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CD95 promotes metastatic spread via Sck in pancreatic
ductal adenocarcinoma

M Teodorczyk1,8, S Kleber1,8, D Wollny1,8, JP Sefrin1, B Aykut1, A Mateos1, P Herhaus1, I Sancho-Martinez1,9, O Hill2, C Gieffers2,
J Sykora2, W Weichert3, C Eisen4,5, A Trumpp4,5,6, MR Sprick4,5, F Bergmann3, T Welsch7 and A Martin-Villalba*,1

Cancer stem cells (CSCs) have been implicated in the initiation and maintenance of tumour growth as well as metastasis. Recent
reports link stemness to epithelial–mesenchymal transition (EMT) in cancer. However, there is still little knowledge about the
molecular markers of those events. In silico analysis of RNA profiles of 36 pancreatic ductal adenocarcinomas (PDAC) reveals an
association of the expression of CD95 with EMTand stemness that was validated in CSCs isolated from PDAC surgical specimens.
CD95 expression was also higher in metastatic pancreatic cells than in primary PDAC. Pharmacological inhibition of CD95 activity
reduced PDAC growth and metastasis in CSC-derived xenografts and in a murine syngeneic model. On the mechanistic level, Sck
was identified as a novel molecule indispensable for CD95’s induction of cell cycle progression. This study uncovers CD95 as a
marker of EMTand stemness in PDAC. It also addresses the molecular mechanism by which CD95 drives tumour growth and opens
tantalizing therapeutic possibilities in PDAC.
Cell Death and Differentiation (2015) 22, 1192–1202; doi:10.1038/cdd.2014.217; published online 23 January 2015

Recent analysis of the cellular heterogeneity within the tumour
mass revealed the existence of cells that share characteristics
with stem cells of the tissue of origin.1 These cells are
responsible for the tumour’s resistance to current therapies
and therefore provide new perspectives in cancer treatment.
Cancer stem cells (CSCs) or tumour-initiating cells (TICs) are
characterized by their self-renewal and differentiation capa-
city, which are assessed by their ability to generate a
heterogeneous tumour in immunocompromised mice in serial
transplantations.2 In pancreatic cancer, those properties
were initially shown by cells expressing CD24, CD44 and
ESA (epithelial surface antigen).3

Pancreatic cancer is the fourth leading cause of cancer-
related death in the United States of America.4 The highly
malignant phenotype of pancreatic ductal adenocarcinoma
(PDAC) results from aggressive invasion and early metastatic
potential. Epithelial–mesenchymal transition (EMT) is consid-
ered to be the first step of metastatic spread. During this
process, the tumour cells master the ability to detach from their
neighbours and gain motile and invasive properties enabling
them to spread via blood or lymph vessels.5 As cells undergo
EMT, they lose their epithelial features including sheet-like
architecture, polarity and E-cadherin expression and gradually
gain motility and expression of mesenchymal markers such as

N-cadherin, fibronectin and vimentin. Recent studies have
uncovered a link between the EMTand the acquisition of stem
cell characteristics.6,7 Most growth factors such as TGF-β,
HGF, EGF, IGF and FGF are known to trigger EMT.8

Interestingly, there is growing evidence that the so-called
‘death receptor’ CD95 (Fas/Apo-1) behaves like a growth
factor receptor in cancer cells.9–11

CD95 was first discovered as the initiator of programmed
cell death by forming death-inducing signalling complex
(DISC, including Fas-associated death domain, FADD and
caspase-8/10) upon stimulation with CD95 ligand (CD95L).12

However, mitogen-activated protein kinases (MAPKs), leading
to p38, JNK or extracellular signal-regulated kinase (ERK) 1/2
activation, were also reported to be driven by CD95.13,14 In
glioblastoma multiforme (GBM), CD95-induced migration
depends on the formation of the so-called phosphatidyl-
inositol 3-kinase (PI3K) activation complex (PAC),11,12 con-
sisting of the Src family kinase (SFK), Yes and p85, the
regulatory subunit of PI3K. PAC components, however, differ
between cell types, encompassing also other SFKs or the Syk
tyrosine kinase.15,16

Here, we show that the expression of CD95 increases in
primary PDACs as compared with non-tumour-bearing pan-
creas and is higher in metastatic pancreatic cells than in
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primary PDAC. In CSCs isolated from primary PDAC surgical
specimens, the expression of CD95 positively correlates with
EMT markers. We also identified Sck as the molecular link
between CD95 and activation of the PI3K and MAPK
pathways. Neutralization of the CD95L reduces PDAC growth
and metastasis. The present study defines CD95 and its
downstream signalling pathway components as new targets
for PDAC therapy.

Results

Analysis of CD95 expression in pancreas cancer. To
study the relationship between CD95 expression and PDAC
at a genomic level, we made use of the microarray data set
GSE15471 from the GEO database. This data set comprises
tumour- and non-tumour-matched samples obtained from 36
pancreatic cancer patients at the time of surgery.17 After
normalization, we found that CD95 expression is significantly
higher in tumour samples compared with non-tumour
samples (Figure 1a), and that most patients show an increase
in the expression of CD95 as compared with surrounding
non-tumour tissue (Figure 1b). To validate these findings, we
confirmed the specificity of CD95 and CD95L antibodies
according to previous reports (Supplementary Figure 5) and
examined a PDAC patient-derived tissue microarrays (TMAs)
stained for CD95. A high number and intensity of CD95
immunostaining was exhibited by PDAC tumour cells
(Figure 1c). Hence, CD95 expression seems to support the
tumourigenic potential of PDAC cells.

CD95-expressing PDAC cells exhibit EMT properties.
Next, we compared CD95 expression in pancreas cancer
subtypes as defined by Collisson et al.18 The highest CD95
expression was detected in the Quasimesenchymal-PDA
subtype as compared with the Classical- and Exocrine-like-
PDA subtypes (Figure 2a). This finding suggested that
tumours expressing high levels of CD95 exhibit a mesench-
ymal phenotype, which led us to study the relationship
between CD95 and EMT in more detail. To this end, the
tumour samples were divided into three groups of the same
size according to their CD95 expression (high, intermediate

and low), and preranked genes by their differential expression
between CD95 high- and CD95 low-expression samples
(Figure 2c). In addition, we applied gene set enrichment
analysis (GSEA)19,20 and observed an enrichment of EMT
genes21 in the CD95 high-expression group (Figure 2b).
Next, we aimed to verify the in silico results using primary cell
lines, which were isolated from four patient-derived xeno-
grafts (Figures 2d and e). CD95 expression displayed a wide
range from 18% to over 90% of CD95-positive tumour cells
(Figure 2d). The variety of CD95 expression in PDAC cells
was not because of culture conditions, as freshly isolated
tumour cells also showed marked differences in CD95
expression (Supplementary Figure 1). Next, we sorted
CD95-positive and -negative cells by flow cytometry and
analysed EMT gene expression in the respective populations.
Interestingly, PDAC CD95 high-expressing cells from Patients
B and C showed high expression of genes characteristic of
mesenchymal as well as epithelial identity (Figure 2e). CD95
high-expressing cells from Patient A showed a less
pronounced signature; however, a well-characterized trigger
of EMT, TGF-β, clearly correlated with CD95 expression.
Patient D-derived cells did not show an obvious trend, which
can be potentially explained by the overall high expression of
CD95 in this PDAC line (Figures 2d and e).

CD95-expressing PDAC cells generate tumours in xenograft
models. To expand the analysis on CD95-expressing
PDAC-CSCs, we extracted two cell lines from surgical PDAC
specimens and cultured them in stem cell-selective medium.
The two cell lines PanD3 and PanD24 exhibit notable
differences in CD95 expression, confirming data from other
cell lines and freshly isolated tumour cells (Figure 3b).
To determine the tumour-initiating capacity of these isolated
cell lines, 2.5 × 105 cells were injected into the pancreatic
head of Fox Chase SCID Beige mice. Animals injected with
PanD3 cells (containing 9.3% of CD95+, 17.8% CD24+ and
23.6% CD44+ cells; Figures 3b and c) developed tumours
that were manually detectable 3 months after the injection.
PanD3 tumours were strikingly similar to the patient’s original
tumour and relatively differentiated (Figure 3a). Immuno-
histochemically, both human and mouse tumours displayed a
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Figure 1 CD95 expression is upregulated in PDAC. (a) CD95 expression in matched tumour (n= 36) and non-tumour samples (n= 36) from pancreatic cancer patients
(***P-value= 9.083e− 07, Wilcoxon's signed-rank test). (b) Ratio of CD95 expression in matched tumour and non-tumour samples from pancreatic cancer patients (GSE15471
data set). (c) Analysis of CD95 staining of PDAC sample-derived TMA. Tissue samples were differentially scored for intensity and abundance of CD95-positive tumour cells. Grey
scale represents the number of tumour samples. Immunostaining indicates high CD95 expression in tumour tissue compared with surrounding stroma. Asterisk denotes tumour.
Scale bar: 50 μm
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membrane-bound and cytoplasmic expression of CD95 and
CD95L in ductal cells.
PanD24 clone contained much higher proportion of CD95-

(93.3%) and CD44-positive (77.6%) cells than other isolated
clones (Figures 3b and c). Despite the fact that the

combination of CD24 andCD44 expression has been reported
to label CSCs, there was no difference in self-renewal
properties between CD24+/CD44+ andCD24− /CD44− cells
(Figure 3d). A total of 2.5 × 105 PanD24 cells injected into the
pancreatic heads of Fox Chase SCID Beige mice formed
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tumours that were detected by PET scan 21 days after
injection (Supplementary Figure 1). These tumours were less
differentiated than the patient’s original tumour, suggesting the
occurrence of EMT (data not shown).
EMToften correlates with metastasis22,23 and stem cell-like

characteristics6 in PDACs and other solid tumours. The high
levels of CD95 as well as poor differentiation of the tumour
cells in PanD24 xenografts suggest that this clone underwent
EMT. Along this line, several EMT markers were upregulated
in PanD24 cells as compared with normal pancreas
(Figure 3e). In addition, decreased expression of E-cadherin,
keratin-19 and elastases indicates that PanD24 cells lost
properties of the differentiated exocrine pancreas (Figure 3e).
Also, protein levels of E-cadherin were much lower than in
PANC-1 cells (Supplementary Figure 4). PANC-1 cells exhibit
a significantly lower expression of CD95 (Supplementary
Figure 1), which further supports the assumption that
expression of CD95 impinges in the EMT state of the cell.
Along this line, stimulation of CD95 increased the protein
levels of vimentin in PANC-1 cells but not in PanD24 at the time
points tested (Supplementary Figure 4). To test whether CD95
activation also impacted the levels of additional mesenchymal
markers, we also attempted to examine N-cadherin and
fibronectin levels. However, unlike 3T3 or 293T cells, PANC-1
did not express any detectable levels of N-cadherin and
fibronectin. Interestingly, knockdown (KD) of SCK in
Panc1 cells decreased CD95-mediated upregulation of
vimentin and E-cadherin protein levels, yet a mild induction
of vimentin is still detectable (Supplementary Figure 4).
Altogether, these data suggest that surface expression of
CD95 could be used to isolate highly metastatic CSCs from
the tumour’s primary material for further screening of
anticancer drugs.

The CD95/CD95L system has a crucial role in tumour
growth and metastasis of human PDAC-CSCs
in vivo. We next examined CD95 expression in a TMA-
containing samples from primary PDAC tumours, lymph node
metastasis and liver metastasis. Analysis of the array
revealed a gradual increase of cells expressing CD95 from
the primary tumour (13.2%) to the metastatic lesions in the
lymph node (26.3%) and liver (44.5%), suggesting that CD95
has a role during PDAC metastatic progression (Figure 4a).
To translate these findings into a treatment regimen, a

CD95-Fc fusion protein24 was used to block endogenous
CD95L–CD95 interaction. PanD24 cells were injected into the
pancreas head of Fox Chase SCID Beige mice. Three and
seven days after the orthotopic injection, mice were intra-
venously treated with either CD95-Fc or NaCl and monitored
until the establishment of palpable tumours 105 days later.

At this time point, tumours were bigger in the saline- than in the
CD95-Fc-treated group (Figure 4b). Additionally, only one
mouse in the saline-treated group and none in the CD95-Fc-
treated group exhibited macroscopically visible liver metas-
tasis (Figure 4c).
To address the function of CD95 in metastatic tumour cells,

we used the Panc02 syngeneic mouse model. C57BL/6 mice
were treated 3 and 7 days after orthotopic injection of Panc02
cells (containing 93% of CD95-positive cells, data not shown)
with CD95-Fc and killed 21 days later. Animals treated with
CD95-Fc showed reduced tumour volumes compared with the
saline-treated ones (Figures 4d and g). Furthermore, treat-
ment with CD95-Fc reduced the incidence of liver metastasis
and the size of metastatic tumours as compared with
untreated animals (Figures 4e and f). Taken together, our
findings demonstrate that the protumourigenic effects of
the CD95/CD95L system can be overcome by blocking
endogenous CD95L.

CD95 activates PI3K and MAPK/ERK pathway via Sck.
PanD3 and PanD24 clones are resistant to CD95-induced
apoptosis, even at high doses of CD95L-T4,11 a recombinant
trimerized CD95L (Supplementary Figure 1). In previous
reports, we have unravelled the promigratory/invasive
molecular underpinnings of CD95 signalling both in
pathological11,16 and physiological15 scenarios. As pharma-
cological inhibition of CD95 affects both metastasis and
proliferation in vivo, we examined the molecular mechanism
leading to the latter phenomenon. Stimulation of PanD24
cells with CD95L-T4 induced both AKT and ERK phosphor-
ylation and led to inhibition of GSK3β as evidenced by Ser9
phosphorylation (Figure 5a and Supplementary Figures 2
and 3). Along this line, we further examined the activation of
the AKT/GSK3β and ERK pathway in an established
pancreatic cell line (PANC-1), which expresses CD95 (48%)
and is known to be resistant to CD95-induced apoptosis
(Supplementary Figure 1).25 We observed a similar effect in
this established cell line, indicating a conserved mechanism
(Figure 5b and Supplementary Figures 2 and 3). Activation of
the AKT/GSK3β and ERK pathway exhibited a concen-
tration- and time-dependent bell-shaped response that has
been previously shown in glioma cells11 and discussed
elsewhere.12

We further explored the upstream events of CD95 signal
transduction to find a convergent point of PI3K and MAPK
pathway regulation. First, the role of DISC components was
addressed via KD of FADD, the only known adaptor for death
effector domain-containing proteins such as caspase-8.
Caspase-8 was recently shown to interact with p85 subunit
of PI3K.26 FADD removal, however, did not lead to the

Figure 2 CD95 expression is associated with an EMT signature. (a) CD95 expression in tumour samples from pancreatic cancer patients grouped by subtype (classical PDA,
n= 11; exocrine-like PDA, n= 14; QM-PDA, n= 11) (*Po0.05, **Po0.01, Wilcoxon's rank-sum test). (b) GSEA. Horizontal axis represents ranking of genes according to their
differential expression between CD95high and CD95low samples as shown in (c). Black bars on the lower part of the plot represent genes from EMT transition gene signature
(ES= 0.5031388, P-value o1e10− 3). (c) Empirical Bayes moderated t-statistics of differential expression between groups of CD95 expression high and low. Known EMT
(ZEB2, VIM, TGFB1 and SNAI2) and differentiation (DSP, OCLN and CDH1) genes are highlighted. CD95 is also highlighted scoring the highest in the ranking. (d) CD95
expression in PDAC-CSC lines derived from four patients (A–D) as measured by flow cytometry. (e) mRNA expression analysis of EMTand pancreatic differentiation markers
from PDAC-CSC lines derived from Patients A–D. CD95-positive and -negative cells were FACS (fluorescence-activated cell sorting) sorted and mRNA was extracted for
quantitative PCR (qPCR) analysis
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impairment of PI3K or MAPK pathways, but rather resulted in
their slight acceleration as phosphorylation of ERK and AKT
appeared at earlier time points than in cells transfected with

non-targeting siRNA (Supplementary Figure 3). After exclud-
ing the role of DISC components, we decided to focus on
K-Ras, a guanine exchange factor frequently mutated in
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Figure 4 Blocking of CD95L reduces tumour size and metastasis of PDAC. (a) Semiquantitative analysis of CD95 immunostaining in TMA containing PDAC samples, and
lymph node and liver metastases from different primary PDAC tumours. (b) Mice were orthotopically transplanted with PanD24 cells and at days 3 and 7 after transplantation
animals were treated with 50 μg CD95-Fc i.p. After 105 days, mice were killed and tumour volumes were assessed with a caliper. Treatment with CD95-Fc (n= 4) clearly reduced
tumour volumes compared with the NaCl- (n= 4) treated control group (Wilcoxon's rank-sum test, P-value= 0.05714). (c) Picture of a liver from a control mouse with
macroscopic liver metastasis, indicated by white arrows (left side), and a representative picture of hematoxylin and eosin (H&E)-stained liver metastasis (right side). No metastatic
lesions were detected in the livers of mice treated with CD95-Fc. Asterisk denotes liver tissue. Scale bar: 20 μm. (d–g) Mice were orthotopically injected with Panc02 cells and at
days 3 and 7 after injection animals were treated with 50 μg CD95-Fc (n= 16) or NaCl (n= 14) intravenously. Three weeks later, mice were killed and tumour size (d) and liver
metastases (f) was assessed by bioluminescence imaging. (e) Percentage of animals with detectable liver metastases. (g) Representative bioluminescence pictures. Results are
expressed as mean±S.E.M.

Figure 3 Isolated primary PanD24 cell line exhibits EMT signature. (a) Representative images of PanD3-derived PDAC from two xenotransplants (xenografts 1 and 2) and
the original human tumour (patient). Representative pictures of hematoxylin and eosin (H&E)-stained and anti-CD95- and anti-CD95L-stained sections are presented. Scale bar:
50 μm. (b) Surface expression of CD95 in the primary PDAC-derived PanD3, D24 (measured at passage 2) measured by flow cytometry. (c) Cell surface expression of CD24
and CD44 measured via flow cytometry in two PDAC-CSC lines: PanD3 (passage 5) and PanD24 cells (passage 9). (d) Tumour sphere assay was performed with FACS
(fluorescence-activated cell sorting) sorted PDAC-CSC PanD24 cells (CD24+/CD44+ or CD24−/CD44−). Results are expressed as mean±S.D. (e) Relative mRNA levels of
EMT and pancreatic markers in PanD24 cells and normal human pancreas. Results are expressed as mean of biological duplicates± S.E.M.
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PDACs. As expected, the phosphorylation of ERK was
completely abolished upon K-Ras KD. Surprisingly, phosphor-
ylation of AKT was still present (Supplementary Figures 2
and 3). These results indicate that in pancreatic cancer cells
K-Ras has an important role in the activation of the MAPK/
ERK pathway but not in the initiation of the PI3K pathway.
The ITAM/ITIM-like motif surrounding Tyr291 of CD9512,27

offers an alternative-docking site for the allocation of SH2-
containing proteins. Thus, we sought for the identification of
novel CD95 interaction partners by using a proteomic
screening approach. After incubation of CD95L-stimulated
cell lysates of PANC-1 and PanD3 cells with SH2 domain
protein arrays, showed the spots corresponding to the SH2
domain of Shc2/Sck demonstrated the strongest CD95
binding (Figure 5c and Supplementary Figure 2). Sck is a

well-known adaptor molecule binding to receptor tyrosine
kinases via its SH2 domain. The association of Sck with CD95
in unstimulated and CD95L-treated Panc1 and PanD24 cells
was confirmed by immunoprecipitation of CD95 and expres-
sion analysis of Sck by western blot (Figure 5d). To confirm the
involvement of Sck in CD95 signalling, we performed KD
experiments. The KD efficiency was confirmed by qPCR
(Supplementary Figure 2). Under those conditions, CD95-
dependent phosphorylation of both AKT and ERK was
abolished in PanD24 and PANC-1 cells (Figures 5e and f
and Supplementary Figure 3).

CD95 stimulation leads to cell cycle progression and
induces migration in a Sck-dependent manner. AKT and
ERK signalling have previously been indicated as mediators
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of proliferation in cancer cells. Therefore, we aimed to
investigate whether CD95 activation would increase the
proliferation of pancreatic cancer cells. PANC-1 cells were
treated with CD95L-T4 and ethynyl deoxyuridine (EdU), a
thymidine analogue. EdU incorporation reflects DNA replica-
tion. Cells treated with 20 ng/ml of CD95L-T4 contained a
higher fraction of EdU-positive cells as compared with the
untreated sample (Figure 6a), thus confirming accelerated
entry into the S phase. To further prove the function of Sck,
we performed Sck-KD in PANC-1 cells to see whether Sck
has an impact on CD95-induced migration. Interestingly,
Sck KD suppressed CD95-dependent migration of tumour
cells in vitro (Figure 6b). These data indicate that Sck serves
as a functional link between CD95 and PI3K/MAPK pathways
in PDAC. Taken together, we demonstrated that CD95
activation leads to cell cycle progression through the
recruitment of Sck, which is indispensable for CD95-
dependent migration/metastasis formation (Figure 6c).

Discussion

In this study, we show that CD95 expression strongly
correlates with stemness and EMT and demonstrates that

CD95 drives migration and proliferation in PDACs. Moreover,
blocking the receptor in vivo decreases tumour growth and
metastasis. We also identified an adaptor protein, Sck, as an
indispensable component of the signalling pathway involving
PI3K and MAPK activation that drives this process.
CD95 was initially described as an inducer of apoptosis and

thus considered to be a tumour suppressor. However, recent
studies in animal models of cancer substantiate the notion
of CD95 as a protumourigenic signal.28 In this work, we
assessed the role of CD95 in PDAC growth/metastasis in vivo.
Animals injected with a murine PDAC cell line rapidly
developed tumours as well as liver metastases. Most
importantly, both tumour and metastases formation were
successfully halted by blocking CD95L with CD95-Fc. This
model has an advantage of using animals with functional
immune system, as inflammation is an important factor in
pancreatic cancer progression.29 Moreover, these findings
were reproduced in a xenograft model. PanD24 cells exhibited
an EMT signature despite the fact that no metastases were
detected at the time of patient’s surgery. Thus, this cell subset
might have already possessed invasive potential as the EMT
programme was shown to be induced in highly metastatic
pancreatic cells selected in vivo.22 In addition, it was recently
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demonstrated that a subset of pancreatic cells undergoes
EMT, enters the bloodstream and seeds the liver before PDAC
fully develops,7 which might explain the detection delay of the
patient’s metastasis. The relevance of CD95 expression for
detection of EMT is further supported by the fact that CD95-
positive cells within a tumour exhibit a higher concomitant
expression of epithelial and mesenchymal transcripts as
compared with CD95-negative tumour cells. Based on the
findings of Mani et al.,6 we can conclude that the presence of
EMT markers in PanD24 also indicates their stemness.
The ‘hunt’ for CSCmarkers to isolate and characterize these

cells promises a deeper understanding of their biology.
However, these markers do not serve as therapeutical
targets.30 Here, we show that CD95 expression in pancreatic
cancer correlates with stemness, and therefore CD95 might
also be considered as a CSC marker. More importantly, this
receptor serves as a potential therapeutic target as CSC ability
to self-renew and metastasize is impaired after treatment with
CD95-Fc.
Although CSCs and EMT cells share common features,

several recent studies report that CSCs/TICs are highly
proliferative,31 which contradicts the classical interpretation
of cells that underwent EMT. However, development of more
sophisticated high-throughput techniques has revealed
marked heterogeneity within tumours on genetic as well as
transcriptional level.32 Hence, it is plausible to believe that a
similar heterogeneity exists among tumour-derived mesench-
ymal cells. Along these lines, a recent study of circulating
breast tumour cells observed the appearance of multicellular
tumour-derived clusters expressing mesenchymal markers.33

The authors speculate that these clusters could, similarly to
the PanD24 cells, result from the proliferation of single tumour-
derived mesenchymal cells.
On the molecular level, we dissected the signalling events

involved in AKT-dependent cell cycle progression, albeit
without excluding the role of MAPKs. We have also elucidated
a novel component and properties of PI3K kinase activation
complex (PAC).11,15,16 Tyr291 present in CD95 death domain
has been shown to undergo phosphorylation upon receptor
activation via number of the SKFs.11,27 In addition, caspase-8
also contains a similar SH2-binding motif (YXXM), and
caspases were found to activate MEKK-1 (MAPK/ERK kinase
kinase 1) via proteolytic cleavage.34 However, as FADD KD
affects neither AKT nor ERK phosphorylation, DISC compo-
nents (i.e. FADD and caspase-8) appear to be dispensable for
PAC formation. Those results stand in accordance with the
observations made for lprcg mice, carrying spontaneous CD95
mutation (I225N) that prevents both FADD binding and
induction of apoptosis.35 This mutation should not affect the
ITAM-like motif of CD95, thus still allowing PAC formation.
Partial hepatectomy leads to liver regeneration in lprcg mice in
contrast to lpr mice (that do not express CD95 on the cell
surface).36 Moreover, lprcg mice develop liver tumours when
transplanted with wild-type bone marrow. Taken together,
those results suggest that tumour-promoting/proliferative
potential of CD95 is not dependent on the DISC formation.
The performed SH2 array uncovered Sck/Shc2 as a novel PAC
member and signal transducer in PDAC. Interestingly, it was
reported that blocking Shc/Grb2 interaction suppressed the
growth of B104-1-1 tumours xenografted in nude mice,37

showing that cancer treatment might also target the adapter
proteins.
The treatment of PanD24-transplanted animals with CD95-

Fc resulted in decreased tumour growth strengthening the
conclusions derived from murine tumour treatment. CD95-Fc
is already in the phase II of clinical trial for GBM treatment, in
which the combination of a drug with radiotherapy was
compared with stand-alone radiotherapy.38 Strikingly, the
study objective of increasing the percentage of patients
reaching the 6-month rate of progression-free survival by
100% in the CD95-Fc group was substantially exceeded. The
findings presented in this manuscript open the possibility to
extend such treatment to pancreatic cancer patients. In
addition, we identify a specific conductor of CD95-elicited
tumourigenic signal, namely Sck that could serve as additional
therapeutic target.

Materials and Methods
Analysis of microarray data. Microarray data set GSE15471 from GEO
database39 consists of 39 pairs of surrounding and tumour tissue samples from
pancreas of 36 pancreatic cancer patients (there are technical replicates for three of
the pairs). Raw data were normalized by the RMA method with the Bioconductor
package affy in R.40 Technical replicates were removed. Probe sets corresponding
to FAS (CD95) were mapped to Symbols using the version 2.6.3 of the
Bioconductor package hgu133plus2.db. In each array, they were summarized taking
the maximum value.
Statistical significance of the difference in CD95 expression between matched

tumour and non-tumour samples was assessed with paired Wilcoxon's signed-rank
test. Differences in CD95 expression between pancreas cancer subtypes were
assessed by doing all pairwise comparisons with Wilcoxon's rank-sum test and
correcting for multiple testing with the Holm method. Both analyses were
performed in R.
GSEA was as described in Mootha et al.19 and Subramanian et al.20 Probe sets

were preranked according to the differential expression between CD95 High (33% of
samples with highest CD95 expression) and CD95 Low (33% of samples with lowest
CD95 expression) tumour samples using empirical Bayes moderated t-statistics41

computed with the limma package42 from Bioconductor (‘R package’ UCR, Institute
for integrative genome biology, Riverside, CA, USA). Probeset values were
summarized in a per gene basis mapping to Symbols using the version 2.6.3 of
the Bioconductor package hgu133plus2.db and taking the most significant per gene.
We used the ‘EMT transition gene signature’ from Anastassiou et al.21 The

‘intestinal stem cell gene signature’ was generated by inclusion of the human
homologues from the intestinal ‘mRNA stem cell signature’ published in the
Supplementary Table S3 from Munoz et al.43 using the Biomart tool (Ensembl v.69;
Flicek et al.44).

Primary cell lines. To PDAC cultures from Patients A–D (Supplementary
Table S1), tumours were cut into pieces of 1–2 mm3 and implanted onto the
pancreatic body of NOD.Cg-Prkdcscid Il2rgtm1Wjl (NSG) mice. Primary xenografts
were resected after attaining a volume of ~ 1 cm3. Tumour pieces were dissociated
into single cells by incubation with 1 μg/ml collagenase IV (Sigma, St. Louis, MO,
USA) for 2 h at 37 °C. The resulting suspension was filtered through a 100 μm mesh
and cell debris and dead cells were removed by density centrifugation (FiColl Paque
Plus; Amersham, Glattbrugg, Switzerland). For establishing cultures, 5 × 106 cells
were seeded into T75 flasks in serum-free medium as described earlier.45 Adherent
monolayer cultures were maintained at 37 °C and 5% CO2. After outgrowth of
tumour cells, contaminating fibroblasts were removed by differential trypsinization.
All human tissue samples were obtained with written informed consent under
protocols approved by the review board of the Medical Faculty of the University of
Heidelberg (Heidelberg, Germany).
The lines PancD3 and PanD24 were isolated from tumour samples after resection

of the PDAC at the Department of General, Visceral and Transplantation Surgery,
University of Heidelberg. The study was conducted in accordance with the
Declaration of Helsinki. The specimen collection was approved by the ethical
committee of the University of Heidelberg (votes 301/2001 and 159/2002) and
informed consent was obtained from the patients. The human primary PDAC-CSCs
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were cultured in DMEM, 50% F12 supplement, 2% B27 supplement (Invitrogen,
Life Technologies GmbH, Darmstadt, Germany), 0.5 μg/ml insulin, 2 nM progester-
one, 10 μM putrescine, 3 nM selenium dioxide, 0.1 mg/ml bovine apo-transferrin (all
from Sigma-Aldrich, St. Louis, MO, USA), 1% Pen/Strep, 20 ng/ml bFGF (ReliaTech,
Wolfenbüttel, Germany) and 20 ng/ml EGF (Promocell, Heidelberg, Germany).

Orthotopic injection into the pancreas. Eight-to-ten-week-old female
C57Bl6A or SCID beige mice were used for orthotopic implantation of Panc02
(1 × 104 cells) or CSC (2.5 × 105 cells), respectively. Panc02 cells were stably
infected with a luciferase containing lentiviral vector. Saline or CD95-Fc (50 μg)
were applied i.p. 3 and 7 days after transplantation. All animal experiments were
performed in accordance with institutional guidelines of the DKFZ and approved by
the Regierungspräsidium Karlsruhe.

TMA analysis. TMA were prepared from formalin-fixed, paraffin-embedded
donor blocks. Core tissue biopsy specimens (diameter 1.5 mm) from representative
tumour areas and tissue biopsy specimens of nonneoplastic pancreatic parenchyma
were taken. For quality control, sections were reviewed and approved by two
pathologists (FB and WW). TMA from Figure 1c contained 20 PDAC samples
derived from 10 different patients. CD95 staining was scored semiquantitatively from
0 to 3. Scores for the number of cells and intensity of staining were differentially
assessed. TMA from Figure 4a comprised 37 different PDAC samples, 17 lymph
nodes and 10 liver metastases from different primary PDAC tumours metastases.
CD95 staining was performed using α-APG101 antibodies (Apogenix GmbH,
Heidelberg, Germany) and subsequently scored semiquantitatively by two of the
authors, from 1 to 3 taking into account the number of cells and intensity of staining
in a blinded manner. Results were averaged and grouped in CD95 low (o1) and
high (≥1) samples.

Immunohistochemistry staining. Immunohistochemistry staining of
paraffin-embedded pancreatic tumour sections was performed as described
previously11 using the following antibodies: CD95 (α-APG101; Apogenix GmbH),
CD95L (CD95L; ab15285; Abcam, Cambridge, UK).
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