotometer (Thermo Scientific). The data are expressed
as fluorescence intensity related to the protein content. All experiments were
performed in triplicate and repeated at least three times.

Detection of apoptotic cells. To evaluate the nuclear morphology, NSCs
(P1, D2 and D3) were grown on poly-L-ornithine/fibronectin-coated coverslips and
fixed in 4% PF for 1 h at 41C. After washing with PBS, cells were stained with
Hoechst 33342 (1mg/ml) for 5 min at RT, and then rinsed with PBS. Apoptotic cells
were identified by the condensed chromatin. TUNEL assay was performed to detect
single-strand DNA breaks. NSCs were fixed as described above and then incubated
with TUNEL reaction mixture (0.07% Triton X-100, 2.5 mM CoCl2, 5mM fluorescein-
12-UTP, 5 U/ml terminal transferase, 0.2 mM potassiumcacodylate, 0.25 mg/ml
BSA, 25 mM Tris–HCl pH 6.6) (Roche, Bromma, Sweden) at 371C for 1 h. After
mounting, cells were analysed with a fluorescent microscope and at least 100 nuclei
were counted per coverslip. All experiments were performed in triplicate and
repeated at least three times.

Statistical analysis. All data are presented as mean±standard error of the
mean. Quantitative data were analysed by one-way analysis of variance (ANOVA),
followed by Bonferroni’s post hoc test. The threshold of statistical significance was
set at 0.05 for all analyses.
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