
The initiator caspase Dronc is subject of enhanced
autophagy upon proteasome impairment in Drosophila
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A major function of ubiquitylation is to deliver target proteins to the proteasome for degradation. In the apoptotic pathway in
Drosophila, the inhibitor of apoptosis protein 1 (Diap1) regulates the activity of the initiator caspase Dronc (death regulator Nedd2-
like caspase; caspase-9 ortholog) by ubiquitylation, supposedly targeting Dronc for degradation by the proteasome. Using a
genetic approach, we show that Dronc protein fails to accumulate in epithelial cells with impaired proteasome function suggesting
that it is not degraded by the proteasome, contrary to the expectation. Similarly, decreased autophagy, an alternative catabolic
pathway, does not result in increased Dronc protein levels. However, combined impairment of the proteasome and autophagy
triggers accumulation of Dronc protein levels suggesting that autophagy compensates for the loss of the proteasome with respect
to Dronc turnover. Consistently, we show that loss of the proteasome enhances endogenous autophagy in epithelial cells. We
propose that enhanced autophagy degrades Dronc if proteasome function is impaired.
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There are twomajor catabolic pathways in eukaryotic cells that
degrade the bulk of cellular proteins, the ubiquitin–protea-
some system (UPS) and macro-autophagy, hereafter referred
to as autophagy.1–4 In the UPS, poly-ubiquitylated proteins are
delivered to the 26S proteasome for degradation. The 26S
proteasome consists of a 20S catalytic core, flanked by two
19S regulatory complexes.5,6 The 20S catalytic core is
composed of a total of 28 α- and β-type subunits, which are
organized in a barrel with four stacked rings. The outer two
rings are formed by seven α-type subunits each, the two inner
rings by seven β-type subunits each.5 All α- and β-type
subunits are needed for structural integrity of the proteasome.7

Three β-type subunits, β1, β2 and β5, have proteolytic activity.6

The 19S regulatory particle is composed of at least 19
subunits involved in recognition of ubiquitin-conjugated sub-
strates, ATP hydrolysis, de-ubiquitination, protein unfolding
and feeding of the substrates into the 20S catalytic core for
degradation.5 Genetic studies in yeast and Drosophila have
revealed that mutations in many subunits of the 20S core and
the 19S regulatory domains impair proteasome function.8,9

Genetic analysis of proteasome function is also of clinical
importance as proteasome inhibition may be used as potential
antitumor strategy, especially for treatment of multiple
myeloma.10–13

Autophagy is characterized by the formation of double-
membrane vesicles termed autophagosomes.14,15 During

autophagosome maturation, cytosolic proteins and entire
organelles are trapped and delivered to the lysosome
for degradation. Two ubiquitin-like conjugation pathways
(autophagy-related-8 (Atg8)/light chain 3 (LC3) and Atg12) are
active during maturation of autophagosomes.14,15 Atg7 is an
enzyme 1 (E1)-activating enzyme involved in both conjugation
pathways14 and essential for autophagy.16 The incorporation
of Atg8 fusion proteins (for example, with green fluorescent
protein (GFP) and/or mCherry) into autophagosomes is often
used as a marker for autophagosomes17 and autophagic
flux.18

Although it was initially assumed that the UPSand autophagy
are independent of each other, recent evidence has suggested
that there is crosstalk and feedback between the two1,19–27

(reviewed by Park and Cuervo,3 Wojcik28 and Lamark and
Johansen29). This is mostly due to the observation that auto-
phagy can also degrade ubiquitylated proteins.30–34 Mechan-
istically, adaptor proteins with ubiquitin-binding domains and
LC3-interacting regions (LIRs) link poly-ubiquitylated proteins
to LC3/Atg8 at the autophagosome.30,35 Loss of autophagy
can lead to the formation of protein aggregates composed
of poly-ubiquitylated proteins and ubiquitin-binding proteins.
These protein aggregates are frequently associated with
neurodegenerative diseases in humans.36–38

Apoptosis is the major form of cell death and evolutionarily
conserved from flies to humans.39,40 Caspases are highly
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specific Cys-proteases and are the main effectors of apopto-
sis. They are produced as inactive zymogens that are
activated either through incorporation into large protein
complexes, such as the apoptosome (initiator caspases), or
by proteolytic processing (effector caspases).41,42 After
activation in the apoptosome, initiator caspases such as
caspase-9 and its Drosophila ortholog Dronc (death regulator
Nedd2-like caspase), cleave and activate effector caspases,
such as caspase-3 and its Drosophila ortholog DrICE (death-
related ICE-like protease).40,43

The activity of caspases is controlled at multiple levels. In
addition to zymogen production, apoptosome-mediated acti-
vation of caspase-9/Dronc and proteolytic processing of
caspase-3/DrICE, caspases are also controlled by ubiquityla-
tion, mediated by inhibitor of apoptosis proteins (IAPs), most
notably X-linked IAP (XIAP) in mammals and Drosophila IAP1
(Diap1).43 IAPs carry a RING (really interesting new gene)
domain, which has E3 ubiquitin ligase activity.44 InDrosophila,
because the RING domain of Diap1 ubiquitylates Dronc,45–48

it is commonly assumed that this ubiquitylation targets the
caspase for proteasome-mediated degradation.45,46 However,
in vivo this has not been observed. On the contrary, we have
shown that loss or gain of Diap1 activity does not affect the
protein levels of Dronc in surviving cells.49 A similar observa-
tion has been reported for DrICE.48 Furthermore, a mouse
mutant deleting the RING domain of XIAP does not
significantly affect caspase protein levels.50 Therefore, it is
currently unclear how the protein levels of Dronc are controlled
in living cells to avoid deleterious accumulation and auto-
processing of these potentially dangerous proteins.
Here, we report that in epithelial cells of Drosophila eye

imaginal discs, the protein levels of Dronc are unaffected by
proteasome impairment. Similarly, loss of autophagy by itself
does not affect Dronc protein levels. However, simultaneous
impairment of the proteasome and autophagy causes
accumulation of Dronc suggesting that autophagy can
compensate for the loss of the proteasome with respect to
Dronc turnover. Consistently, autophagy is enhanced in
proteasome mutants in epithelial cells. In summary, these
data identify Dronc as a common substrate for both the
proteasome and autophagy.

Results

Accumulation of poly-ubiquitylated proteins is a con-
venient marker for proteasome dysfunction. Ubiquityla-
tion of Dronc by Diap1 has previously been observed
in vitro.45,47 To directly test if ubiquitylated Dronc is degraded
by the proteasome, we analyzed Dronc protein levels in two
mutants affecting the proteasome. The first mutant affects the
prosβ2 gene, also known as DTS7 in Drosophila,51 which
encodes the β2 subunit of the 20S catalytic core of the
proteasome. The proteasome subunit beta 2 (Prosβ2) subunit
provides both structural integrity to the proteasome and
proteolytic activity.7 The second mutant affects the Mov34
gene (also known as p39B), which encodes a subunit in
the 19S regulatory complex, corresponding to regulatory
particle non-ATPase-8 (Rpn8) in yeast and S12 in the human
regulatory complex.52 Both mutants, prosβ2EP3067 and

Mov34k08003, are caused by P element insertions in the first
exon, which likely disrupt the transcripts. Both proteasome
mutants behave identically in our assays (see below).
As these proteasome mutants are homozygous lethal, we
induced mutant clones of cells using the ey-Flp/FRT
system.53,54 Not unexpectedly, mutant clones affecting the
proteasome are very small and are difficult to identify using
negative selection with GFP (Figure 1a–c). However, we were
able to positively mark and identify mutant clones using
antibodies that recognize ubiquitin or ubiquitin-conjugated
proteins. Antibodies raised against ubiquitin display
increased immunoreactivity in prosβ2 mutant clones (Figure
1a’). There is a perfect match in the areas lacking GFP, which
mark the prosβ2 mutant cells, and increased abundance of
ubiquitin labeling (Figure 1a’’).
As poly-ubiquitin-conjugated proteins are often subject to

proteasome-mediated degradation, we tested whether
ubiquitin-conjugated proteins account for the accumulation
of ubiquitin in prosβ2 mutants. The FK1 and FK2 antibodies
specifically recognize ubiquitin-conjugated proteins, but
not unconjugated ubiquitin (FK1 labels poly-ubiquitylated
conjugates, FK2 labels mono- and poly-ubiquitylated
proteins).55,56 As shown in Figures 1b’ and c’, the
immunoreactivity of FK1 and FK2 antibodies increases in
prosβ2 mutant cells. We also find increased FK1 and FK2
labeling in Mov34 mutant cells (Supplementary Figure S1). In
wild-type (wt) control mosaics (wt clones in wt background), an
accumulation of ubiquitin and conjugated ubiquitin (FK1 and
FK2) is not observed (Supplementary Figure S2) suggesting
that ubiquitin-conjugated proteins specifically accumulate
in proteasome-deficient cells in vivo, consistent with the
expectation.

Mutations in proteasome subunits result in elevated
cleaved caspase-3. Proteasome inhibitors are used to
induce cell death in cancer patients, including those with
multiple myeloma.11,13 Consistently, pharmacological inhibi-
tion of the proteasome by Bortezomib in whole flies resulted
in DrICE cleavage after 4 days of treatment.27 In contrast,
tissue-specific inhibition of the proteasome in Drosophila fat
body cells by ribonucleic acid (RNA) interference (RNAi) did
not confirm such an apoptotic response.57 As RNAi is known
to cause partial loss-of-function phenotypes, we tested the
strong prosβ2 mutant allele in mosaic eye imaginal discs for
apoptosis induction. We used FK2 labeling to positively mark
and identify proteasome mutant cells, and examined the
consequence of proteasome dysfunction for the survival of
the affected cells. Indeed, we observed increased cleaved
Caspase-3 (cCsp-3) antibody labeling in proteasome-defi-
cient cells (Figure 2). However, not all mutant cells contain
cCsp-3 staining suggesting that not all of them are apoptotic.
Nevertheless, whether apoptotic or not, all proteasome-
defective cell clones are very small indicating that the mutant
cells do not grow very well.

Proteasome subunit mutant cells accumulate Diap1, but
do not affect Dronc protein levels. As Diap1 can ubiqui-
tylate Dronc in vitro,45,47 it was predicted that Dronc is subject
to proteasome-mediated degradation in surviving cells.45,46

Therefore, it would be expected that the protein levels of
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Dronc would accumulate in proteasome mutants. We tested
this expectation by analyzing Dronc protein levels in prosβ2
and Mov34 mutant cells located in the developing posterior
eye imaginal disc of third instar larvae. We chose the larval
posterior eye imaginal disc in these analyses because under
normal conditions, there is no developmental apoptosis in this
tissue, thus avoiding complications with physiological apop-
tosis. Surprisingly, Dronc protein levels are not detectably

altered in prosβ2 and Mov34 mutant cells (Figures 3a–b’’).
We also obtained the same results using a different prosβ2
mutant allele, the commonly used DTS7 allele, which we
used in genetic mosaics (Supplementary Figure S3). How-
ever, under these conditions, the DTS7 allele appears to be
weaker than the allele used in Figure 3a, because it did not
cause accumulation of poly-ubiquitylated proteins (FK1
antibody labeling) and the mutant clones grow much larger

Figure 1 prosβ2 mutant cells accumulate ubiquitin-conjugated proteins. Shown are high magnification images (x100) of the posterior compartment of prosβ2 mosaic eye
imaginal discs labeled for ubiquitin (a), FK2 (b) and FK1 (c). In this and all other figures, posterior is to the right. The FK2 and FK1 antibodies detect ubiquitin-conjugated proteins,
but not free unconjugated ubiquitin. The left panels indicate the positions of the proteasome mutant cell clones by absence of GFP, the middle panels show the experiment (in
magenta), and the right panels are the merged images of left and middle panels. White arrows mark a few cell clones as examples. Similar data were obtained for Mov34 mosaic
discs (Supplementary Figure S1). Wild-type mosaic control discs do not show accumulation of ubiquitin (Supplementary Figure S2). Genotype: ey-FLP; prosβ2EP3067 FRT80/ubi-
GFP FRT80
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(Supplementary Figure S3). The specificity of this Dronc
antibody was previously established in dronc mosaic eye
and wing imaginal discs, and this antibody can also detect
accumulation of Dronc protein.49

To confirm the lack of Dronc accumulation in proteasome
mutants, we analyzed the protein levels of Flag-tagged
Dronc58 expressed in proteasome mosaic eye imaginal discs.
Using the Flag antibody as a tool to monitor Dronc levels, we
also did not detect an accumulation of Flag-Dronc in Mov34
mutant cells (Supplementary Figure S4).
As a positive control, we analyzed Diap1 protein levels

in proteasome mutant cells as Diap1 degradation has
been demonstrated in vivo.59–62 Consistently, we observe
accumulation of Diap1 in prosβ2 and Mov34 mutant cells
(Figure 3c–d’’). Thus, this assay can detect accumulating
proteins in vivo.
Combined, these data indicate that protein levels of Dronc in

living cells are either not regulated by the UPS, or there are
compensatory mechanisms operating that turn over Dronc
upon proteasome impairment.

Loss of the autophagy gene Atg7 does not affect Dronc
protein levels. In addition to the UPS, autophagy is a
cellular catabolic process that is known to degrade
proteins.1,4,15 We considered the possibility that autophagy
may regulate the protein levels of Dronc. The autophagy

gene Atg7 encodes the E1-activating enzyme for the two
ubiquitin-like conjugation systems and is an important
regulator for autophagy.14,16 As proteasome impairment does
not affect the protein levels of Dronc in epithelial disc cells, we
tested the possibility that autophagy may control it. We
downregulated Atg7 function by RNAi or inactivated Atg7 in
mutant cell clones in eye imaginal discs. However, similar to
proteasomal dysfunction, impaired Atg7 function does not
affect Dronc protein levels in mosaic eye imaginal discs
(Figures 4a–b’’).

Simultaneous inactivation of both the proteasome and
autophagy triggers accumulation of Dronc protein. We
examined the possibility that the protein levels of Dronc
are coordinately regulated by both the proteasome and auto-
phagy. To address this question, we inactivated autophagy by
Atg7 RNAi in prosβ2 mutant cell clones using the mosaic
analysis with a repressible cell marker (MARCM) method.63

Indeed, simultaneous impairment of both the proteasome
and autophagy causes strong accumulation of Dronc protein
in epithelial cells of eye imaginal discs (Figures 5a–a’’).
Similar observations were also made in wing imaginal discs,
another epithelial tissue (Figures 5b–b’’). The accumulation of
Dronc in proteasome/autophagy double-deficient cells is not
because of a transcriptional upregulation of dronc transcripts
(Supplementary Figure S5). Together, these data suggest

Figure 2 Mutations in proteasome subunits result in cell death. Shown are high magnification images (x100) of the posterior compartment of prosβ2 mosaic eye imaginal
discs labeled for cCsp-3 (a’, a’’) and FK2 (a’’’, a’’’’) to identify prosβ2 mutant cell clones. cCsp-3 labeling is increased in some, but not all, prosβ2 mutant cells (red in a’ and a’’).
Genotype: ey-FLP; prosβ2EP3067 FRT80/ubi-GFP FRT80
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Figure 3 Diap1, but not Dronc, accumulate in proteasome mutant clones. Shown are high magnification images (x100) of the posterior compartment of prosβ2 (a and c) and
Mov34 (b and d) mosaic eye imaginal discs labeled for Dronc (a and b) and Diap1 (c and d). FK2 labeling was used to identify mutant clones. The left panels indicate the positions
of the proteasome mutant cell clones by absence of GFP. In the middle panels, the proteasome mutant cell clones are positively marked by FK2 labeling (in magenta). The right
panels show the Dronc (a’’ and b’’) and Diap1 labelings (c’’ and d’’) in red. White arrows mark a few cell clones as examples. See also related Supplementary Figures S3 and S4.
Genotype in (a and c): ey-FLP; prosβ2EP3067 FRT80/P[ubi-GFP] FRT80. Genotype in (b and d): ey-FLP; FRT42D Mov34k08003/FRT42D P[ubi-GFP]
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that Dronc protein levels are coordinately regulated by both
the UPS and autophagy.

Loss of proteasome function enhances autophagy in
epithelial cells. To explain the synergistic control of Dronc
protein levels by the UPS and autophagy, we considered
that, because the UPS and autophagy are mechanistically
linked, impairment of the UPS can enhance autophagy,
which is often referred to as compensatory autophagy1,19–27

(reviewed by Park and Cuervo,3 Wojcik28 and Lamark and
Johansen29). For example, in Drosophila, compensatory
autophagy after proteasome impairment has been reported
in neurons, in fat body cells and in adult flies.22,27,57 To
examine this possibility in epithelial cells of eye imaginal
discs, we monitored autophagy using a tandem fusion protein
GFP-mCherry-Atg8a as reporter for autophagic flux.18 This
reporter is incorporated into autophagosomes, which mature
into autolysosomes. In autolysosomes, fluorescence of the
GFP moiety of the reporter is quenched, whereas mCherry
signals persist. Therefore, this reporter is suited to monitor
autophagic flux from autophagosomes into autolysosomes.
Indeed, while weak GFP signals are present in a subset of
Mov34 mutant cell clones, there are also many clones where
mCherry signals exist alone (Figures 6a’’ and a’’’) suggesting
that at least in these clones autophagic flux from

autophagosomes to autolysosomes is induced in response
to proteasome impairment.

Discussion

This is the first report in which a clonal analysis of strong
proteasome mutants was performed. Usually, dominant
temperature sensitive (DTS) alleles of proteasome subunits
(DTS5, DTS7, etc.), RNAi or pharmacological inhibition have
been used to study proteasome function.8,22,27,51,57,64 In other
approaches, whole embryos mutant for proteasome subunits
were characterized for defects in dendrite pruning in sensory
neurons in Drosophila.65–67 However, a specific analysis
characterizing recessive alleles for defects in proteasome
activity has not been reported. The reasons for this omission
are obvious. Mutant animals are homozygous lethal and
mutant clones in otherwise heterozygous animals are very
small and difficult to identify. We found that cells mutant for
proteasome function accumulate ubiquitin-conjugated pro-
teins (Figure 1), consistent with the expectation. We used
markers detecting ubiquitin-conjugated proteins to positively
identify mutant clones. That enabled us to identify Diap1
as substrate of the proteasome, whereas control of Dronc
protein levels appears to be independent of the proteasome
(Figure 3). The proteasome alleles used in this study and our

Figure 4 Loss of Atg7 alone does not affect Dronc protein levels. Dronc labeling of Atg7 mosaic eye imaginal discs. Atg7 was either downregulated by RNAi (a) or genetically
inactivated in mutant cell clones (b). Atg7-deficient clones are marked by absence of GFP (a’, b’). White arrows highlight one clone in each panel as example. Dronc protein levels are
unaltered in Atg7-deficient clones (a’’, b’’). Genotypes: (a) yw hsFLP; tub4GFP4Gal4/UAS-Atg7RNAi (4denotes FRT). (b) yw eyFLP; FRT42D Atg7d14/FRT42D P[ubi-GFP]
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approach to identify mutant clones will be of general use for
future analysis of proteasome function.
Dronc also does not accumulate in autophagy-deficient

cells in which the E1 encoding gene Atg7 was mutant or
downregulated by RNAi (Figure 4). However, simultaneous
inactivation of the proteasome and Atg7 resulted in strong
accumulation of Dronc (Figure 5). In addition, autophagy is
enhanced in proteasome mutants (Figure 6).
There are two possibilities to explain these results. First,

both the UPS and autophagy degrade Dronc independently of
each other and if one pathway is lost, the other one maintains
Dronc at normal protein levels. Or second, under normal
conditions, Dronc is degraded only by the UPS, but upon
proteasome impairment, enhanced autophagy can compen-
sate for this impairment and degrades Dronc instead.
Although we cannot distinguish between these two possibi-
lities, the lack of accumulation of Dronc protein in proteasome
and autophagy mutants suggests a fail–safe mechanism that
avoids accumulation of this potentially deleterious protein
in cells.
Our data indicate that Dronc is a shared substrate for

degradation by both the UPS and autophagy. There are not
many substrates known which are common to both the UPS
and autophagy. α-Synuclein is one substrate andmutant forms
of this protein appear to poison both the UPS and autophagy

causing Parkinson’s disease.68–70 Another shared substrate is
inhibitor kappa B alpha (IĸBα), the inhibitor of the transcription
factor nuclear factor kappa B.71 IĸBα appears to be degraded
by the UPS and autophagy in different cellular compartments
with different rates.71 In addition to these specific shared
substrates, misfolded proteins are common substrates for
both the UPS and autophagy.29,72 Whether this relates to
Dronc, is currently unknown.
It is unclear what distinguishes Dronc from Diap1 with

respect to proteasome-mediated degradation and enhanced
autophagy. The alternative question would bewhyDiap1 is not
degraded by enhanced autophagy in proteasome-deficient
cells. Theremay be specific ubiquitylation marks or other post-
translational modifications that distinguish between these
possibilities. Additional work is necessary to answer these
questions in the future.
We observed that proteasome dysfunction triggers

apoptosis in some, but not all, mutant cells (Figure 2). Given
the accumulation of the anti-apoptotic protein Diap1 in
proteasome-deficient cells, it is somewhat surprising that
some of them undergo apoptosis. However, many other
proteins likely also accumulate in proteasome-deficient cells,
which combined will tilt the fate of the affected cells to either
survival or death, depending on relative ratios. This con-
sideration may explain why some cells are apoptotic and

Figure 5 Dronc accumulates in clones simultaneously mutant for the proteasome and autophagy. Mosaic eye (a) and wing (b) imaginal discs doubly deficient for the
proteasome and autophagy labeled for Dronc (red). Atg7 knockdown was induced by RNAi in prosβ2 mutant cell clones using the MARCM method. Mutant cell clones are
positively labeled by GFP. Dronc accumulates in double-deficient cell clones. The cross was performed at 25 °C. Genotype: hs-FLP UAS-GFP tub-Gal4; UAS-Atg7RNAi/+;
prosβ2DTS7 FRT80B/tub-Gal80 FRT80B
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others are not. Another possibility is that the cCsp-3-negative
cells in mutant cell clones will die later or are already dead.
Consistent with the latter notion, we have previously shown
that dead cells lack protein and DNA,73 hence the cCsp-3
antibody would not label these cells. Importantly also,
although not all proteasome-deficient cell clones may be
apoptotic at the time of investigation, they do not grow very
well and remain small. These considerations are important for
the potential clinical use of proteasome inhibitors for treatment
of cancer.

Materials and Methods
Fly stocks. prosβ2EP3067 is a P element transposon insertion in the first exon at
base pair 63.74 Mov34k08003 is a P element transposon insertion in the first exon at
base pair 263.65,67 Both insertions disrupt the transcripts. prosβ2DTS7 encodes a
DTS allele of prosβ2; however, in this work, we used it in genetic mosaics using
FRT80B DTS7, not applying a temperature-shift. Atg7d14 is a mutant allele as
described.16 UAS-Atg7RNAi targets Atg7 by RNAi.17,75 UAS-Flag-dronc encodes a
Dronc protein with an N-terminal Flag-tag.58 It was expressed using daughterless-
Gal4 (da-Gal4) in Mov34 mosaic background (Supplementary Figure S4).

Generation of mutant cell clones. Mutant clones of prosβ2, Mov34 and
Atg7 were induced in eye imaginal discs using the FLP/FRT-induced mitotic
recombination system using ey-FLP.53,54 For this purpose, mutant alleles of prosβ2
and Mov34 were recombined on FRT80B and FRT42D bearing chromosomes,
respectively. FRT42D Atg7d14 was used as described.16 To generate wild-type

control mosaics (Supplementary Figure S2), ey-Flp; FRT42D P[ubi-GFP] was used.
Clones are marked by loss of GFP. To induce Atg7 RNAi in prosβ2 mutant clones,
the MARCM method was used.63 In this case, mutant cell clones are positively
marked by GFP (Figure 5).

Immunohistochemistry. Eye imaginal discs from third instar larvae were
dissected using standard protocols76 and labeled with antibodies raised against the
following antigens: ubiquitin (Sigma Aldrich, St. Louis, MO, USA); FK1 and FK2
(Biomol, Hamburg, Germany); cCsp-3 (Cell Signaling Technology, Danvers, MA,
USA); Dronc (kind gift of Pascal Meier), Diap1 (a kind gift of Hermann Steller and
Hyung Don Ryoo) and Flag (Sigma Aldrich). Cy3-conjugated and Cy-5 fluorescently
conjugated secondary antibodies are obtained from Jackson ImmunoResearch
(West Grove, PA, USA) and were used at dilutions of 1 : 400. In each experiment,
multiple clones in 10–20 eye imaginal discs were analyzed, unless otherwise noted.
Images were captured using Olympus Optical FV500 (Waltham, MA, USA) or Zeiss
LSM700 confocal microscopes (Peabody, MA, USA).

Generation of the GFP-mCherry-Atg8a tandem reporter. A
transgene encoding the tandem protein GFP-mCherry-Atg8a was generated and
used to determine autophagic flux.18 A region 2-kb upstream of Atg8a (CG32672)
was inserted upstream of GFP-mCherry-Atg8a in the pCaSpeR4 Drosophila
transformation vector, as was previously described for similar GFP-Atg8a and
mCherry-Atg8a reporter lines.77,78 The resulting plasmid pCaSpeR4-promoter-GFP-
mCherry-Atg8a was used to generate transgenic Drosophila lines using standard
procedures.

qPCR of dronc transcripts. Late 3rd larval stage (L3) larvae of control
(w1118) and experimental genotype (w; UAS-Atg7RNAi; da-Gal4/DTS7) were shifted

Figure 6 Impaired proteasome function induces autophagic flux. Mov34 mosaic eye imaginal discs expressing GFP-mCherry-Atg8a as marker for autophagic flux. Mov34
mutant cells were identified by FK2 labeling (blue in a; gray in a’). White arrows mark representativeMov34mutant cells as examples. Although there is little to no GFP labeling in
Mov34 mutant cell clones (a’’), all clones contain increased mCherry labeling (a’’’) suggesting that autophagic flux is enhanced in proteasome-deficient cells. Genotype: ey-FLP;
FRT42D Mov34k08003 /FRT42D ; patg8a4GFP-mCherry-Atg8a
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to 29 °C until eclosion of adult flies. mRNA was extracted from 1 to 3 days old flies
using RNAeasy (Qiagen, Hilden, Germany) and quantitative polymerase chain
reaction (qPCR) was performed with the following dronc-specific primers: Nedd2-
like caspase forward primer (NcF) 5'-CTCGCTAAACGAACGGAGAAC-3' and
Nedd2-like caspase reverse primer (NcR) 5'-CAACGACACCCACATAAGGG-3', as
described.79 Tubulin was used for normalization.
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