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Retinitis pigmentosa is a group of hereditary retinal dystrophies that normally result in photoreceptor cell death and vision loss
both in animal models and in affected patients. The rd10 mouse, which carries a missense mutation in the Pde6b gene, has been
used to characterize the underlying pathophysiology and develop therapies for this devastating and incurable disease. Here we
show that increased photoreceptor cell death in the rd10 mouse retina is associated with calcium overload and calpain activation,
both of which are observed before the appearance of signs of cell degeneration. These changes are accompanied by an increase in
the activity of the lysosomal protease cathepsin B in the cytoplasm of photoreceptor cells, and a reduced colocalization of
cathepsin B with lysosomal markers, suggesting that lysosomal membrane permeabilization occurs before the peak of cell death.
Moreover, expression of the autophagosomal marker LC3-II (lipidated form of LC3) is reduced and autophagy flux is blocked in
rd10 retinas before the onset of photoreceptor cell death. Interestingly, we found that cell death is increased by the induction of
autophagy with rapamycin and inhibited by calpain and cathepsin inhibitors, both ex vivo and in vivo. Taken together, these data
suggest that calpain-mediated lysosomal membrane permeabilization underlies the lysosomal dysfunction and downregulation of
autophagy associated with photoreceptor cell death.
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Autophagy is a cellular self-degradative pathway that
mediates the recycling of damaged or disposable cell
components and is activated in situations of nutritional,
oxidative and other forms of stress.1 This process begins with
the formation of the autophagosome, an intracellular double-
membrane organelle that surrounds parts of the cytoplasm
containing organelles and protein aggregates. Autophago-
somes subsequently fuse with lysosomes to initiate the
degradation of the engulfed cellular components. Autophagy
dysfunction has been implicated in many pathological condi-
tions including infections, cancer and muscular and degen-
erative diseases.2 In the nervous system, autophagy has a key
role in preventing intracellular accumulation of misfolded
and/or aggregated proteins, and its pharmacological
upregulation through the administration of rapamycin and
other drugs exerts protective effects against a wide range of
proteinopathies.3 Moreover, defects in different stages of the
autophagy pathway, including autophagosome formation,
cargo recognition and lysosomal fusion and degradation,
have been often implicated in neurodegeneration.4

In addition to their degradative role, lysosomes are
emerging as key regulators of cellular homeostasis, acting
as nutritional sensors or actively participating in cell death.5–7

Lysosomal alterations including increases in lysosomal pH
and lysosomal membrane permeabilization (LMP) have been

demonstrated in Alzheimer's and Parkinson’s diseases,8,9 and
mutations in lysosomal enzymes cause defects in autophagy,
inducing a marked neurodegenerative phenotype in patients
with lysosomal storage disorders.10 LMP induces the selective
translocation of cathepsins to the cytoplasm, triggering
caspase-dependent and -independent cell death.11–13 LMP
has been implicated in mammary gland involution in physio-
logical conditions,14 indicating that lysosomal-mediated cell
death is not merely a consequence of accidental lysosomal
damage. As in vivo administration of cathepsin inhibitors
attenuates cell death in this model, a similar approach could
hold therapeutic potential for the treatment of diseases
associated with LMP, including Parkinson's disease, Nie-
mann–Pick disease type A and stroke.7,10,15 Oxidative stress
and calpain activation are some of the many stimuli that can
induce LMP, and have been observed both in vitro and in vivo.7

Several pathological processes in the nervous system
associated with cell death, including excitotoxicity and
ischaemia–reperfusion, have been linked to increased calpain
activation.16 Calpains have also been shown to cleave many
intracellular substrates including autophagy and lysosomal
proteins,17,18 suggesting links between calcium levels, calpain
activation, lysosomal damage and autophagy blockade.
Recent findings have begun to shed light on the role of

autophagy in the retina. We previously reported decreased
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autophagy flux in the retinas of aged mice,19 and demon-
strated photoreceptor cell death and decreased dim-light
vision in the neuronal-specific Atg5-deficient mouse, a
phenotype that closely resembles that observed during
physiological aging.19 We have also demonstrated the
essential cytoprotective role of autophagy in vivo in response
to retinal ganglion cell damage in experimental models of
glaucoma.20 A recent study described lysosomal basification
and decreased autophagic flux in travecular meshwork cells in
response to chronic oxidative stress, with important implica-
tions for the pathogenesis of glaucoma.21 Furthermore,
specific Atg5 deletion in pigment epithelium leads to reduced
levels of visual pigments and vision alterations,22 indicating
that autophagy has an important role in sustaining retinal
pigment epithelium function.
Retinitis pigmentosa is a large group of genetic disorders

that normally involves photoreceptor cell death and leads to
vision loss in both animal models and affected patients. To
date, no treatment for this devastating disease has been
developed to clinic. The study of animal models is thus
essential to unravel the mechanisms of photoreceptor
degeneration involved in these disorders and to identify
therapeutic targets. The rd10 mouse, which harbours a
mutation in the rod-specific phosphodiesterase gene Pde6b,
is a suitable model of human retinitis pigmentosa.23,24 This
mutation results in reduced enzymatic function leading to
increased cGMP and rod cell death, peaking around postnatal
day 25 (P25), with only residual vision remaining after
P30.24,25 Here we show that rd10 mice exhibit massive
intracellular calcium accumulation and m-calpain (calpain-2)
activation at early ages, before the peak of photoreceptor cell
death, that correlate with the blockade of autophagic flux.
Moreover, we demonstrate an increase in cathepsin B activity
in the cytoplasm of rd10 photoreceptors that correlates with
the activation of DNAse II-dependent cell death. Induced
calcium overload in wild-type (Wt) retinal explants phenoco-
pies the degenerative features seen in rd10 retinas: lysosomal
damage, cathepsin translocation and cell death. Finally, we
show that calpain and cathepsin inhibitors attenuate cell death
both in vitro, ex vivo and in vivo. Taken together, these data
suggest that calpain-mediated LMP underlies the lysosomal
dysfunction and downregulation of autophagy associated with
photoreceptor cell death.

Results

Autophagy blockade is observed in rd10 retinas before
the onset of other neurodegenerative features. Cell death
peaks in the rd10 mouse around P25.24,25 As autophagy is
one of the major intracellular stress responses, we analysed
the lipidation of the autophagosomal marker LC3 in Wt and
rd10 retinas at different stages. Days before the peak of cell
death, at P20, levels of the lipidated form of LC3 (LC3-II) were
decreased in rd10 versus Wt mice, whereas those of the
autophagy substrate p62 were increased (Figure 1a). These
alterations were also detected at later stages (P30 and P60),
suggesting that autophagy is blocked in rd10 retinas before
and during the degenerative process. Moreover, this auto-
phagy blockade was correlated with marked activation of

mTOR, as evidenced by an increase in the phosphorylation of
its substrate P-S6. We next investigated whether the reduced
lipidation of LC3 resulted in alterations in autophagy flux in
rd10 retinas. Retinal explants were incubated in the absence
or presence of lysosomal protease inhibitors (Figure 1b).
A reduction in autophagy flux in rd10 versus Wt retinas was
already evident at P16. Interestingly, these differences in
autophagy flux were greater at early time points, well before
the onset of cell death, suggesting that photoreceptors are
the main cells contributing to autophagy in the retina. We next
explored the expression of GFP-LC3 levels in the retina of
rd10-GFP-LC3 animals by fluorescence analysis (Figure 1c).
At P25, levels of LC3 were reduced in the photoreceptor cell
layer in rd10 versus Wt mice. Interestingly, Ambra1, an
essential regulator of autophagy, was completely absent from
the photoreceptor layer in rd10 retinas (Figure 1c and
Supplementary Figure 1). Taken together, these data
describe several alterations in the autophagy pathway in
rd10 retinas before the appearance of signs of degeneration,
such as photoreceptor cell death.

Rd10 retinas exhibit calcium accumulation and increased
calpain activation in the early stages of the degenerative
process. Mutations in the gene encoding the rod-specific
phosphodiesterase PDE6B in the rd1 mouse have been
associated with oxidative stress and abnormal calcium
accumulation.26 We performed a time-course analysis of
both processes in rd10 retinas using flow cytometry. Retinas
from Wt and rd10 mice were dissociated and incubated with
Fluo-3 and dihydroethidium (DHE) to evaluate intracellular
calcium levels and oxidative stress, respectively. At P18,
rd10 retinas already displayed increased calcium levels as
compared with the corresponding controls (Figure 2a),
whereas increases in oxidative stress were first significant
at P23 (Figure 2b). At P25, increases in 8-hydroxydeox-
yguanosine, a modified base produced after DNA is attacked
by reactive oxygen species, were detected in rd10 retinas,
accompanied by the presence of nitrosylated proteins
(Figure 2c and Supplementary Figure 2), confirming the
presence of oxidative damage in the later stages of retinal
degeneration. As early as P15, rd10 retinas also showed
signs of ER stress, as evidenced by increased levels of
phosphorylated eIF2α and the glucose-regulated protein-78
(GRP78) (Figure 2d), and calpain activation (Figure 2e).
These findings indicate that calcium accumulation, ER stress
and calpain-2 activation are early features of rd10 retinal
degeneration, occurring well before the peak of photorecep-
tor cell death.

Cathepsin B activity is decreased in lysosomes and
increased in the cytoplasm of rd10 photoreceptors.
Calpain activation has been postulated to induce LMP,
translocation of cathepsin to the cytosol and cell death.6 To
explore whether the calpain activity detected in our system
could also lead to LMP, we used immunofluorescence to
localize cathepsin B and Lamp-1 in Wt and rd10 retinas at
P20, before the peak of photoreceptor cell death. In Wt
retinas, cathepsin B immunostaining frequently colocalized
with the lysosomal marker Lamp-1 (Figure 3a, white arrows).
By contrast, this pattern was observed less frequently in rd10
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retinas. We next analysed cathepsin B activity, as determined
using the fluorogenic substrate Magic Red, in Wt and rd10
retinal explants. Rd10 retinas exhibited high levels of
cathepsin B activity in photoreceptor cells, with a uniform
diffuse staining pattern throughout the cytoplasm, suggesting
cytosolic localization of the enzyme (Figure 3b and

Supplementary Figure 3). These observations suggest that
cathepsin B is translocated outside the lysosome, possibly
pointing to LMP in rd10 retinas. Further supporting this view,
we observed an increase in the activity of lysosomal enzyme
DNAse II (Figure 3c), which colocalized with terminal
deoxynucleotidyl transferase-mediated dUTP nick-end
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Figure 1 Autophagy and autophagic flux are reduced in rd10 retinas before the onset of neurodegeneration. (a) Immunoblot showing LC3, p62 and phosphorylated and total
S6 in retinal lysates from Wt and rd10 retinas at the indicated ages. (b) Analysis of LC3 lipidation as a measure of autophagic flux in Wt and rd10 retinas incubated for 3 h with
vehicle (Veh) or 20 mM ammonium chloride plus 100 μM leupeptin and leupeptine (N/L). β-Tubulin and GAPDH are used as loading controls. (c) Retinal cryosections from
GFP-LC3 and GFP-LC3/rd10 mice at P25 stained with Ambra1 (cyan) and DAPI to visualize the nuclei (blue). Scale bar, 45 μm. GCL, ganglion cell layer; INL, inner nuclear layer;
IPL, inner plexiform layer; ONL, outer nuclear layer; OPL, outer plexiform layer; OS, outer segment
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labelling (TUNEL)-stained apoptotic cells in some cells
(Figure 3d). Taken together, these data suggest that LMP in
rd10 retinas leads to an increase in the activity of lysosomal
enzymes that in turn induces photoreceptor cell death
(Figure 3c).

Calcium overload provokes LMP and cell death in Wt
retinal explants, an effect prevented by inhibitors of
lysosomal proteases and autophagy. Intracellular calcium
increases are observed in rd10 retinas before the appear-
ance of signs of degeneration. To experimentally induce
calcium overload, we treated Wt retinal explants with either
vehicle or the calcium ionophore A23187 and assessed the
effects on autophagy. Calcium ionophore treatment for 3 h
increased intracellular calcium to a similar concentration to
that seen in rd10 in vivo retinas (Figures 4a and b), and after
6 h increased the levels of oxidative stress (Figures 4c and d)
and triggered photoreceptor cell death (Figures 4e and f).
Interestingly, A23187 treatment also inhibited autophagy flux,

as evidenced by the lack of LC3-II accumulation in retinas
treated with protease inhibitors (Figure 4g).
Furthermore, A23187 treatment promoted the translocation

of cathepsin B from lysosomes to the cytosol, as revealed by
the decreased staining of cathepsin and the change in
the pattern of Magic Red staining from discrete puncta
(lysosomal) in vehicle-treated retinas to diffuse staining
throughout the whole cell in the treated retinas
(Supplementary Figures 4A and B). These data indicate that
incubation of retinal explants with the calcium ionophore
increases cytoplasmic calcium levels, attenuates autophagy
flux and triggers LMP and cell death, thus recapitulating key
events that occur in the degenerating rd10 retina.
As our data demonstrate that cathepsin translocation after

LMP induces photoreceptor cell death in the rd10 retinas, we
next treated retinal explants with A23187 in the presence or
absence of cathepsin and calpain inhibitors. The marked
increase in the number of TUNEL-positive cells observed after
A23187 treatment of Wt retinal explants was largely prevented
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in the presence of cathepsin and calpain inhibitors (Figures 5a
and b). These findings support the view that LMP induced an
increased cytosolic calcium level, and leads to cathepsin-
dependent cell death of photoreceptor cells. We next
investigated whether autophagy modulation affected photo-
receptor cell death induced by calcium overload. We treated
retinal explants with A23187 in the absence or presence of
rapamycin or wortmannin to induce and inhibit autophagy,
respectively. Strikingly, rapamycin enhanced A23187-induced
cell death, an effect that was blocked in the presence of
protease inhibitors (Figures 5c and d). Conversely, autophagy
blockade with wortmannin attenuated A23187-induced cell
death (Figures 5c and e). In conclusion, calcium overload in
Wt retinal explants phenocopies the degenerative features

seen in rd10 retinas (lysosomal damage, cathepsin transloca-
tion and cell death), suggesting that, in a situation of
autophagy impairment, cell death is ameliorated by the
attenuation of autophagy activity, and exacerbated by autop-
hagy stimulation.

Cathepsin inhibitors attenuate retinal degeneration in
rd10 mice in vivo. Having determined the possible course of
retinal degeneration, both in vivo and experimentally, we
next investigated the effect of calpain and cathepsin inhibitors
on cell death and photoreceptor cell loss in rd10 mice.
Intravitreal administration of cathepsin and protease
inhibitors in rd10 mice significantly attenuated photoreceptor
cell death (Figure 6a). We next explored whether rapamycin
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was able to induce autophagy activity in ex vivo Wt retinas
subjected to calcium overload. Indeed, autophagy was
activated as determined increase levels of LC3-II and further
increase in the presence of lysosomal inhibitors. More
importantly, a similar effect was observed in the rd10 retinas,
indicating that rapamycin is able to unregulate autophagic
flux in rd10 retinas ex vivo (Figure 6b). As observed after the
induction of calcium overload in Wt mice, intraperitoneal
rapamycin treatment exacerbated cell death in rd10 mice
(Figure 6c). Interestingly, in vivo rapamycin treatment
increased the levels of calpain-2 (Figure 6d), supporting the
view that upregulation of autophagy in vivo is detrimental
when lysosomal function is impaired. To further support these
data and to rule out the possibility that the inhibition of other
prosurvival activities of mTOR by rapamycin, rather than the
induction of autophagy, is responsible for the increased rate
of cell death, we performed experiments with trehalose, an
mTOR-independent inducer of autophagy.27 As it is shown in
Supplementary Figure 5, trehalose slightly increased the
number of TUNEL-positive cells in the rd10 retinas and
significantly increased the percentage of reduction of the
outer nuclear layer thickness. Taken together, these data

indicate that calcium overload in rd10 retinas induces calpain
activation, LMP and cell death, and point to autophagy
downregulation as a promising new therapeutic strategy to
delay the degenerative process in retinits pigmentosa
patients.

Discussion

In the present study, we demonstrate that calcium overload,
both induced experimentally in Wt retinas or occurring
pathophysiologically in rd10 mouse retinas, triggers calpain
activation, resulting in permeabilization of the lysosomal
membrane and consequent photoreceptor cell death. In both
models cell death is attenuated by inhibition of calpain or
cathepsin activity. Furthermore, we demonstrate that rd10
retinas show reduced lipidation of the autophagosomal marker
LC3-II, lower levels of autophagy regulators and a marked
reduction in autophagy flux. Interestingly, we found that
stimulation of autophagy with rapamycin both ex vivo
and in vivo increased cell death, while downregulation of
autophagy rescued photoreceptor cell death.
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An extensive literature supports a link between altered
calcium signalling and neuronal death. In particular, exces-
sively high glutamate levels in synaptic terminals leads to
calcium overload, which contributes to death during brain
aging and in many neurodegenerative conditions.28 In the rd1
model of retinitis pigmentosa, abnormal calcium accumulation

in photoreceptor cells has been linked to cell death indepen-
dently of cGMP levels.29 Several studies have also implicated
intracellular calcium in autophagy regulation,30 and the
differing outcomes described suggest that calcium-
dependent autophagy regulation may be both cell- and
context-dependent.31 Some reports indicate autophagy
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activation after calcium overload, while others have described
autophagy blockade before autophagosome closure in
response to thapsigargin or the calcium ionophore
A23187.32,33 We found that the levels of lipidated LC3 were
reduced in vivo both in rd10 retinas and in A23817-treated Wt
retinas. Moreover, we observed a clear reduction in autophagy
flux in both cases, suggesting impairment in the correct
flow of autophagosome formation and degradation. Several
studies indicate that calpain activation after calcium
overload attenuates autophagy by cleaving specific auto-
phagy regulators.17,34 We found that calpain activation was
increased in rd10 retinas as early as P15. In line with these
findings, reduced LC3-II levels and increased calpain activa-
tion have also been described in N-methyl-N-nitrosourea
(MNU)-induced photoreceptor cell death, another experimen-
tal mouse model of human retinitis pigmentosa.35 Interest-
ingly, in that model and in a model of photoreceptor cell death
after retinal detachment,36 cell death is prevented by calpain
inhibition in vivo.
The autophagy regulator Ambra1 was recently proposed as

a substrate for calpains in certain conditions.37 In line with this
view, we observed a marked reduction in Ambra1 levels in
rd10mouse retinas, suggesting that the protein is degraded by
the activated calpains. While the activation of calpain-2 (also
known as m-calpain) requires millimolar calcium concentra-
tions, calpain-1 (μ-calpain) is activated by micromolar
concentrations.16 Our data indicate that treatment of Wt
retinas for 3 h with a calcium ionophore increases the
intracellular calcium concentration to a level comparable to
that seen in untreated rd10 retinas. Ionophore treatment
should equilibrate intra- and extracellular calcium levels, which
in our culture media are in the millimolar range. We thus
propose a selective role of calpain-2 in blocking autophagy flux
in rd10 retinas, similar to that described in a model of
ischaemia–reperfusion in the liver.38 However, we cannot rule
out the possibility that other autophagy regulators are
degraded by calpains, and thus contribute to the autophagy
blockade.
Lysosomal membrane stability is essential to avoid the

leakage of acidic hydrolases into the cytosol and decreases in
the intracellular pH that can trigger cell necrosis.13 However,
selective and partial membrane permeabilization often
releases certain proteases, such as cathepsin B and D, into
the cytoplasm. These enzymes, which are also active at
neutral pH, trigger a cascade of controlled (inhibitable) events
leading to caspase-dependent and -independent cell
death11,12 both in physiological and in pathological conditions.
For example, LMP-dependent cell death is associated with
mammary gland remodelling after weaning. In this model,
Stat3 downregulation attenuates both LMP and cell death.14

Although the molecular events that underlie LMP in the
mammary gland remain unclear, the activation of Stat3 and
calpain appears to have a prominent role.14,39 Interestingly,
Stat3 transcription is also upregulated and its phosphorylation
increased in the rd10 retina at P20,40 the time point at which
we observed LMP in the present study. Moreover, this
transcription factor is essential to determine photoreceptor
cell fate during retinal development41 and its cleavage has
been linked to calpain activation.42 Further experiments will

thus be required to determine the role of Stat3 in
LMP-dependent cell death in the retina.
There are multiple circumstances that can trigger LMP

and cell death. Lysosomal membranes are protected by
highly glycosylated proteins, which are highly susceptible
to local oxidative attack. Lysosomes accumulate iron due to
the continuous delivery of iron-containing proteins to the
organelle. This increase in iron levels in turn favours
the generation of the highly toxic hydroxyl radical through
the Haber–Weiss reaction.6 Several studies have demon-
strated that iron chelation can attenuate reduced LMP and
cell death in vitro.43,44 Although the metallocomplex zinc-
desferrioxamine ameliorates damage in the rd10 mouse
retina,45 it remains to be determined whether iron chelation
can attenuate lysosomal-dependent cell death in this model.
Another strategy proven to protect against lysosomal-

mediated cell death is overexpression of the chaperone
Hsp70.46 This chaperone stabilizes lysosomes by binding to
endolysosomal lipids, thus enhancing the activity of acid
sphingomyelinase, an important enzyme in sphingolipid
catabolism. Interestingly, Nieman–Pick disease is caused by
a mutation of this enzyme, and LMP precedes cell death and
autophagy blockade in a mouse model of this disease as well
as in fibroblasts from affected patients.10 Photoreceptor cell
death in an in vivo model of MNU toxicity is attenuated by
valproic acid-induced increases in Hsp70 expression. Inter-
estingly, in that samemodel, increased oxidative stress results
in Hsp70 carbonylation and its subsequent degradation by
calpain.47 It has been recently proposed that a similar
mechanism could contribute to the pathogenesis of other
neurodegenerative diseases, such as Alzheimer's disease.48

Calpain cleavage of other essential lysosomal proteins, such
as Lamp-2, has also been recently reported.49 It is thus
tempting to speculate that similar degradation of essential
lysosomal proteins could participate in lysosomal damage in
rd10 retinas.
The role of autophagy in photoreceptor cells is only

beginning to be understood. Recent reports have shown that
suppression of autophagy in vitro protects photoreceptor cells
from light-induced injury,50 and that calpain inhibition restores
autophagy after TNF-α-induced cell death.36 In our retinal
explant system, both in vitro and in vivo, we found that
wortmannin attenuated cell death induced by calcium over-
load, whereas rapamycin and trehalose increased photore-
ceptor cell death. These data indicate that autophagy is
detrimental in a system in which lysosomal function is
impaired. In agreement with our observations, several studies
have demonstrated that autophagy downregulation signifi-
cantly attenuates LMPand neuronal cell death after lysosomal
damage.4,51 Similar observations have been reported in a
model of cancer chemotherapy.52 Our observations may also
explain why autophagy downregulation exerts a protective
effect in many models of ischaemic injury that are also
associated with lysosomal alterations and LMP.53,54

As described in other models of retinitis pigmentosa,55 we
detected no caspase activation in rd10 retinas (data not
shown). It has been recently suggested that dying photo-
receptors in retinitis pigmentosa display features and kinetics
that differ from those of classical apoptosis and necrosis and
that may constitute a new type of cell death.56 In some
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degenerating photoreceptors in the rd10 retina, we detected
DNA breaks associated with the lysosomal DNAse II that did
not colocalize with the classical TUNEL-positive breaks.
Further studies will be required to determine whether the
lysosomal-induced cell death observed in this model repre-
sents a new, slower form of cell death.
In summary, we describe a sequence of events preceding

photoreceptor cell death in a mouse model of retinitis
pigmentosa that includes increased calcium levels, calpain
activation, lysosomal damage, translocation of cathepsins to
the cytosol. This lysosomal damage results in defects of
autophagy that may be aggravated by an early block in
autophagosome formation related to increased calpain
activity. The identification of this pathway in the rd10 retina
suggests that the calpain–cathepsin hypothesis, which has
been associated with several other neurodegenerative condi-
tions such as Alzheimer's disease and stroke, can also be
applied to retinitis pigmentosa, and points to the possibility of
common therapeutic strategies for these prevalent and
incurable diseases.

Materials and Methods
Animal procedures. All procedures were approved by the respective local
ethics committee for animal experimentation, and all experiments were carried out in
accordance with the European Union guidelines and the ARVO Statement for the
Use of Animals in Ophthalmic and Vision Research. Wt C57BL/6J mice and the
rd10 mouse model of retinal degeneration, also on a C57BL/6J background
and homozygous for the Pde6 mutation, were obtained from The Jackson
Laboratory (Bar Harbor, ME, USA). GFP-LC3 mice were kindly provided by Noboru
Mizushima (Deparment of Physiology and Cell Biology at Tokyo Medical and Dental
University, Tokyo, Japan).57 Both male and female mice were used for this study and
at least six animals per group were used. To avoid circadian variation in LC3
levels,58 rd10 and Wt retinas were always dissected at the same time of the day:
1000 hours. For intravitreal injections, rd10 mice at P23 were undefined with
isoflurane. By using a Hamilton syringe (Model 75 RN SYR) with 1-cm long
33- gauge removable needles, right eyes were intreavitreally injected with 1 μl of
80 μM ALLN or 1 μl of 400 μM leupeptin and 40 μg/ml pepstatin A, whereas the left
eyes received 1 μl of the vehicle (0.4% DMSO in phosphate-buffered saline (PBS)).
In vivo rapamycin treatments were performed as described previously20 every
2 days in mice from P13. For intravitreal trehalose treatments, P19 mice were
anesthetized with isoflurane, and right eyes were injected with 1 μl of 30 mM
trehalose in PBS, whereas the left eyes received 1 μl of 30 mM sucrose in PBS. At
the indicated ages, mice were killed and eyes fixed overnight with 4% PFA in 0.1 M
phosphate buffer at 4 °C. Then, retinas were extracted and cell death detection was
performed as described before.59

Immunostaining in retinal sections. Fixed eyes were washed with
PBS and then cornea and lens were dissected. Optic cups were dehydrated
with increasing sucrose concentrations (15–30% in PBS), embedded in
Tissue-Tek (Sakura, Leiden, The Netherlands) and cut in a cryostat (Leica
CM1850, Heerbrugg, Switzerland). Sections were then rehydrated, permeated with
0.5% Triton X-100 in PBS and incubated overnight at 4 °C with an antibody raised
against Ambra1 in BGT, 0.3% BSA, 100 mM glycine and 0.25% Triton X-100 in
PBS. Sections were then washed with PBS and incubated for 1 h with Alexa 546
(Invitrogen, Carlsbad, CA, USA), stained with DAPI (4',6-diamidino-2-phenylindole),
mounted in DABCO and visualized using confocal microscopy.

Neuroretina organotypic culture. After enucleation of the eyes, all
superfluous tissues were removed from the neuroretina, and then maintained in the
chemically defined R16 medium60 for the indicated times (between 1 and 24 h) at
37 °C in a 5% CO2 atmosphere. Where indicated, retinas were incubated with 5 μM
A23187, 10 μg/ml pepstatin A, 20 mM ammonium chloride (all from Sigma,
St. Louis, MO, USA), 20 μM ALLN, 100 μM leupeptin, 100 nM rapamycin or 100 nM
wortmannin (all from Calbiochem, Darmstadt, Germany). The retinas were then
washed two times with PBS and flat-mounted into nitrocellulose membranes, fixed

overnight in 4% paraformaldehyde (w/v) in 0.1 M phosphate buffer (pH 7.4) and
processed. Cathepsin B activity was measured in neuroretinas using the Magic Red
Cathepsin B Assay Kit (Immunochemistry Technologies, Bloomington, MN, USA)
following the manufacturer's instructions, and then fixed with 4% PFA for 1 h,
mounted into nitrocellulose filters, counterstained with DAPI and visualized by
confocal microscopy.

Detection of cell death. Programmed cell death was visualized by TUNEL.
Mice of the indicated genotype and age were killed, their eyes enucleated and the
retinas removed and flat-mounted into nitrocellulose filters (Sartorius, Goettingen,
Germany), with the photoreceptor layer facing up. Retinas were then fixed in 4%
(w/v) paraformaldehyde in 0.1 M phosphate buffer (pH 7.4) at 4 °C overnight,
permeated for 1 h at RT with 2% Triton X-100 (w/v; Fluka, St. Louis, MO, USA) in
PBS, incubated with 20 μg/ml proteinase K (Sigma) for 10 min at 37 °C and
subsequently processed for TUNEL staining following the manufacturer's
instructions (Promega). After labelling, retinas were mounted with DABCO 4%
(w/v; Sigma) and glycerol 70% (v/v) containing 1 μM DAPI and analysed on a
confocal laser microscope (TCS SP5; Leica Microsystems, Wetzlar, Germany).
Serial optical sections were acquired with a × 63 objective every 1 μm in four central
fields around the optic nerve, avoiding the optic nerve head and the peripheral area.
The ApopTag ISOL Dual Fluorescence Apoptosis Detection Kit (DNase Types I and
II) (Millipore) was used following the manufacturer's instructions.

Staining of whole-mount retinas. Immunostaining was performed over-
night at 4 °C using antibodies against Lamp-1 (Developmental Studies Hybridoma
Bank), cathepsin B (Chemicon), Ambra1 (Covalab), N-tyr proteins (Millipore) or
8-OH deoxyguanosine (Millipore) after initial permeabilization with 2% Triton X-100
for 1 h at RTand subsequent incubation with the blocking solution (10% normal goat
serum, 0.25% Triton X-100 in PBS). The retinas were then washed and incubated
for 1 h with Alexa 546 or 488 (Invitrogen), stained with DAPI, mounted in DABCO
and visualized using confocal microscopy.

Images obtained with a confocal microscope (TCS SP5; Leica Microsystems) as
described above were further analysed for fluorescence intensity using Fiji
software (Madison, WI, USA).61 After subtracting backgrounds, histograms and
mean intensities for CB, lamp1, N-tyr proteins or 8-OH deoxyguanosine, channels
were quantified throughout the ONL. Ratio between CB and lamp1 fluorescence was
calculated, and finally fluorescence means were statistically analysed with the
GraphPad Prism 5 sofware (La Jolla, CA, USA).

Flow cytometry of dissociated retinas. Retinas were dissociated
immediately after dissection, or after treatments, by incubating them in 1% (w/v)
trypsin (Worthington, Lakewood, NJ, USA) in R16-defined medium for 5 min at
37 °C. Then, the retinas were dissociated by carefully pipetting them 12 times, and
the enzyme activity was stopped by adding 10% FBS. The samples were then
centrifuged at 1000 r.p.m. for 5 min at 20 °C, the supernatant removed and the
dissociated tissue incubated with 1 μM Fluo-3AM (Invitrogen) to measure the
calcium levels or with 10 μM DHE (Invitrogen) to analyse ROS levels in R16
medium for 30 min at 37 °C with 5% CO2. Next, the dissociated retinas were
resuspended in 300 μl of medium and then analysed in an XL flow cytometer
(Beckman Coulter, Pasadena, CA, USA).

Western blot. Neuroretinas were lysed in a buffer containing 50 mM Tris-HCl
(pH 6.8), 10% glycerol (v/v), 2% SDS (w/v), 10 mM DTT and 0.005% bromophenol
blue. Fifteen micrograms of protein was resolved on 15% SDS-PAGE gel. The
proteins were then transferred to PVDF membranes (Bio-Rad, Hercules, CA, USA),
which were blocked for 1 h in PBS-Tween-20 (0.05% (v/v)) containing 5% non-fat
milk and then probed with antibodies against LC3 (Sigma), p62 (Enzo, Farmingdale,
NY, USA), P-S6, P-eIF2α and eIF2α (all from Cell Signaling, Danvers, MA, USA),
calpain-1 (Calbiochem), calpain-2 (Sigma), recoverin, calpastatin and Beclin1 (all
from Santa Cruz Biotechnology), tubulin (Sigma) or glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) (Abcam, Cambridge, MA, USA). The antibodies were
detected using the appropriate horseradish peroxidase-labelled secondary
antibodies (Pierce, Fife, WA, USA) and were visualized with the SuperSignal West
Pico chemiluminescent substrate (Pierce). Densitometric analysis was performed
with Quantity One software (Bio-Rad). When the protease inhibitors (N/L) were
used, retinas were cut in two halves; culturing one in contro medium and the other
one with a combination of 100 μM leupeptin (Thermo Fisher Scientific, Fife, WA,
USA) and 20 mM ammonium chloride (Sigma) for 3 h before protein extraction.
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Statistical analysis. Statistical analyses were performed with the GraphPad
Prism 5 software. For flow cytometry measurement comparison, two-way ANOVA
with Bonferroni posttest was used to compare Wt versus rd10 retinas. Student's
t-test was used to analyse the results from the retinal explants, applying the Welch’s
correction when variances were significantly different. Results from the intreavitreal
injections were analysed with the paired t-test, pairing each retina with its
contralateral retina. In all the experiments, differences were considered significant
when Po0.05.
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