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Primary cilia and autophagic dysfunction in
Huntington’s disease
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Huntington’s disease (HD) is an inherited, neurodegenerative disorder caused by a single-gene mutation: a CAG expansion in the
huntingtin (HTT) gene that results in production of a mutated protein, mutant HTT, with a polyglutamine tail (polyQ-HTT). Although
the molecular pathways of polyQ-HTT toxicity are not fully understood, because protein misfolding and aggregation are central
features of HD, it has long been suspected that cellular housekeeping processes such as autophagy might be important to disease
pathology. Indeed, multiple lines of research have identified abnormal autophagy in HD, characterized generally by increased
autophagic induction and inefficient clearance of substrates. To date, the origin of autophagic dysfunction in HD remains unclear
and the search for actors involved continues. To that end, recent studies have suggested a bidirectional relationship between
autophagy and primary cilia, signaling organelles of most mammalian cells. Interestingly, primary cilia structure is defective in HD,
suggesting a potential link between autophagic dysfunction, primary cilia and HD pathogenesis. In addition, because polyQ-HTT
also accumulates in primary cilia, the possibility exists that primary cilia might play additional roles in HD: perhaps by disrupting
signaling pathways or acting as a reservoir for secretion and propagation of toxic, misfolded polyQ-HTT fragments. Here, we
review recent research suggesting potential links between autophagy, primary cilia and HD and speculate on possible pathogenic
mechanisms and future directions for the field.
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Facts

� Autophagy is increased, but inefficient, in HD
� Primary cilia dysfunction impairs autophagy
� Autophagic disruption impairs regulation of primary cilia

biogenesis and growth
� PolyQ-HTT exhibits increased interaction with huntingtin-

associated protein 1 (HAP1), resulting in PCM1 accumula-
tion at the centrosome, aberrant ciliogenesis and altered
primary cilia structure

� Multiple types of neuronal aggregates containing misfolded
disease-associated proteins, such as α-synuclein, tau,
ALS-associated proteins and polyglutamine proteins, have
been shown to spread in a prion-like manner––mutant
huntingtin can undergo cell-to-cell transmission in vitro and
in vivo

Open Questions

� How does altered ciliary structure affect primary cilia
function in HD?

� What is the link between elongated primary cilia morphol-
ogy and aberrant corticostriatal signaling in HD?

� Can normalizing primary ciliogenesis reverse neuro-
degeneration in HD?

� Are primary cilia secretory organelles in neurons or
astrocytes and do they contribute to propagation of
misfolded polyQ-HTT in the brain?

Huntington’s disease (HD) is an inherited, autosomal domi-
nant neurodegenerative disease characterized by progressive
motor dysfunction, cognitive decline and psychiatric distur-
bances. The prevalence in the Western hemisphere is 4–10 in
100 000 and the average age of onset is 40 years.1,2 Brain
atrophy in HD manifests first in the striatum, and later, in other
brain regions including the substantia nigra, hippocampus,
cerebellum and cerebral cortex.3 Striatal medium spiny
neurons are the most vulnerable, while interneurons are
spared.3 There is currently no cure or effective treatment to
halt the progression of neurodegeneration in HD.
HD is caused by a CAG repeat expansion in a single gene,

huntingtin (HTT), located on chromosome 4, which codes for a
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large protein with an expanded poly glutamine (polyQ) tail. The
presence of 40 or more CAG repeats causes HD, whereas 36–
39 repeats cause HD in some cases (often with later
onset).1,4,5 Evidence suggests that both loss-of-function and
gain-of-function mechanisms play a role in polyQ-HTT-
mediated pathology. Embryonic lethality of complete Htt
knockout in mice6,7 and the pathological significance of loss
of normal functions of HTT, such as transport of brain-derived
neurotrophic factor (BDNF),8,9 are suggestive of a loss-of-
function mechanism. However, the dominant inheritance
pattern of HD and the ability of full-length and truncated forms
of polyQ-HTT to induce HD-like phenotypes in animal models
suggest that a toxic gain-of-function mechanism also con-
tributes to HD pathology.10

Although the normal physiological functions of wild-type
(WT) HTT are not completely understood, it is essential for
neurodevelopment and is believed to function as a scaffolding
protein in multiple pathways including microtubule-dependent
vesicular transport, neuronal gene transcription and synaptic
transmission.1,3,8 Important recent findings also describe a
potential function as a scaffold for multiple autophagy-
associated proteins in selective autophagy.11 Consistent with
these putative functions, HTT contains multiple leucine-
rich HEAT repeats that are involved in protein–protein
interactions.12,13

The exact nature of the polyQ-HTT toxic gain of function
remains elusive, but several possibilities have been identified.
It has been suggested that proteolytic cleavage of polyQ-HTT
might play an early role in HD pathogenesis, giving rise to toxic
N-terminal fragments.2,14 Cleavage products generated by
caspase-3, caspase-6, calpains and matrix metalloproteinase
10 have been shown to accumulate in the HD brain before
neurodegeneration.14–19 However, more recent evidence
suggests full-length polyQ-HTTmonomers aremore abundant
and more toxic than fragments.20

Aberrant interactions of polyQ-HTT and other proteins have
been shown to disrupt microtubule-based transport and gene
transcription. HTT has an important role in vesicular transport
via interactions with motor protein cargo adaptors such
as HTT-associated protein 1 (HAP1) and dynactin.2,8,21

This complex is disrupted by polyQ-HTT, resulting in
reduced transport, including vesicular trafficking of BDNF.2,8

PolyQ-HTT also interferes with transcription factors and
abnormally interacts with genomic DNA, disrupting transcrip-
tion factor binding and DNA conformation.22 One result of the
transcriptional disruption is reduced transcription of BDNF.23

In addition, repression of the transcription co-activator,
peroxisome proliferator-activated receptor gamma co-activator-
1-alpha (PGC-1α), results in reduced mitochondrial
biogenesis,24 and polyQ-HTT interaction with mitochondrial
proteins results in impaired energymetabolism stemming from
mitochondrial dysfunction and altered dynamics.25,26 The
PGC-1α target and regulator of the autophagy-lysosome
pathway, transcription factor E-B, is also impaired in HD
mice.27

Similar to other neurodegenerative diseases, protein mis-
folding and aggregation are a hallmark of HD neuropathology.
However, the process of polyQ-HTT aggregation is complex
and untangling the pathways and determining the pathological
significance remains a challenge. Although it was initially

hypothesized that large aggregates containing polyQ-HTT
were the cause of neuronal death in HD, more recent evidence
suggests that soluble, misfolded monomers and oligomers
are in fact toxic and aggregate formation is a protective
mechanism.28 PolyQ-HTT aggregates correlate poorly with
HD severity and progression.29,30 In vitro studies suggested
that polyQ-HTT fragments undergo a conformational change,
forming soluble toxic β-sheet monomers and/or oligomers.31,32

Analysis of human HD brain and cultured neurons revealed that
native polyQ-HTT occurs primarily as a soluble, full-length
monomer,20 and in human embryonic stem cells (hESCs),
there was a quantitative relationship between neurodegenera-
tion and soluble monomeric (but not oligomeric or aggregated)
polyQ-HTT.33

Finally, polyQ-HTT impairs proteasomal activity and autop-
hagy by interacting abnormally with proteins involved in these
pathways.34,35 Dysfunctional autophagy in HD is the focus of
this review and will be discussed in more detail in the following
sections. This pathological pathway of HD has been exten-
sively investigated, but the functional mechanisms of action
and cellular regulators of dysfunction have yet to be sufficiently
described. Here we review recent data suggesting a potential
link between autophagic dysfunction and primary cilia––often
overlooked cellular signaling organelles that are novel
regulators of autophagy––in HD and neurodegeneration. We
conclude by speculating on other potential avenues of primary
cilia involvement in the pathogenesis of HD.

Autophagic Dysfunction in HD

There is substantial evidence that autophagy, the cellular
process of protein and organelle degradation by lysosomes, is
dysfunctional in HD. Autophagy has a vital role throughout the
nervous system and loss of this cellular function causes
premature aging and neurodegeneration.36,37 The autophagy-
lysosome system compliments the ubiquitin-proteasome
system (UPS) in the degradation of misfolded proteins and
is upregulated when proteasome function is impaired. In HD,
polyQ-HTT overwhelms UPS chaperones such as Hsp70 and
DNAJB, decreasing their availability to other misfolded
proteins and increasing the flux of proteins to the
proteasome.35 An increased cellular load of ubiquitinated
proteins, the relatively low basal functionality of striatal
proteasomes38 and an overall age-dependent loss of UPS
activity39 all might contribute to the increased burden placed
on the autophagy pathway in HD. Endoplasmic reticulum (ER)
stress also induces autophagy in HD and it has also been
shown that polyQ-HTT disrupts calcium homeostasis,40

impairs ER-Golgi-lysosome trafficking41,42 and inhibits the
ER-associated degradation pathway.43 Furthermore, because
post-mitotic striatal neurons are unable to dilute accumulated
misfolded proteins through cell division, ineffective autophagy
might disrupt cellular proteostasis and exacerbate polyQ-HTT
toxicity.44

Autophagy can be divided into three subtypes based on
cargo recognition and mechanisms of lysosomal delivery––
microautophagy, chaperone-mediated autophagy (CMA) and
macroautophagy. CMA and macroautophagy are the two
primary pathways in mammalian cells (Figure 1a). CMA is a
selective form of autophagy that acts upon protein substrates
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that contain pentapeptide amino-acid targeting sequences
biochemically related to KFERQ.45 Chaperones, including
heat-shock cognate protein 70 (HSC70), deliver misfolded
proteins to lysosomes, where a membrane receptor complex
containing lysosome-associated membrane protein 2A
(LAMP2A) recognizes and translocates cargo into the
lysosomal lumen for degradation.46 Studies have shown that
HTT is processed by CMA machinery. HTT contains putative
CMA-targeting motifs, interacts with HSC70 and is delivered
into the lysosome in a LAMP2A-dependent manner. In HD,

CMA function is diminished. PolyQ-HTT excessively inter-
acts with HSC70 and LAMP2A, clogging this pathway47

(Figure 1b).
Macroautophagy is a bulk clearance mechanism of proteins

or organelles.48,49 The three main stages of macroautophagy
are autophagosome formation, maturation and fusion with
lysosomes.39 During the first stage, autophagosome forma-
tion, an isolation membrane forms to surround proteins
or whole organelles.49 Fifteen autophagy-related (ATG) proteins
have key roles in formation of the autophagosome.50,51

Figure 1 PolyQ-HTT impairs autophagy. (a) Nutrient deprivation induces macroautophagy, whereas activated mTOR acts as a major suppressor of this pathway. Upon
nutrient deprivation, ROCK1 promotes autophagy by phosphorylating Beclin-1, a key regulator of autophagy. Beclin-1 orchestrates recruitment of additional ATG proteins required
for autophagosome formation. The first stage of macroautophagy is formation of the double-membraned autophagosome. Small membrane structures called isolation
membranes elongate and surround proteins or organelles destined for degradation. LC3 complexes associate with the isolation membrane early in autophagy. LC3 aids cargo
sequestration through interaction with p62, a receptor essential for targeting polyubiquitinated cargo to the autophagosome. Autophagosomes colocalize with HTT and HAP1,
enabling dynein-mediated retrograde transport toward the lysosome-enriched cell body. ATG4B cleaves LC3 from the outer autophagosome membrane, allowing fusion with
lysosomes and cargo degradation by hydrolytic enzymes. Chaperone-mediated autophagy (CMA) acts upon protein substrates that contain pentapeptide amino-acid targeting
sequences biochemically related to KFERQ. Chaperones, including HSC70, deliver misfolded proteins to lysosomes, where a membrane receptor complex containing lysosome-
associated membrane protein 2 A (LAMP2A) recognizes and translocates cargo into the lysosomal lumen for degradation. (b) PolyQ-HTT impairs autophagy pathways through
aberrant protein interactions. PolyQ-HTT sequesters mTOR, increasing autophagy induction. PolyQ-HTT sequesters Beclin-1, impairing autophagosome formation. PolyQ-HTT
binds p62, disrupting LC3 interaction and causing cargo recognition defects with assembly of empty autophagosomes. PolyQ-HTT disrupts retrograde microtubule-based
transport through interaction with HAP1 and dynein/dynactin. Autophagosome transport to the cell body is hindered, resulting in formation of fewer autolysosomes and decreasing
overall autophagic degradation. CMA is also impaired in HD; polyQ-HTT sequesters the HSC70 chaperone that is important for transporting cargo to lysosomes. PolyQ-HTT also
directly interacts with LAMP2A of the lysosomal membrane translocation complex, preventing the transport of cargo into lysosomes
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After the autophagosomes are fully formed, they are trans-
ported along microtubules and fuse with lysosomes, which
results in lysosomal degradation of the contents49 (Figure 1a).
Macroautophagy is abnormally induced in HD as evidenced
by increased levels of autophagic vacuoles, the cargo adaptor
p62 and processed autophagosome membrane marker
microtubule-associated protein 1A/1B-light chain 3 (LC3)-II
in HD patients andmouse models.34,52 In addition, polyQ-HTT
sequesters and inhibits mammalian target of rapamycin
(mTOR), a negative regulator of macroautophagy53 (Figure 1b).
Post-translational modifications of proteins can regulate

their autophagic clearance and several such modifications
have been shown to contribute to clearance or stabilization of
HTT. For example, polyQ-HTT exhibits reduced serine
(S13 and S16) phosphorylation, a modification that regulates
the balance between ubiquitination and SUMOylation of
adjacent lysine residues (K6, K9 and K15).54,55 Inhibitor of κB
kinase-mediated phosphorylation results in increased polyubi-
quitination and enhanced clearance of WT-HTT. By contrast,
decreased phosphorylation of polyQ-HTT leads to SUMOyla-
tion, which in turn stabilizes polyQ-HTT and increases
neurotoxicity.55,56 Acetylation is another modification regulat-
ing polyQ-HTT clearance. Lysine-444 acetylation, mediated
by the acetyltransferase activity of CREB-binding protein and
occurring primarily in polyQ-HTT, is an important regulatory
mechanism that targets polyQ-HTT to autophagosomes for
degradation.57 Myristoylation, another acylation modification,
promotes protein–membrane interaction and is relevant to
autophagy regulation. After caspase-mediated cleavage of
HTT, an N-terminal glycine (G553) undergoes myristoylation.58

Myristoylated HTT553-586 fragments may influence autopha-
gosome formation by sensing and inducing membrane
curvature at the ER.49 The ER membrane is the source of
the isolation membrane,59 an early structure required for
engulfment of cytoplasmic materials.60 Myristoylation has
been shown to be significantly less prevalent in polyQ-HTT
compared with WT,58 and thus, further examination of this
post-translational modification in the context of HD is required.
Despite induction of autophagy, there is inefficient polyQ-

HTT clearance in HD. This stems from abnormal autophagic
function arising from defects at several key points of the
pathway. Normally, upon nutrient deprivation rho-associated,
coil-containing protein kinase 1 (ROCK1) promotes autop-
hagy by phosphorylating Beclin-1, a key regulator of
autophagy.61 PolyQ-HTT sequesters and inhibits Beclin-1,
impairing autophagosome formation and polyQ-HTT
clearance.62 In addition, polyQ-HTT disrupts retrograde
transport of autophagosomes to the lysosome-rich cell body,
resulting in fewer fusion events and defective degradation.63

There are also pronounced cargo recognition defects possibly
resulting from aberrant polyQ-HTT–p62 interaction.34 The p62
autophagic adaptor protein has a key role in selective
macroautophagy, binding to polyubiquitin chains of targeted
cargo and LC3 membrane proteins of the forming
autophagosome.64 Interaction with polyQ-HTT decreases
p62 availability to other substrates. This results in the
production of relatively empty autophagosomes, thereby
compromising macroautophagy and further contributing to
neurotoxicity in HD34 (Figure 1b).

Results of recent studies in animal models of HD have
suggested that HTT plays an important role in autophagy. For
example, expression of full-length HTT lacking its polyQ
(ΔQ-HTT) in a knock-in mouse model of HD increases
autophagy markers and longevity.65 In vitro expression of
ΔQ-HTTalso increases autophagosome synthesis and ATG5-
dependent clearance of HTT aggregates.65 In addition, a new
study reported that WT-HTT serves as an important scaffold
protein in multiple types of selective macroautophagy
(not including starvation-induced autophagy) in Drosophila
and mammalian cells (including mouse embryonic fibroblasts
and striatal cells).66WT-HTT is able to bind simultaneously two
important ATG proteins, p62 and unc-51-like autophagy
activating kinase (ULK1).66

In sum, studies to date indicate abnormal autophagy
function in HD and suggest that HTT has a functional role in
autophagy. Upregulation of autophagy has been shown to
enhance polyQ-HTT clearance53 and drugs targeting autop-
hagy––such as rapamycin/CCI-779, lithium, trehalose and
rilmenidine––continue to be of interest as potential therapeutic
agents for HD.49 Given the somewhat contradictory findings of
polyQ-HTT-mediated autophagy induction being detrimental
and autophagy enhancer therapy being beneficial, the role of
autophagy in HD appears to be even more complex than
previously thought. A key piece of this puzzle might be the
primary cilium, a novel regulatory organelle of autophagy.

Primary Cilia and Autophagy

Structure, function and biogenesis of primary cilia. Primary
cilia are single, non-motile signaling organelles found on the
surface of most mammalian cells (Figure 2). They are
required for Sonic hedgehog (Shh) signal transduction and
have essential roles in Wnt, platelet-derived growth factor
and transforming growth factor–β signaling pathways.67–70

Present in neurons, astrocytes and progenitors, these
structures have an important role in neurodevelopment––
acting in neuronal homeostasis, differentiation and survival.71

Neurological defects associated with so-called ciliopathies,
multi-system genetic disorders stemming from primary ciliary
dysfunction, underscore the critical role of primary cilia in the
nervous system. Primary cilia also have important functions
in the adult nervous system, including neural stem cell
regulation, neuronal signaling and regeneration.72 Interest-
ingly, primary cilia dysfunction has recently been implicated in
late-onset neurodegenerative disorders such as Alzheimer’s
disease and HD.73,74

Primary cilia are covered in a specialized receptor-dense
membrane and protrude into the extracellular environment like
cellular antennae.75 To facilitate their specialized signaling
functions, primary cilia are compartmentalized from the rest of
the cell. A septin GTPase structured ring embedded within the
plasma membrane acts as a diffusion barrier76 and a gate-like
transition zone at the ciliary base regulates protein transport
from the cytoplasm into the primary cilium.77 A unique
bidirectional intraflagellar transport (IFT) system is utilized
for trafficking of signaling and structural components along a
microtubule-based axoneme.78 IFTemploys kinesin-2 motors
for anterograde transport (from ciliary base to tip) and
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specialized cytoplasmic dynein-2 motors for retrograde trans-
port (tip to base). IFT proteins link motor proteins and cargo,
creating multi-protein IFT complexes that travel along the
axoneme79 (Figure 2).
Primary cilia formation involves axonemal extension from

the basal body, a structure originating from the mother
centriole in post-mitotic cells.80 Following basal body anchor-
ing to the plasma membrane, vesicles carrying material
needed for ciliary growth dock at the ciliary base. Materials,
such as ciliary membrane receptors, are incorporated into IFT
particles for transport into the cilium,81 and elongation is
mediated by bidirectional IFT.82 Bardet-Biedl Syndrome
proteins play a key role in vesicular transport of signaling
receptors to primary cilia, in addition to their role in regulation
of IFTassembly and turnaround.79 Primary cilia are formed in
quiescent cells and their disassembly is required for cell cycle
entry and progression.83 Aurora A kinase, localized at the
basal body, activates the tubulin deacetylase histone deace-
tylase 6 and promotes deacetylation of α-tubulin, ciliary
resorption and axoneme disassembly.84 Subsequent libera-
tion of the centriole, required for reutilization in mitotic spindle
bodies, regulates cell cycle re-entry.85

Primary cilia are important cellular environmental sensors,
signaling back from the extracellular space information such
as nutrient availability.86,87 Primary cilia communicate external
signals from growth factors and nutrients by regulating the
activity of mTORC1,88 a protein complex directly linked to the
regulation of autophagy,89 which is inhibited by nutrient stress.
In cultured cells, primary cilia biogenesis and macroauto-
phagy are both triggered upon growth arrest induced by
nutrient withdrawal.90,91 In addition to this temporal relation-
ship, these processes also share similar sites of origin.
Primary cilia have been observed as membrane-derived

extensions for well over 100 years and new data now describe
the plasma membrane as a source for early autophagosome
membranes.92 These findings hint at a functional relationship
between these pathways, and recent results from the Cuervo
and Zhong groups elegantly describe an intricate crosstalk
between primary cilia and autophagy.50

Primary cilia dysfunction impairs autophagy. The Cuervo
lab recently reported that primary cilia are required for
induction of autophagy, as evidenced by compromised
autophagosome biogenesis in serum-starved cells deficient
in IFT20 or IFT88.93 These proteins modulate protein
trafficking between the Golgi complex and primary cilia and
are required for primary cilia assembly and growth. In these
experiments, autophagy was induced through serum with-
drawal, a stimulus that promotes both autophagy and
ciliogenesis. The investigators demonstrated that reduced
ciliogenesis limited upregulation of autophagy following
nutrient deficiency. Further experiments showed that autop-
hagy induction is dependent on Shh signaling,93 a pathway
mediated through the primary cilium, and that autophagic
dysfunction can be attributed to impaired ciliary signaling
(Figure 3). Through activation of Shh signaling, the research-
ers induced autophagy in serum-supplemented cells to levels
observed upon serum removal. Various treatments and
conditions increased autophagy, including treatment with
purmorpamine, an agonist of the Shh signal transducer
membrane protein Smoothened (Smo); knockout of Patched-
1 (Ptc), a membrane receptor protein that represses Smo in
the absence of Shh; and overexpression of glioma-
associated oncogene homolog transcription factor (GLI), the
most downstream element within the Shh pathway. Signaling
proteins exit the cilium near the basal body, where regulatory

Figure 2 The primary cilium is a specialized signaling organelle. (a and b) Rat spinal astrocytes expressing dsRed-Centrin 2 (centriole marker) and Somatostatin receptor
type III-GFP (primary cilia marker) were fixed and stained with Hoechst dye (nucleus marker). (c) The primary cilium is a specialized non-motile signaling organelle that is
compartmentalized from the rest of the cell by unique structures, including an ordered membrane-bound septin ring structure and a transition zone at the base of the cilium. The
microtubule-based axoneme nucleates out from the basal body after being anchored to the plasma membrane by transition fibers. Signal transduction is mediated by the receptor
dense ciliary membrane and a specialized intraflagellar transport system (IFT) along the axoneme. The primary ciliary membrane is enriched in membrane receptors that include
SSTR3. Cargo is transported into the primary cilium via the Bardet-Biedl Syndrome (BBSome) complex (which also coordinates cargo attachment to microtubule motors), IFT
complex A (for dynein-2-mediated retrograde transport) and IFT complex B (for kinesin-2-mediated transport to the ciliary tip)
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ATG proteins required for autophagosome formation are
located. One such example is ATG16L, a protein that
mediates the activation of membrane-bound LC394 and has
an essential role in autophagy through modulation of nascent
autophagosomal membrane elongation.95 Upon serum with-
drawal, Shh signaling promotes ATG16L recruitment to the
ciliary base via IFT20-enriched vesicles,93 demonstrating that
Shh signaling and IFT collaboratively promote autophago-
some formation and provide an important point of regulation
for macroautophagy. Thus, aberrant primary cilia function in
the form of altered Shh signaling can hinder cellular home-
ostasis through misregulation of autophagy. In the context of
HD, this may also augment ciliary dysfunction by altering the
structural integrity of primary cilia.

Compromised autophagy alters primary cilia growth and
structure. Interestingly, autophagy itself has a key role in
regulating primary cilia biogenesis and growth––suggesting
that the relationship between primary cilia and autophagy is
bidirectional. Disruption of either basal or induced autophagy,
as seen in HD, alters ciliary regulatory factor availability and
causes imbalanced growth of primary cilia. The Zhong lab
showed that induced autophagy promotes primary cilia
biogenesis through the degradation of oral-facial-digital
syndrome type 1 (OFD1) protein at centriolar satellites96––
the nonmembranous, electron-dense granules that cluster
around centrosomes (Figure 3b). OFD1 also localizes to the
centrioles, where it has been shown to be essential for
primary ciliogenesis,97 yet the centriolar satellite pool of
protein exhibited significantly faster turnover due to induced
autophagy. OFD1, a negative regulator of ciliogenesis,
is spared during basal autophagy.96 The Cuervo lab

demonstrated that basal autophagy regulates primary cilia
growth: under normal nutrient conditions, IFT20 is degraded,
limiting the ciliary trafficking of components required for
lengthening of primary cilia93 (Figure 3a). Thus, disruption of
either basal or induced autophagy has the potential to affect
primary cilia growth by altering availability of IFT20 and
OFD1. Increased autophagy induction results in degradation
of OFD1 at the centriolar satellites, removing the block on
ciliary growth and allowing continued lengthening of primary
cilia. On the other hand, blockage of basal autophagy
increases the amount of IFT20, also resulting in enhanced
primary cilia growth. Interestingly, elongated ciliary morphol-
ogy is evident in HD mice and human HD brains, in which
autophagic dysfunction has been reported.74

Primary Cilia and HD Pathogenesis
Primary cilia morphology is altered in HD. The associa-
tion between HTT, microtubules and motor proteins is critical
for trafficking within the cell. HTT binds directly to dynein98

and interacts indirectly with dynactin through HAP1,99

a neuronal-binding partner of HTT that participates in intra-
cellular trafficking.100,101 Microtubule-based trafficking is essen-
tial for many cellular processes, including primary ciliogenesis.
The formation of primary cilia depends on the proper
localization of regulatory factors and building components to
the pericentriolar material, a matrix of proteins surrounding the
centrosome that serves as a binding platform for the
microtubule nucleation required for axoneme assembly.102

Proper primary cilia biogenesis is dependent on the centro-
somal trafficking of pericentriolar material 1 protein (PCM1), a
centriolar satellite protein essential for microtubule organiza-
tion103 and recruitment of proteins to the centrosome.104

Figure 3 The functional relationship between primary cilia and autophagy. (a) In the absence of Sonic Hedgehog (Shh), the Patched (Ptc) receptor restricts Smoothened
(Smo) entry into the primary cilium, which results in processing of the transcriptional effector GLI into its repressor form or targeting for degradation. Autophagy is not induced,
OFD1 at centriolar satellites is not degraded and ciliogenesis is impaired. Basal autophagy degrades IFT20 when nutrient levels are normal. This reduces trafficking of IFT
components to the pericentriolar material, thus impairing the ciliary transport required for growth of primary cilia. (b) Primary ciliogenesis and autophagy are induced during
starvation or periods of low-nutrient availability. Autophagy induction is dependent on Shh signaling through the primary cilium. Shh signal transduction is mediated by Smo, which
undergoes localization to the primary cilium following Shh binding to Ptc. Smo accumulation within primary cilia promotes GLI protein processing into its transcriptional activator
form (GLI-A), enabling downstream signal transduction. Shh-mediated signal transduction promotes the autophagic degradation of OFD1 at centriolar satellites, which is required
for ciliogenesis
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The Saudou group demonstrated that HTT, in conjunction
with HAP1, mediates the transport of PCM1 between the
cytoplasm and pericentriolar material. Their data elucidate a
role for HTT in ciliogenesis through the HAP1-PCM1
pathway74 (Figure 4a). Significantly, they found that polyQ-
HTT exhibits increased interaction with HAP1, thereby
causing PCM1 accumulation at the centrosome, increased
ciliogenesis and primary cilia elongation74 (Figure 4b). The
resulting hypermorphic primary cilia may be of particular
significance in HD, as altered function caused by changes in
ciliary structure may affect autophagic regulation. Primary
cilia downregulate mTOR signaling88 and polyQ-HTT
sequesters and inhibits mTOR.53 Because mTOR is a
negative regulator of autophagy, the combinatorial effects of
elongated primary cilia and polyQ-HTT may explain the
increased autophagy in HD.

Primary cilia-mediated signaling is dysfunctional in
HD. Changes in primary cilia-mediated signaling may con-
tribute to HD by affecting overall ciliary function, as many
signaling pathways relevant to HD operate through primary
cilia (Figure 4b). Various pathway impairments are linked to
HD pathogenesis, including decreased BDNF signaling at
corticostriatal terminals. The clinical manifestations of striatal
atrophy have long been attributed to reduced levels of
BDNF,105 a secreted neurotrophin vital for neuronal develop-
ment and synaptic plasticity. Deficits in BDNF-mediated
downstream tyrosine-related kinase B (TrkB) signaling have
also been reported.106–109 TrkB receptor localization and
activation are primary cilia-dependent processes and primary
cilia loss impedes activation of TrkB.110 Conversely, upregu-
lation of p75NTR signaling has been shown to disrupt TrkB
signaling.106 Because p75NTR also localizes to primary

cilia111 and is the only other known receptor for BDNF, the
effect of changes in ciliary-mediated signal transduction in
HD merits further examination.

PolyQ-HTT accumulates within primary cilia. PolyQ-HTT
may also have a more direct impact on primary cilia structure
and function, as recent data have demonstrated that polyQ-
HTT accumulates within primary cilia. Transport of HTT
between the basal body and primary cilium is mediated by
phosphorylation (S13 and S16) within the amino-terminal
alpha-helical N17 domain (N17). PolyQ-HTT exhibits lower
N17 phosphorylation than WT-HTT, and thus, polyQ-HTT
accumulates within the primary cilia stalk112,113 (Figure 4b).
With HTT acting as a scaffolding protein connecting
cargo to kinesin or dynactin for microtubule-based transport,
polyQ-HTT may convey toxicity by directly interfering with IFT
components localized to the primary cilium. In addition to
promoting localization to primary cilia, N17 phosphorylation
induces clearance of polyQ-HTT through the autophagic
pathway,55 again demonstrating the intricate relationship
between primary cilia and autophagy in HD pathogenesis.

Primary Cilia: Secretory Organelles?

Another avenue by which primary cilia could participate in HD
pathogenesis is by secretion of polyQ-HTT from neurons
(Figure 4b). As outlined in the next section, increasing
evidence suggests that progression of late-onset neurode-
generative diseases such as HD is driven by transmission and
propagation of toxic forms of disease-associated proteins via a
mechanism akin to that of prion diseases. Such protein
secretion could further overload and overwhelm the protective
cellular maintenance systems of vulnerable neurons.

Figure 4 Abnormal ciliogenesis and hypertrophic cilia are observed in Huntington’s disease. (a) HTT and HAP1 regulate primary cilia formation through the transport of
PCM1 to the centrosome. (b) PolyQ-HTT exhibits increased binding to HAP1, causing accumulation of PCM1 at the centrosome, increased ciliogenesis and lengthening of the
primary cilium. Increased ciliogenesis may perturb neuronal homeostasis and affect neuron survival. Altered polyQ-HTT–HAP1 interaction may also result in aberrant transport of
membrane receptors and potential ciliary signaling dysfunction. PolyQ-HTT is also hypophosphorylated within its N17 domain, an area important for intracellular targeting, and
exhibits increased localization within the primary cilium. Accumulated polyQ-HTT may interfere with IFT machinery, altering microtubule-based transport along the axoneme and
impairing primary ciliary signaling. In light of recent evidence of vesicular secretion from neuronal primary cilia, these organelles may act as a conduit for the intercellular transfer
of polyQ-HTT
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Although the secretory capabilities of primary cilia in humans
remain uncertain, several lines of evidence suggest that cilia
might act as secretory organelles.
First, IFT proteins, key components of the ciliary structure,

have been shown to play a role in exocytosis and extracellular
signaling in non-ciliated cells.114,115 T lymphocytes express
IFT proteins, including IFT20, and kinesin-2, the IFT-
dependent motor. These proteins associate with the centro-
some and Golgi.114 Given that transport protein machinery
characteristic of and critical to ciliary structure and function is
important for protein secretion in cells that do not develop cilia
suggests the possibility that this machinery might play a
similar protein secretory role in primary cilia.
Second, studies of simple organism model systems have

identified release of extracellular vesicles from ciliary struc-
tures. EM analysis showed that cilia of Chlamydomonas, a
unicellular green alga, secrete bioactive vesicles containing a
proteolytic enzyme.116 This finding is of potential relevance to
human primary cilia because green algae have traditionally
served as a reliable model of mammalian cilia––other ciliary
components first identified in algae and later found to be
conserved in mammals include the IFT proteins.116,117 In
addition, ciliated sensory neurons in Caenorhabditis elegans
were recently shown to release extracellular vesicles.118

Finally, early studies in mammalian cells, although far from
conclusive, have yielded indicators of protein secretion from
primary cilia. For example, a study of neuroepithelial cells
found that the distribution of prominin-1, a stem cell marker, on
primary cilia was suggestive of budding of small membrane
vesicles from the tips of differentiating cells.119 In addition, the
protein contents of purified human urinary exosome-like
vesicles suggested that the structures possibly originated
from primary cilia.120 To date, evidence of secretion of proteins
from primary cilia in humans is at best preliminary, but
because of observations in simpler organisms and the
potential importance of such a mechanism, further exploration
is warranted.

Primary Cilia: Propagation of Unfolded Proteins?
Prion theory. Increasing evidence supports a model of
neurodegenerative disease in which pathological progression
is driven by prion-like protein seeding and propagation. This
prion theory of neurodegeneration postulates that fibrillary
protein seeds are taken up from adjacent or connected cells
in the brain and induce aggregation of normally structured
proteins, leading to spreading of characteristic misfolded
proteins.121 This process is analogous to classical priono-
pathies in which PrPSC, the misfolded form of the normal
prion protein PrPC, propagates through neuronal networks by
inducing pathological conformational changes of native prion
protein. Most neurodegenerative diseases are characterized
by dysfunction in discrete brain regions in the early stages
and more widespread dysfunction in later stages, suggestive
of a spreading pathology.121,122 For example, in HD,
pathophysiological progression is quite predictable, begin-
ning in the striatum and later progressing to the cortex.123

Furthermore, spreading of protein aggregates has been
shown to mirror the overall clinical pathophysiology of
neurodegeneration.121

In recent years, multiple studies have investigated the
prion-like capabilities of pathological proteins and protein
aggregates associated with various neurodegenerative
diseases.124 Exosomal secretion of small fractions of amy-
loid-β peptides has been observed.125 Internalization of
aggregates containing α-synuclein, tau, ALS-associated
proteins and polyglutamine proteins has also been shown in
cultured cells.121 Specifically, uptake of α-synuclein has been
observed in cultured human dopaminergic neuronal cells by a
mechanism that involved endocytosis.126 In addition, cultured
HEK and C17.2 cells have been shown to take up tau
aggregates and transfer aggregates between cells that are
able to interact with native tau directly and convert the native
protein to fibrillar forms.127,128 Furthermore, seeding of cell
cultures with aggregated forms of ALS-associated proteins
SOD1 and TDP-43 resulted in misfolding of WT
proteins129–131 and cell-to-cell transmission of misfolded WT
SOD1 has been observed.132 Finally, polyQ aggregates have
been shown to be internalized by COS7, HEK293 and
neuro2A cell lines in vitro and internalized aggregates
colocalized with cytosolic quality control components such
as ubiquitin and proteasome subunits; however, cell-to-cell
transmission of aggregates between intact cells was
limited and relatively inefficient.133 By contrast, expression of
polyQ-HTT fragments in CAD neuronal cells and primary
cerebellar granule neurons in vitro did result in spontaneous
and efficient transfer to neighboring cells that did not
require release from dying cells.134 In this instance, transfer
required cell-to-cell contact and aggregates were found in
tunneling nanotubes, which were increased by polyQ-HTT
expression.134 Perhaps providing the most compelling
evidence to date of propagation of polyQ-HTT in vitro, a new
study has reported that when hESC-derived neurons were
introduced into brain slices fromHD diseasemodel R6/2 mice,
the hESC-derived neurons developed HTT aggregates and
exhibited signs of toxicity.135 Similarly, when R6/2 cortical
brain slices were co-cultured with striatal brain slices fromWT
mice, polyQ-HTT aggregates developed in the WT striatal
neurons.135

Evidence of the propagation ability of neuronal aggregates
has also been found in vivo in animal models and human
patients. For example, multiple studies of animal models
of neurodegeneration have reported strong evidence of
cell-to-cell transmission of α-synuclein,126,136 tau137–140 and
amyloid-β.141 Moreover, it was recently shown that lentiviral
transduction of polyQ-HTTexon 1 into cortical neurons of WT
mice led to the development of polyQ-HTT aggregates in
striatal medium spiny neurons located in regions innervated by
the transduced cortical neurons135,142 and polyQ-HTT aggre-
gates in Drosophila were found to effect prion-like conversion
of soluble WT-HTT in the cytoplasm of phagocytic glia.143

Finally, transplant studies in PD and HD patients have
confirmed propagation in humans. Engrafted fetal mesence-
phalic dopaminergic neurons developed ubiquitin- and
α-synuclein-positive Lewy bodies when transplanted in PD
patient brains.121,123,144–147 Similarly, polyQ-HTT aggregates
were found in grafted tissue in HD patient brains, although the
aggregates were extracellularly located and not within
engrafted neurons.148
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Mechanism of polyQ-HTT cell-to-cell transmission:
primary cilia involvement? Although the ability of toxic
proteins such as polyQ-HTT to propagate and spread in the
brain is becoming well-established, the mechanism of such
cell-to-cell transmission remains a mystery. To date, the study
by Costanzo and colleagues is the only one, to our knowl-
edge, to suggest a mechanism of cell-to-cell transmission of
polyQ-HTT––namely, tunneling nanotubes.134 In light of the
clues suggesting protein secretion from primary cilia, we
speculate that primary cilia might be important, as yet
unexplored mediators of prion-like spreading of polyQ-HTT
(and potentially other toxic proteins) in the brain.

Remarks and Future Outlook

As discussed in this review, there are multiple avenues through
which primary cilia could contribute toHDpathogenesis. It iswell
documented that autophagy is both increased and inefficient in
HD, resulting in wasted energy expenditure without removal of
toxic species or recycling of macromolecules. This autophagic
increase causes degradation of OFD1 at centriolar satellites,
promoting ciliogenesis and extending primary cilia length.
Studies also show that autophagy induction depends on primary
cilia signaling. With these points in mind, we speculate that
elongated primary cilia, enriched in ciliary membrane receptors
and signaling components, contribute to HD by exacerbating
autophagy induction. Abnormal structure may also alter primary
cilia function and affect pathways impaired inHD, such as striatal
BDNF signaling. In sum, we propose that primary cilia and
autophagic dysfunction have multifaceted and interdependent
roles in HD pathogenesis, many of which require further
investigation and characterization.

Autophagy and primary cilia. It should be noted that in the
experiments investigating interrelationship between primary
cilia and autophagy, serum starvation was used to induce
autophagy. Although this method is commonly used to induce
autophagy in non-neuronal cells, previous in vivo studies
show that starvation does not induce autophagy in the brains
of mice.149 Therefore, further investigation of primary cilia-
autophagy interaction in a system more relevant to primary
neuronal cells merits consideration.

Primary cilia in HD. Data from the Saudou group demon-
strate that polyQ-HTT affects primary ciliogenesis, altering
primary cilia structure and function.74 Based on this finding,
we postulate that decreased BDNF-TRkB signaling in HD
stems from these structural changes. However, it is possible
that signaling through primary cilia is not adversely impacted
by increased overall length. There are other potential points
along this signaling pathway that may be susceptible to
polyQ-HTT. One such area may involve trafficking of TRkB
receptors. A recent study shows that HAP1 stabilizes and
prevents the degradation of TRkB receptors,150 and in the
context of HD, increased polyQ-HTT–HAP1 interaction may
interfere with this important function. Establishing these
connections will be an important avenue of investigation.
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