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Block one, unleash a hundred. Mechanisms of DAB2IP
inactivation in cancer

Arianna Bellazzo1,2, Giulio Di Minin3 and Licio Collavin*,1,2

One of the most defining features of cancer is aberrant cell communication; therefore, a molecular understanding of the intricate
network established among tumor cells and their microenvironment could significantly improve comprehension and clinical
management of cancer. The tumor suppressor DAB2IP (Disabled homolog 2 interacting protein), also known as AIP1 (ASK1
interacting protein), has an important role in this context, as it modulates signal transduction by multiple inflammatory cytokines
and growth factors. DAB2IP is a Ras-GAP, and negatively controls Ras-dependent mitogenic signals. In addition, acting as a
signaling adaptor, DAB2IP modulates other key oncogenic pathways, including TNFα/NF-κB, WNT/β-catenin, PI3K/AKT, and
androgen receptors. Therefore, DAB2IP inactivation can provide a selective advantage to tumors initiated by a variety of driver
mutations. In line with this role, DAB2IP expression is frequently impaired by methylation in cancer. Interestingly, recent studies
reveal that tumor cells can employ other sophisticated mechanisms to disable DAB2IP at the post-transcriptional level. We review
the mechanisms and consequences of DAB2IP inactivation in cancer, with the purpose to support and improve research aimed to
counteract such mechanisms. We suggest that DAB2IP reactivation in cancer cells could be a strategy to coordinately dampen
multiple oncogenic pathways, potentially limiting progression of a wide spectrum of tumors.
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Facts

� The cytoplasmic Ras-GAP protein DAB2IP (Disabled-2
Interacting Protein) is a negative modulator of multiple
oncogenic pathways.

� DAB2IP is rarely mutated, but frequently downregulated or
inactivated in cancer by different mechanisms.

� Functional inhibition of DAB2IP in transformed cells favors a
pro-oncogenic response to multiple extracellular inputs.

Open questions

� Are there other mechanisms or conditions for DAB2IP
inactivation that may be relevant in cancer?

� Is it possible that DAB2IP modulates additional signaling
pathways that have not been tested yet?

� Wehave limited knowledge about expression and activity of
different DAB2IP isoforms. How are they regulated? Do
they have specific functions?

� Given its impact on multiple oncogenic pathways, could
reactivation or increased expression of DAB2IP protein be
developed as a potential approach for cancer therapy?

The complexity of multicellular organisms depends on an
intricate exchange of information that dynamically defines cell
metabolism, shape, movement, proliferation, differentiation,

and death. The transduction of signals into an appropriate
biological response is thus critical for life.Whereas the nucleus
is the end point where most information is converted into a
biological response, cytoplasm is the place where different
signals are integrated, attenuated, or amplified, and pathways
can talk to each other as in a cellular ‘agorà’.
DAB2IP is a tumor-suppressor protein capable of modulat-

ing the cytoplasmic steps of various oncogenic pathways.
DAB2IP was initially discovered as a member of the RAS-
GTPase (Ras-GAP) family, interacting with tumor suppressor
DOC2/DAB2 (differentially expressed in ovarian carcinoma-2/
Disabled-2).1 A broader role of DAB2IP emerged when it was
cloned as an interactor of ASK1 (apoptosis signal-regulating
kinase 1) kinase; hence the alternative name AIP1 (ASK-
interacting protein 1).2 In the following years several studies
explored the role of DAB2IP in various additional pathways,
revealing its peculiar function as a middleman in signal
transduction, dampening various major oncogenic pathways.

DAB2IP: A Complex Gene Encoding a Negative
Modulator of Multiple Oncogenic Pathways

The human DAB2IP gene spans ~218 kb on chromosome
9q33.1-q33.3. Multiple transcripts suggest the existence of at
least four transcription start sites (TSS), encoding three
possible N-terminal variants of the protein. Alternative
splicing of the last exon generates two different C-terminal
variants, so that six DAB2IP protein isoforms can be
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theoretically expressed (Figure 1). To date, only limited
information is available on expression and function of
hDAB2IP isoforms, with most functional studies performed
with isoform 2.
In humans, DAB2IP mRNA is detected in most tissues and

organs, but is very low or absent in blood cells. A study of
fetal tissue arrays by immunohistochemistry indicates that
DAB2IP is expressed in most tissues, with gestational
age- and tissue-specific patterns.3 However, DAB2IP knock-
out (KO)mice are viable and develop normally, arguing against
a major role of this protein in embryogenesis and
differentiation.4,5

Regarding its mechanism of action, DAB2IP has an
enzymatic activity whose core lies in the Ras-GAP domain.
In addition, DAB2IP acts as an adaptor, or scaffold, in protein
complexes relevant for signal transduction, and it can function
as a competitor, or scavenger, by binding signaling proteins
and preventing their interaction with upstream activators, or
downstream effectors (Table 1). Through these actions,
DAB2IP has the potential to modulate a remarkable array of
cancer-related pathways,6,7 summarized below.

RAS-dependent signaling. Ras proteins are monomeric
GTPases strongly involved in cancer. Physiological or
oncogenic activation of Ras induces a wide range
of downstream effects; the best characterized is the
RAF-MEK-ERK cascade, affecting cell growth, proliferation,
survival, and differentiation.8,9 In addition, Ras proteins can
also activate PI3K, mediating proliferative and survival
signals.10,11

The GAP domain of DAB2IP is homologous to other Ras-
GAPs, such as GAP120 and neurofibromin (NF1), and can
stimulate the GTPase activity of RAS proteins both in vitro and
in cancer cell lines (Figure 2).12–15 In prostate cancer cells,
DAB2IP was shown to be recruited by the adaptor protein
DAB2/DOC2 to promote Ras inactivation and inhibition of
MAPK signaling upon receptor stimulation.1 Through this
activity, DAB2IP can also dampen Ras-induced activation of
PI3K, contributing to inhibition of the PI3K–AKT signaling axis.

ASK1–JNK activation by TNF and other signals. ASK1 is
a member of the MAP kinases (MAP3K) and is an upstream
activator of c-Jun N-terminal kinase (JNK) and p38 MAPK.16
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Figure 1 Structure of the human DAB2IP gene and encoded protein(s). DAB2IP modulates the response of cells to a variety of extracellular signals. Its functions depend on
its modular structure highly conserved among mammals. Two human DAB2IP transcripts are currently annotated in RefSeq: variant 1 (NM_032552.3) and variant 2
(NM_138709.1). However, multiple additional DAB2IP transcripts have been detected, indicating the existence of at least four different TSSs, encoding three possible N-terminal
variants of the protein. In addition, alternative splicing generates two possible C-terminal sequences so that a panel of DAB2IP isoforms can be potentially expressed.
(a) Schematic of the main hDAB2IP transcripts and the relative position of CpG islands on the genome. The predicted protein isoforms encoded by the various transcripts are also
indicated (data from NCBI, Homo sapiens Annotation Release 150). (b) Structure of hDAB2IP isoform 2, with main functional domains according to Zhang et al.2 (c) Structure of
six predicted hDAB2IP isoforms, with possible combinations of alternative N- and C termini. Pleckstrin Homology (PH) domain: a protein module of ~ 100 amino acids
that characterizes a wide range of proteins involved in intracellular signaling. It can bind phosphatidylinositol lipids within biological membranes, such as phosphatidylinositol
(3,4,5)-triphosphate and phosphatidylinositol (4,5)-bisphosphate.79 It can also mediate protein–protein interactions. DAB2IP isoforms 1 and 3 have a larger PH domain. C2
(Protein kinase C conserved region 2): a Ca2+ binding motif, ~ 130 residues in length, found in many signaling proteins. This domain mediates binding to phospholipids, inositol
phosphates, and other proteins.80 GTPase-Activating Protein domain (GAP): a catalytic domain that binds activated G proteins and promotes their GTPase activity. It can also
mediate protein–protein interactions.81 Proline-rich domain (PR): a region mediating protein–protein interactions, in particular as a docking site for SH3 domains.82 Period-like
domain (PER): a non-described region involved in protein–protein interactions. Leucine zipper (LZ): a hydrophobic motif usually found in transcription factors. It is involved in
formation of protein dimers. Nuclear localization signal (NLS): a putative arginine-rich nuclear localization signal. PDZ-I: a short C-terminal amino-acidic sequence matching the
consensus of class-I PDZ-binding peptides83
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ASK1 is activated in response to various signals, including
pro-apoptotic stimuli and pro-inflammatory cytokines, in
particular tumor necrosis factor alpha (TNFα).16 DAB2IP
drives the response to TNFα toward TRAF2-dependent
ASK1–JNK/p38 MAPK activation, while indirectly inhibiting
the NF-κB branch17 (Figure 3). This model is well
characterized in endothelial cells, but is conserved in other
cell types, including cancer cells.15,18 In TNF-treated cells,
DAB2IP can likewise support ASK1–JNK activation by the
pro-apoptotic kinase Homeodomain-interacting protein
kinase 1 (HIPK1).19

Notably, DAB2IP also mediates ASK1–JNK activation upon
endoplasmic reticulum (ER) stress (Figure 4a). Accumulation
of unfolded proteins in the ER triggers a stress response
called UPR (unfolded protein response), initiated by three

receptors: ATF6 (activating transcription factor 6), PERK
(PKR-like ER kinase), and IRE1α (inositol-requiring
enzyme-1).20,21 In particular, IRE1α is a ser/thr kinase with
ribonuclease activity; when activated, it catalyzes cytoplasmic
splicing of the mRNA encoding Xbp1 (X-box-binding
protein 1), generating the transcription factor Xbp1s, which
upregulates UPR genes. At the same time, IRE1α can
trigger pro-apoptotic JNK signaling through recruitment of
the TRAF2–ASK1 complex.20 DAB2IP binds IRE1α, and
was shown to be required for activation of this signaling
cascade in endothelial cells.22 Cancer cells suffer ER
stress due to expression of mutant proteins, and the
effects of hypoxia, inflammation, and chemotherapy.21 The
UPR can support cell survival and adaptation, but can also
induce apoptosis; in this context, the role of DAB2IP in

Table 1 A list of published DAB2IP interactions and their functional impact

DAB2IP domain Partner Biological effect References

N-terminal region
(undefined)

Membranes DAB2IP localization to plasma membrane and endosomes (interaction involves
the PH and C2 domains)

17

VEGFR-3 VEGFR-3 stabilization and activation; sustained lymphoangiogenesis
(mechanism not completely understood)

88

JAK2 Inhibition of JAK2-STAT1/3 signaling in response to IFN-γ; reduced proliferation;
and migration of endothelial cells

34

PH IRE1a Enhancement of IRE1α dimerization and IRE1-dependent signaling upon ER
stress in endothelial cells

22

AR Inhibition of AR activation; block of AR-mediated cell growth in prostate cancer
cells

30

Smurf1 DAB2IP polyubiquitination and degradation; increased cancer cell growth and
migration

76

C2 ASK1 Enhancement of TNF-induced ASK1–JNK activation in endothelial and other
cells (interaction blocked by mutation of K154-161)

2

GSK3β Increased GSK3β dephosphorylation and activation; decreased stability of
β-catenin; inhibition of EMT

5

VEGFR-2 Inhibition of pro-angiogenic PI3K-mediated signaling (interaction blocked by
mutation of K104-106)

4

Various p53 mutants Reduced DAB2IP-ASK1 binding; increased NF-κB activation upon TNF
treatment; augmented TNF-induced invasion of cancer cells

18

PP2A De-phosphorylation and activation of ASK1 and GSK3β (in endothelial cells the
interaction was mapped to the GAP domain)

5,87

GAP RAS Inactivation of RAS signaling; reduced proliferation and growth of cancer cells 1

HIPK1 Activation of ASK1 signaling in response to TNF in endothelial cells 19

RIP-1 Phosphorylation of DAB2IP on S604 upon TNF treatment; DAB2IP activation 40

PER TRAF2 Formation of AIP1 signaling complex upon TNF stimulation; activation of JNK
signaling and inhibition of NF-κB

17

14-3-3 Displacement of 14-3-3 ASK1 binding; enhanced ASK1 auto-phosphorylation;
and induction of pro-apoptotic signals upon TNF stimulation

40

AKT1 AKT phosphorylates DAB2IP on S847 reducing its interaction with Ras and
TRAF2; DAB2IP binding inhibits AKTactivation

25,74

C-terminal region
(undefined)

Skp2 DAB2IP polyubiquitination and proteasome degradation 75

Plk1 Activation of Plk1; proper function of the Spindle Assembly Checkpoint 59

PR p85(PI3K) Inhibition of AKTactivation; reduced survival of prostate cancer cells 25

c-Src Displacement of c-Src andAR interaction; inhibition of non-genomic AR pathway;
impaired AR-mediated cell proliferation

30

STAT3 Reprograming of STAT3 signaling; induction of prostate cancer cell apoptosis 36

LZ GATA-1 Transcriptional repression of CD117 promoter; reduced stem cell properties in
prostate cancer cells

51

Interaction not
mapped

FBW7 Negative regulation of DAB2IP stability (interaction depends on S15 and S578
phosphorylation)

74

DOC/DAB-2 and
DAB1

Negative modulation of the RAS-MAPK pathway; reduced proliferation of
prostate cancer cells

1

TNFR-1/2 Activation of the ASK1/JNK/p38MAPK pro-apoptotic pathway in response to TNF 17,89

TRADD Formation of AIP1 signaling complex upon TNF stimulation; activation of JNK
signaling

17
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promoting IRE1-induced activation of the ASK1–JNK axis
might have a tumor-suppressive function that awaits
characterization.

PI3K–AKT signaling. The PI3K (phosphoinositide 3-kinase)–
AKT axis has an impact on cell metabolism, size, proliferation,
survival, and motility,23 and is frequently activated in cancer
either by gain-of-function mutations or by loss of function
of the critical regulator PTEN.24 DAB2IP inhibits the PI3K–AKT
axis by directly interacting with both proteins, reducing
phosphorylation and activation of AKT25 (Figure 4b). The
GAP activity of DAB2IP can further enforce inhibition of the
PI3K–AKT axis by reducing Ras-dependent activation of PI3K
p110α subunit.10,11

Interestingly, animal models showed that DAB2IP functions
as endogenous inhibitor of adaptive angiogenesis in part by
binding directly to VEGFR-2 and limiting PI3K activation
(Figure 4b).4

GSK3β–β-catenin signaling. GSK3β is a ser/thr kinase that
phosphorylates numerous substrates, often triggering their
degradation. Signaling cascades such as Wnt/β-catenin and
PI3K–AKT promote its inactivation through Serine 9 phos-
phorylation. In canonical WNT signaling, inhibition of GSK3β
leads to stabilization of β-catenin.26 In various cell models,
DAB2IP was shown to support GSK3β activation, counter-
acting WNT signals (Figure 4c).5 Notably, GSK3β controls
other key signaling proteins, for instance, Hedgehog effectors
Gli and SUFU;27,28 it is possible that DAB2IP may influence
additional pathways involving GSK3β.

Androgen receptor signaling. The androgen receptor (AR)
regulates normal prostate development as well as prolifera-
tion and survival of prostate carcinoma.29 DAB2IP can inhibit

AR-mediated cell proliferation via multiple mechanisms
(Figure 4d): it binds directly the AR to suppress its
phosphorylation and nuclear translocation; it prevents AR
interaction with the kinase c-src, blocking the so-called
non-genomic pathway;30 and it counteracts androgen-
independent AR activation induced by Wnt signaling.30 Thus,
DAB2IP is a unique intrinsic negative modulator of AR activity
in normal and transformed prostate cells.31

JAK-STAT signaling. The JAK-STAT pathway is involved in
embryonic development, stem cell maintenance, and inflam-
mation; aberrant activation of STATs (signal transducer and
activator of transcription) can increase tumor cell proliferation
and invasion, and suppress antitumor immunity.32 DAB2IP
was shown to limit JAK-dependent STAT1/3 and PI3K–Akt
activation by interferon gamma (Figure 4e), reducing pro-
liferation and migration of vascular smooth muscle cells
during neo-intima formation.33,34 In non-muscle invasive
bladder cancer, DAB2IP-dependent inhibition of STAT3 has
been reported to limit expression of Twist1 and P-glycopro-
tein, crucial factors for chemoresistance.35 In prostate cancer
cells, DAB2IP was found to directly bind STAT3, suppressing
transactivation and expression of the anti-apoptotic target
survivin.36 It is highly plausible that DAB2IP can negatively
regulate activation of STAT3 in other cell types, with
implications for additional tumor conditions.

DAB2IP Inactivation Fosters Tumor Progression

Although DAB2IP can dampen multiple oncogenic pathways,
DAB2IP KO mice do not display increased incidence of
spontaneous tumors. However, these animals have pheno-
types related to cancer formation or progression, such as
increased proliferation of the prostate epithelium,37 dysplasia
of the colon epithelium,38 and augmented inflammatory
angiogenesis.39 Therefore, loss of DAB2IP may not be
sufficient to induce cancer formation, but can unleash the
oncogenic potential of multiple extracellular signals, promoting
tumor progression and aggressiveness.

Loss of DAB2IP increases cancer cell proliferation and
survival. Augmented cell proliferation has been correlated to
abrogation of DAB2IP functions in various cultured cell lines
and in vivo models, and has been linked to loss of Ras-GAP
activity and hyperactivation of AKT.12,15,25 Mice injected with
PCa cells overexpressing H-Ras, or depleted for DAB2IP,
developed highly proliferative tumors with similar kinetics and
maximum size.15 In this model, wild-type DAB2IP significantly
blocked tumor development, whereas expression of a
catalytically inactive GAP mutant (DAB2IP-R289L) was
ineffective.15 Tumors formed by DAB2IP-depleted PCa cells
also display PI3K–AKT pathway activation.25 Indeed, sus-
tained AKT activation characterizes the hyperplastic prostate
epithelium of DAB2IP KO mice.25 Regarding survival, a clear
decrease in apoptosis has been appreciated in various
models of DAB2IP downregulation; this may reflect less
efficient ASK1 activation by pro-apoptotic signals, or
constitutive AKT activation.17,22,25,40 Similarly, prolonged
Ras activity in DAB2IP-depleted cells may increase cell
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Figure 2 DAB2IP inhibits RAS-dependent signaling. DAB2IP is able to stimulate
in vitro and in vivo the GTPase activity of RAS proteins (H-Ras, K-Ras, and N-Ras)
facilitating GTP hydrolysis to GDP. As a RAS-GAP, DAB2IP negatively controls
activation of MAP kinases in response to exogenous stimuli (i.e., EGF, epidermal
growth factor) and operates to finely orchestrate proliferation and differentiation
of normal and cancer cells.12–15 As a RAS-GAP, DAB2IP can also inhibit
RAS-dependent activation of the PI3K–AKT pathway
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survival via both the Ras–ERK–MAPK and the Ras–PI3K–
AKT pathways.9,12,15,25

Loss of DAB2IP promotes cell migration and metastasis.
DAB2IP levels have been inversely correlated with expres-
sion of epithelial to mesenchymal transition (EMT) markers
in melanoma, bladder, prostate, colorectal, and breast
cancer.5,15,41–45 In line with these observations, DAB2IP KO
mice have dilated colonic crypts with altered epithelium,45

and have mesenchymal features in the prostate gland
epithelium.5

Experimental DAB2IP loss initiates EMT in normal prostate
epithelial cells and prostate carcinoma cell lines,5,15,43 and
promotes dissemination of tumor cells in cancer
xenografts.5,15,41,45 In contrast, an increase in DAB2IP levels
reverts EMT features in metastatic prostate and colorectal
cancer (CRC) cells.5,15 DAB2IP may control EMT and cell
invasion by coordinating both the WNT/β-catenin and NF-κB
pathways. Cells fromDAB2IP− /−mice have increasedGSK3β
phosphorylation, and β-catenin overexpression is sufficient to

overcome DAB2IP-mediated inhibition of cell migration and
invasion.5 A point mutation on S604, which blocks TRAF2
binding but leaves untouched the GAP activity, renders
DAB2IP incapable to suppress xenograft dissemination
in vivo, proving that NF-κB inhibition has a major role in
preventing metastasis.15,45 Notably, a catalytically inactive
GAP mutant (DAB2IP-R289L), still capable of inhibiting
NF-κB, only partially suppresses metastasis in the same
model,15 supporting the notion that Ras inhibition by DAB2IP
also has a role in this context. Indeed, Ras hyperactivation can
increase cell motility by regulating TGF-β signaling, destabiliz-
ing E-cadherin/β-catenin complexes, and affecting cytoskele-
tal dynamics.9,46

Recent studies suggest an additional mechanism by which
DAB2IP inactivation can favor metastasis: in prostate cancer
cells loss of DAB2IP correlated with accumulation and
activation of Hypoxia-inducible factor 1 (HIF-1α), a key inducer
of EMT and cell motility.47 Similarly, increased HIF-1α and
VEGF were observed upon DAB2IP KO in human endothelial
cells.48 Finally, DAB2IP ablation was shown to induce
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Figure 3 DAB2IP in TNFα signaling: activation of ASK1/JNK. Tumor necrosis factor alpha can trigger cell death or induce NF-κB-mediated transcription of inflammatory, pro-
survival, and pro-invasive genes. This pathway is initiated by the recruitment of adaptor protein TRADD (TNFR-associated death domain protein), serine-threonine kinase RIP1
(receptor-interacting protein-1), and TRAF2 to the intracellular domain of the activated TNFR1 (TNF receptor 1). This complex recruits and activates the multisubunit kinase IKK,
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polyubiquitination and degradation, releasing p65/p50 NF-κB from its inhibitory binding, and leading to transcriptional activation.84,85 Ligand-bound TNFR1 can also catalyze
formation of a multiprotein complex that recruits and activates ASK1 (apoptosis signal-regulating kinase), leading to activation of the pro-apoptotic JNK and p38 MAP kinases.86

DAB2IP promotes TNF-induced activation of the ASK1–JNK axis by sequestering TRAF2 from the NF-κB-activating complex, driving formation of the so-called AIP1 complex.17

DAB2IP binds membrane phospholipids through its PH/C2 domain in a closed and inactive conformation; upon TNF stimulation, RIP1 phosphorylates DAB2IP on Serine 604,
inducing a conformational switch that allows formation of the complex. DAB2IP then displaces the inhibitory binding between ASK1 and 14-3-3 protein, favoring ASK1 activation.40

DAB2IP also mediates recruitment of PP2A to ASK1, binding both proteins through its C2 domain; this favors removal of the inhibitory S967 phosphorylation and further activation
of ASK187
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expression of HIF-2α in renal cell carcinoma cells.49 There-
fore, DAB2IP inactivation may promote an hypoxia-like
response, with upregulation of HIF target genes and increased
expression and activity of VEGF proteins, affecting the cancer
cell and its microenvironment, and promoting tumor
vascularization.

Loss of DAB2IP promotes expansion of cancer stem
cells. Cancer stem cells (CSCs) have been proposed as
driving force of tumorigenesis and the seed of metastases.50

A recent study reported that DAB2IP suppresses transcrip-
tion of stem cell factor receptor CD117, by interacting with

GATA-1 on a silencer element on its gene.51 Up to now, this is
the first—and only—evidence of a nuclear function for
DAB2IP: it would be interesting to define whether such
localization is dependent on a functional NLS, or is restricted
to a specific DAB2IP isoform. Through inhibition of PI3K–AKT
signaling, DAB2IP also represses ZEB1, another CSC
determinant.51 In line with these observations, DAB2IP KO
prostate cancer cells have increased sphere-formation
activity in vitro, and tumorigenic potential in mice.51

Another study reported that DAB2IP-mediated inhibition of
NF-κB can suppress CSC features in human CRC, as DAB2IP
depletion in CRC cells increased sphere formation in soft agar
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binds directly STAT3, inhibiting its transactivating function36
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and expression of EMTand stem cell markers.45 Accordingly,
in CRC patients reduced DAB2IP levels correlate with
increased number of CD133-positive cells (stem cell marker)
and faster tumor progression.45

DAB2IP inactivation fosters an inflammatory microenvir-
onment. Inflammation has a crucial role in cancer develop-
ment and progression, affecting also metastasis and
response to therapy.52,53 Given its inhibitory role on VEGF,
NF-κB, and STAT3 pathways, DAB2IP functions as an
anti-inflammatory protein, especially in vascular endothelial
cells. Indeed, DAB2IP− /− mice show enhanced inflammation
in models of ischemic hind limb, graft arteriosclerosis,
and inflammatory angiogenesis.4,33,34,54 In hyperlipidemic
ApoE− /− mice, DAB2IP KO increases secretion of inflamma-
tory cytokines and augments macrophage infiltration, thereby
inducing endothelial dysfunction and early phases of
atherosclerosis.54

Notably, vascular endothelial-specific depletion of DAB2IP
promotes tumor growth and dissemination in melanoma and

breast cancer mouse models, favoring establishment of a
prometastatic microenvironment.44 This observation is based
on experimental tissue-specific DAB2IP KO; it will be inter-
esting to explore whether cancer cells may devise mechan-
isms to induce DAB2IP downregulation in endothelial or
stromal cells.
DAB2IP controls signal transduction in response to multiple

cytokines, including TNFα, IFN-γ, TLR4, and IL-1β; therefore, it
may significantly have an impact on the behavior of cancer
cells in an inflammatory microenvironment.2,18,34,55 For
instance, TNFα induces invasion in DAB2IP-inactivated breast
cancer cells, triggering upregulation of a subset of NF-κB and
ASK1/JNK target genes enriched in matrix-remodeling
enzymes and chemokines. Intriguingly, such response can
also recruit cytotoxic immune cells, potentially affecting tumor
progression and prognosis.18 Various lines of evidence
correlate Ras activation in cancer cells with a compromised
host immune response and recruitment of suppressive
regulatory T cells;9 in this perspective, loss of DAB2IP-
dependent RAS-GAP activity may favor tumor escape from
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Figure 5 DAB2IP inactivation mediated by various mechanisms promotes oncogenic responses to multiple extracellular inputs. DAB2IP affects the cancer cells’ response to
inflammatory cytokines, growth factors, and hormones secreted in the tumor microenvironment by stromal, immune, and tumor cells. DAB2IP is frequently inactivated by
epigenetic or post-transcriptional means in human malignancies. Epigenetic DAB2IP inactivation relies on promoter hypermethylation mediated by the EZH2–PRC2 complex.
Various microRNAs have been described that can target the DAB2IP 3′ UTR reducing protein expression. Direct binding with p53 mutant proteins interferes with other DAB2IP
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Tumor suppressor DAB2IP in cancer
A Bellazzo et al

21

Cell Death and Differentiation



the immune system. We still have an incomplete under-
standing of the role of DAB2IP in modulating the inflammatory
component of the tumor microenvironment, and this aspect
deserves further investigation.

Loss of DAB2IP confers resistance to chemo- and
radiotherapy. Resistance to therapy is a significant barrier
to cure cancer. Multiple molecular mechanisms are involved
in chemo- and radioresistance, and the microenvironment
can also influence cancer response to drugs. DAB2IP loss
correlates with more efficient DNA repair, resistance to
apoptosis, and robust cell cycle checkpoints in prostate
cancer cells exposed to ionizing radiation.56 Interestingly,
DAB2IP-depleted cells have increased mTOR-S6K pathway
activation and significantly more autophagy, suggesting that
in normal cells DAB2IP inhibits autophagy, and loss of such
inhibition in cancer contributes to radiation resistance.57

DAB2IP loss in prostate cancer cells was also shown to
enhance chemoresistance by upregulation of the anti-
apoptotic protein clusterin.58 Similarly, by augmenting STAT3
activation and survivin expression, loss of DAB2IP facilitates
survival of prostate cancer cells after androgen deprivation
therapy.36

Very recently, it has been reported that DAB2IP depletion
causes defects in microtubule–kinetochore attachment,
increasing the frequency of aberrant mitoses in prostate
cancer cell lines. In line with these observations, MEFs from
DAB2IP KO mice display aneuploidy.59 Authors showed that
DAB2IP interacts with the kinase Plk1, facilitating its activation
and phosphorylation of the checkpoint kinase BubR1.
Importantly, DAB2IP-depleted cells have a defective spindle
assembly checkpoint.59 This phenotype requires careful
consideration, as DAB2IP status may influence the response
to microtubule-targeting drugs used in cancer therapy.

Cancer Cells Adopt Multiple Strategies to Block DAB2IP
Functions

Despite its tumor-suppressive function, DAB2IP is rarely
mutated in human cancers. A consistent body of literature
reports epigenetic inactivation of DAB2IP by promoter
methylation in tumors and tumor-derived cell lines (see below).
More recently, other mechanisms for DAB2IP inactivation in
cancer have been described, uncovering an interesting
scenario where tumor cells arising with disparate genetic
backgrounds may devise different means to disable this single
modulator of multiple signaling pathways (Figure 5).

Transcriptional silencing by promoter methylation.
A number of studies have described aberrant methylation of
the DAB2IP gene in lung, breast, prostate, and gastrointest-
inal cancer.60–63 These studies focused on a CpG island
partially overlapping exon 3, which contains a functional
promoter and TSS. Transcripts originating at this TSS are
spliced to exon 4 and are predicted to encode the shortest
DAB2IP protein isoform (Figure 1). Published studies provide
compelling evidence that methylation of this region correlates
with reduced DAB2IP expression in tumor tissues and cell
lines, despite the presence of at least two additional TSSs
located, respectively, 130 and 48 kbp upstream, and other

functional TSSs further downstream.60–65 It is possible that
methylation of this region is sufficient to turn the gene off;
alternatively, other sites may be coordinately methylated for
efficient DAB2IP silencing. Three additional CpG islands are
mapped in the hDAB2IP gene, in some cases corresponding
to functional TSSs; little is currently known about the
methylation status of these regions in normal or pathological
conditions, or its potential impact on DAB2IP transcription.
Recently, an overview of data from the cancer genome atlas

uncovered a CpG site whose methylation status correlates
inversely with DAB2IP expression and patient survival in renal
cell carcinoma.66 Curiously, this site is located outside major
CpG islands, suggesting further complexity in this regulation.
The main factor controlling DAB2IP gene methylation

appears to be the PRC2 (polycomb-repressive complex-2)–
EZH2 (Enhancer of Zeste homolog) complex.65 EZH2 is a
histone lysine N-methyltransferase that catalyzes trimethyla-
tion of H3K27, and is frequently overexpressed in cancer.67 A
clear inverse correlation between EZH2 and DAB2IP expres-
sion in tumors has been reported in multiple studies, and
overexpression of EZH2 reduces DAB2IP mRNA and protein
levels in cancer cells.15,65

Molecular studies on the TSS in exon 3 confirmed that high
levels of di- and tri-methyl H3-Lys27 in this region are directly
modulated by EZH2, leading to recruitment of the PRC2
protein complex and histone deacetylases HDAC1/2.42,65,68 In
line with methylation-driven epigenetic silencing, treatment
with 5′-aza-cytidine and Trichostatin A cooperatively
increased DAB2IP expression in cancer cell lines.60

Recently, it has been reported that the transcription factor
Snail can repress DAB2IP expression in colon cancer cells. A
co-repressor complex containing Snail, EZH2, and HDAC1/2
was detected on the DAB2IP promoter.42 Interestingly, GSK3β
phosphorylates Snail to limit its stability and activity in
epithelial cells; as DAB2IP is a positive modulator of GSK3β,
epigenetic downregulation of DAB2IP by Snail defines a
regulatory feedback that may have an impact on EMT and
metastasis.42

Post-transcriptional repression by microRNAs. DAB2IP
has a relatively long 3′ UTR sequence, and is therefore a
good candidate for post-transcriptional silencing by micro-
RNAs (miRNAs). Up to now, four studies have described
miRNAs that are able to target DAB2IP.
miR-338 was reported to reduce DAB2IP levels in

neurons.69 miR-338 is located within an intron of the
Apoptosis-Associated Tyrosine Kinase (AATK) gene, and
cooperates with AATK to induce neuronal differentiation by
suppressing a group of target mRNAs encoding negative
regulators of neurite growth and neural differentiation, includ-
ing DAB2IP. Authors provide convincing evidence that
miR-338 can downregulate DAB2IP, but do not explore the
role of DAB2IP repression in neuronal differentiation, nor the
potential implications of such regulation in cancer.69

miR-889 was reported to downregulate DAB2IP protein
levels in two esophageal squamous cell carcinoma (ESCC)
cell lines, and to promote cell proliferation in in vitro and in vivo
experiments.70 Intriguingly, DAB2IP overexpression can
subvert miR-889-induced proliferation phenotype, and
DAB2IP depletion by siRNA recapitulates the effects of
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miR-889 on ESCC cell proliferation. Finally, in a set of ESCC
clinical samples, the levels of miRNA-889 and DAB2IP were
found to be inversely correlated.70 Although authors confirmed
that miR-889 targets DAB2IP 3′ UTR sequences, they
provided no formal demonstration that the effects of miR-889
in ESCC cells are mediated by DAB2IP silencing. The
proliferation phenotype is coherent with DAB2IP depletion; it
would be interesting to test the impact of miR-889 on cell
migration and invasion.
The oncogenic miR-32 was shown to target DAB2IP in

prostate cancer cell lines.71 The authors demonstrated that
cells overexpressing miR-32 have lower DAB2IP protein
levels, activate expression of autophagymarkers, and become
more resistant to ionizing radiation and to Brefeldin-induced
apoptosis.71 Also in this case, there is no formal proof that the
effects of miR-32 overexpression are mediated by DAB2IP
depletion, but the phenotype is coherent with loss of DAB2IP
function.
Finally, a very recent report showed that miR-92b can target

the 3′ UTR of DAB2IP, increasing migration and expression of
EMT markers in a bladder cancer cell line.72

Together, these studies confirm that DAB2IP is a target of
miRNA-mediated repression, and offer a glimpse of the
far-reaching impact that this kind of regulation may have in
cancer progression.73

Ubiquitin-mediated degradation. Recent studies have
begun to shed light on the regulation of DAB2IP turnover,
identifying E3 ubiquitin ligases that can promote its
degradation.
Inuzuka and colleagues74 observed that FBW7–SCF

complexes can bind and degrade DAB2IP. Two putative
phosphodegron sequences have been identified in DAB2IP,
both required for efficient interaction with FBW7. On the basis
of depletion and overexpression experiments, authors
reported that DAB2IP stability is affected by casein kinase 1
delta possibly through phosphorylation of these serines.74

A second study showed that DAB2IP is polyubiquitinated
and degraded bySkp2–SCF complexes in prostate cancer cell
lines. Authors identified lysines required for ubiquitination,
but reported no evidence for phosphorylation-mediated
degradation.75 Interestingly, in prostate cancer cells DAB2IP
overexpression can reduce Skp2 levels, most likely by
inhibition of AKT. Although an inverse correlation between
the two proteins has not been clearly demonstrated, a
reciprocal regulation between DAB2IP and Skp2 may be
relevant in some cancers.75

Recently, North and colleagues76 reported that DAB2IP is
bound and degraded by the Nedd4-related E3 ligase Smurf1.
Smurf1 binds the N-terminal domain of DAB2IP to promote its
degradation. Similar to Skp2, Smurf1 is stabilized by AKT-
dependent phosphorylation, so that aberrant AKT activation
can reduce DAB2IP protein levels by increasing Smurf1.
Interestingly, Smurf1 depletion reduced proliferation and
invasion of prostate and breast cancer cells, and this effect
could be rescued by DAB2IP KO; this suggests that Smurf1
oncogenic activity is mediated, at least in part, by DAB2IP
destabilization.76

Up to now, no studies have systematically explored DAB2IP
protein stability under physiological and pathological

conditions; it is plausible that other ubiquitin ligases are
involved in its turnover.

Post-translational modifications: phosphorylation by
Akt. DAB2IP can be phosphorylated by RIP1 on Ser 604
within the PER domain, and by AKT1 on Ser 847 within the
proline-rich domain. Although RIP1-mediated phosphoryla-
tion is stimulatory,40 a recent study reported that
AKT-mediated phosphorylation inhibits DAB2IP functions: in
transient overexpression experiments, mutation of serine 847
to aspartic (to mimic constitutive phosphorylation) reduced
DAB2IP interaction with Ras and TRAF2, with no effect on
Ras-dependent p-ERK levels.74 Accordingly, mutation to
alanine increased DAB2IP interaction with both proteins,
suggesting that S847 phosphorylation can interfere with
DAB2IP activity.74 Intriguingly, these data suggest a recipro-
cal regulatory feedback loop, whereby DAB2IP inhibits AKT
activation, whereas AKT inhibits DAB2IP directly by phos-
phorylation, and indirectly by stabilization of Smurf1 and
Skp2 (see above). Additional studies are required to confirm
and extend these observations, and to determine whether
S847 phosphorylation might affect other important DAB2IP
functions—first of all modulation of ASK1 and NF-κB
signaling.

Interaction with mutant p53. DAB2IP can be bound and
functionally inhibited by mutant p53 in the cytoplasm of
cancer cells. TP53 is probably the most frequently mutated
tumor suppressor gene; ~ 75% of the mutations are missense
substitutions, and p53 missense mutants (mutp53) acquire
oncogenic properties—a phenomenon defined as gain of
function. We found that breast cancer cells expressing
mutp53 undergo a pro-oncogenic response to inflammatory
cytokines, in particular TNFα.18 Mechanistically, by binding
DAB2IP mutp53 sustains TNF-induced activation of NF-κB,
counteracting the pro-apoptotic ASK1/JNK branch of the
pathway. This results in a transcriptional program that
promotes cell invasion and protects from cell death. Of note,
expression of a decoy protein capable of interfering with
DAB2IP–mutp53 interaction reduced tumor growth and
metastasis in a mouse xenograft model.18 It is plausible that
the mutp53–DAB2IP interaction has a broader impact in
cancer progression, affecting the cancer cell’s response to
additional extrinsic inputs.

Conclusions and Future Perspectives

We have reviewed howDAB2IP canmodulate the cytoplasmic
events of major oncogenic pathways, and described the
far-reaching impact that DAB2IP repression or inactivation can
have on tumor progression. One concept we wish to
emphasize is that by acting on multiple pathways DAB2IP
can dampen pro-oncogenic signals originating from several
different genetic mutations. This has two implications: first,
DAB2IP inactivation is expected to favor progression of
multiple different cancers. Second, DAB2IP reactivation could
slow progression of cancers driven by different oncogenic
alterations.
The first point is supported by the fact that DAB2IP

expression or function is frequently compromised in cancer.
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In various studies, DAB2IP levels have been shown to stratify
patients for response to therapy and overall survival, and its
use as a prognostic marker is worth consideration.77,78 The
second point is supported by solid lines of evidence that
DAB2IP reactivation or overexpression can effectively reduce
tumor growth, metastasis, and resistance to therapy in a
variety of cell types.5,15,25,35,58

Considering that the DAB2IP gene is almost never mutated
in cancer, its re-expression may be explored as a potential
therapeutic strategy. For instance, in various types of cancer
DAB2IP transcription is reduced by promoter methylation, but
not totally abolished; its expression in these cells could be
theoretically increased by acting at the post-transcriptional
level. In addition, we found that DAB2IP can be partially
blocked by interaction with cytoplasmic mutant p53; this
effect appears to be stoichiometric, as displacing the
mutp53–DAB2IP interaction, or overexpressing DAB2IP,
restores tumor suppression.18 On the basis of these con-
siderations, it is conceivable that increasing DAB2IP protein
levels would be sufficient to reduce aggressiveness of tumors
with or without mutant p53.
To conclude, we are convinced that this tumor suppressor

gene bears a tremendous potential for molecular oncology,
and we await with enthusiasm future discoveries on its
function, regulation, and potential therapeutic manipulation.
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