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Role and therapeutic value of dendritic cells in central
nervous system autoimmunity
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Dendritic cells (DCs) are professional antigen-presenting cells that control the generation of adaptive immunity. Consequently, DCs
have a central role in the induction of protective immunity to pathogens and also in the pathogenic immune response responsible for
the development and progression of autoimmune disorders. Thus the study of the molecular pathways that control DC development
and function is likely to result in new strategies for the therapeutic manipulation of the immune response. In this review, we discuss
the role and therapeutic value of DCs in autoimmune diseases, with a special focus on multiple sclerosis.
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Facts

� Dendritic cells (DCs) control central and peripheral
tolerance through their effects on effector and regulatory
T cells.

� Specific signaling pathways regulate the ability of different
DC populations to promote effector and regulatory T-cell
responses.

� Abnormalities in DC numbers, recruitment and function
contribute to the pathology of multiple sclerosis (MS) and
can be partially overcome by the use of disease-modifying
therapies and the targeting of specific molecular pathways.

� Nanotechnology provides new tools for the modulation of
DC activity in vivo and the therapeutic induction of antigen-
specific tolerance in immune-mediated disorders.

Open Questions

� Although DC populations that promote the development of
forkhead box P3-positive (FoxP3þ ) regulatory T cells
(Tregs) have been identified, it is not yet clear whether
these populations constitute separate tolerogenic DC
lineages or represent alternative activation or maturation
states of other DC populations.

� What are the different molecular pathways that control the
DC’s ability to prime effector or tolerogenic T-cell responses?

� There is an unmet clinical need for the development of
methods for the efficient and consistent generation of
tolerogenic DCs in vitro and in vivo that can be implemented
in large-scale clinical setups.

Dendritic cells (DCs) are professional antigen-presenting
cells (APCs) that control the activation and polarization of
T cells into specific lineages and, consequently, the genera-
tion of antigen-specific antibody and T-cell responses.1 In the
context of an infectious challenge, the induction of pathogen-
specific immune responses provides protective immunity to
fight the infection. However, in the context of autoimmune
diseases DCs regulate the balance between pathogenic and
regulatory immune mechanisms, controlling disease onset
and progression. Thus, DCs have a central role in the control
of the adaptive immune response to pathogens and self-
tissues and therefore constitute potential targets for the
therapeutic modulation of the immune response. In this
review, we discus the role of DCs in autoimmune diseases,
with a special emphasis on their role in the modulation of
central nervous system (CNS) inflammation in MS.

Classes of DCs

Twomajor classes of DCs have been identified based on their
morphological and functional characteristics (Figure 1):
conventional or classical DCs (cDCs) and plasmacytoid DCs
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(pDCs).2–4 The differentiation and function of cDCs and pDCs
is associated with specific transcriptional programs that show
some overlap, such as their dependency on interferon
regulatory factor 8 (IRF8),5,6 but are mainly controlled by
lineage-specific elements.
cDCs present a characteristic dendritic morphology and are

highly phagocytic cells that express high levels of major
histocompatibility complex class II (MHC class II) and are
endowedwith potent APC function. cDCs have a short half-life
and are constantly replaced from bone marrow precursors
generated in a FMS-like tyrosine kinase 3 ligand (Flt3L)-
dependent manner.7 At the molecular level, the generation of
cDCs is controlled by transcription factor Zbtb46 (zinc finger
and BTB domain containing 46)8,9 and also by the transcrip-
tion factors B-cell lymphoma 6 proteinv-rel avian reticuloen-
dotheliosis viral oncogene homolog B and IRF4.10–13

Two major subsets of cDCs have been identified: cluster of
differentiation 8aþ (CD8aþ ) cDCs and CD11bþ cDCs.1,2,4,14

CD8aþ cDCs efficiently present exogenous antigens to
CD8þ T cells; these cells also require Id2 and basic leucine
zipper transcription factor, ATF-like 3 (Batf3) for their
differentiation,15,16 but a Batf3-independent pathway has also
been described for their generation.17 CD11bþ cDCs
preferentially activate CD4þ T cells and require Kruppel-like
factor 4 for their differentiation.18

pDCs present a spherical shape that resembles plasma
cells and produce high amounts of type I interferons following
Toll-like receptor 7 (TLR7) or TLR9 activation.3,19 pDCs are
not phagocytic and are considered inefficient inducers of
CD4þ T-cell responses. Similarly to cDCs, pDCs are also
derived from bone marrow progenitors in an Flt3L-dependent
manner.20,21 The development of pDCs is promoted by the
transcription factor basic helix-loop-helix transcription factor
(E protein)22,23 with the contribution of Spi-B transcription
factor (Spi-1/PU.1 related).24

Function of DCs in CNS Autoimmunity

In the context of MS and its model experimental autoimmune
encephalomyelitis (EAE), DCs have important roles related to

the generation of the T-cell repertoire and the activation and
polarization of myelin-specific T cells in the periphery and the
CNS (Figure 2).

Role of DCs in central tolerance. Central tolerance is
enforced by the thymic expression of tissue-specific antigens
such as myelin proteins in medullary thymic epithelial cells
(mTECs) driven by the transcription factor autoimmune
regulator.25–27 The expression of peripheral antigens in
mTECs results in the depletion of high affinity self-reactive
clones and the differentiation of natural Tregs.27–29 Thymic
DCs cross-present tissue-specific antigens expressed by
mTECs.30,31 Moreover, peripheral DCs migrate to the
thymus where they present peripheral antigens.32,33 Taken
together, these observations suggest that DCs participate in
the maturation of T cells and the generation of FoxP3þ Tregs
in the thymus. However, the depletion of DCs does not affect
thymic T-cell maturation and FoxP3þ Treg generation,
suggesting that the contribution of DCs to these processes
is minimal.34 Nevertheless, it is possible that DCs participate
in the enforcement of tolerance to a specific subset of
antigens or under specific conditions.

Role of DCs in the peripheral activation of T cells.
Dendritic cells also have a significant role in peripheral
tolerance. The delivery of antigen to DCs using antibody or
transgene-based strategies induces profound CD4þ and
CD8þ T-cell tolerance.35–37 The induction of immune
tolerance as a result of antigen delivery or expression in
DCs is associated with the induction of CD4þ FoxP3þ

Tregs. Indeed, DCs promote the differentiation of FoxP3þ

Tregs via the production of TGFb1, retinoic acid and
kynurenine.38–41 DCs can also promote the differentiation
of FoxP3� interleukin (IL)-10þ type 1 regulatory T cells (Tr1
cells) through several mechanisms, including the production
of IL-27.42–44 DCs contribute not only to the differentiation
but also to the maintenance of FoxP3þ Tregs in the
periphery through CD80 and CD86-dependent interactions.45

Conversely, although the removal of cDCs and pDCs does
not result in spontaneous autoimmunity, their removal results
in the worsening of EAE and decreased levels of FoxP3þ

Tregs.46 Taken together, these data suggest that DCs can
control peripheral tolerance through their effects on the
generation and maintenance of Treg populations under
homeostatic and inflammatory conditions.
Please note that although it has been postulated that

specific DC populations promote the development of FoxP3þ

Tregs38,40 and Tr143 cells in vivo, it is not yet clear whether
these populations constitute specific tolerogenic DC lineages
or represent alternative activation or maturation states
of DCs.47–49

Following activation, DCs can promote the differentiation of
effector T cells that drive CNS autoimmunity. Several APC
populations can promote T-cell activation and polarization.
However, the transgenic expression of MHC class II in DCs is
sufficient to recover the susceptibility to EAE of otherwise
disease-resistant MHC class II-deficient mice.50 It should also
be noted that EAE can be induced in the absence of DCs,46

indicating that although DCs are sufficient to induce
CNS autoimmunity, other APCs can also promote the

Figure 1 Classes of DCs. Two major classes of DCs have been identified based
on their morphological and functional characteristics: conventional or classical DCs
(cDCs) and plasmacytoid DCs (pDCs). They are differentiated from a common
dendritic cell precursor (DCP) in a process controlled by lineage-specific
transcriptional programs
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differentiation of pathogenic T cells. Taken together, these
data suggest that different signaling pathways in DCs control
their ability to promote the differentiation of regulatory and
effector T-cell responses. For example, the mitogen-activated
protein kinase p38a is needed for the differentiation of T helper
type 17 (Th17) cells by DCs.51 The identification of these
pathways has the potential to lead to new therapeutic
approaches for MS and other immune-mediated diseases.

Role of DCs in the activation of T cells in the CNS. The
role of DCs in CNS autoimmunity is not restricted to the
polarization of T cells in peripheral immune organs. DCs
secrete chemokines that promote T-cell recruitment and
reactivation in the CNS.52 Epitope spreading, the diversifica-
tion of epitope specificity from the initial epitope-specific
immune response to additional epitopes on the same or
different antigens, is thought to have an important role in
CNS autoimmunity.53 Miller and coworkers identified a
subpopulation of F4/80� CD11cþ CD45hi DCs that infiltrate
the CNS and promote epitope spreading in mouse models of
MS.54 They also reported that CNS-infiltrating CD11bþ DCs
preferentially polarize T cells into the Th17 lineage.28,29

However, not all CNS-infiltrating DCs promote inflammation.
pDCs were found to limit the differentiation of effector Th1
and Th17 cells in the EAE model in an indoleamine 2,3-
dioxygenase (IDO)-dependent manner; these effects are not
associated with the differentiation of FoxP3þ Tregs.55 Taken
together, these data show that, both in the periphery and the
CNS, DCs control the balance between effector and
regulatory T cells and consequently the development of
autoimmune disorders.

DC Phenotype and Function in MS

MS is a chronic demyelinating autoimmune disease of
the CNS.56 In most patients, MS initially presents a

relapsing-remitting clinical course (relapsing-remitting MS
(RRMS)) that is followed by a progressive phase (secondary
progressive MS (SPMS)) characterized by the continued and
irreversible accumulation of disability.57 High numbers of
cDCs and pDCs accumulate in the cerebrospinal fluid and
white matter of MS patients,58,59 and DC abnormalities have
been associated with different stages of the disease.
Circulating cDCs in RRMS and SPMS present an activated

phenotype and produce increased levels IL-12p70 and
IL-23p19.60–62 Moreover, circulating cDCs in RRMS show
increased expression of activation markers and chemokine
(C-C motif) receptor 5 (CCR5) than healthy controls.63,64

Interestingly, the expression of the CCR5 ligands chemokine
(C-Cmotif) ligand 3 (CCL3) and CCL5 is increased inMSCNS
lesions,65 and CCR5 polymorphisms have been linked to
changes in disease onset and activity,66,67 suggesting that
this pathway contributes to the recruitment of cDCs to the
inflamed CNS of MS patients.
Following TLR9 activation, circulating pDCs from RRMS

patients show diminished production of interferon (IFN)-a.68

Moreover, pDCs fromMS patients show a decreased ability to
influence Tregs.68 Thus, it is possible that deficits in pDCs
contribute to disease pathology. Of note, however, several
findings on pDC in MS have not always been replicated by
independent groups, and it has been suggested that specific
pDC subpopulations (e.g., pDC1 versus pDC2) are affected
in MS.69

Effect of MS Disease-Modifying Therapies on DCs

The data shown in the previous section highlights the
abnormalities in DC numbers, recruitment and function
associated with MS. These abnormalities are likely to
contribute to MS pathology and its response to therapy. Thus
the study of the effects of therapy on DCs might provide
information regarding mechanisms of disease pathogenesis
in MS and potential therapeutic interventions.
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Figure 2 Function of DCs in CNS autoimmunity. In the context of CNS autoimmunity DCs have pro- and anti-inflammatory roles. DCs boost neuroinflammation by
promoting the activation of effector T cells, their recruitment and reactivation in the CNS, resulting in the spreading of the pathogenic immune response. DCs also promote the
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Type I interferon signaling through IFN alpha/beta receptor
has profound effects on DCs, diminishing their ability to
promote the differentiation of effector T cells70–72 and limiting
CNS inflammation during EAE.73–75 IFN-b administration, a
first-line therapy for MS, affects both pDCs and cDCs. IFN-b
treatment decreases the numbers of circulating cDC in
RRMS, without affecting pDCs.69 At the functional level,
monocyte-derived DCs show decreased IL12p70 production
and produced increased amounts of IL-10 following treatment
with IFN-b.76 In addition, IFN-b treatment induces an anti-
inflammatory phenotype in pDCs, characterized by the
upregulation of PDL1 and IL-10 expression.76 Finally, IFN-b
also induces the production of IL-27 by DCs, a cytokine with
broad anti-inflammatory effects.77

Glatiramer acetate (GA) is an immunomodulatory drug
currently used to treat MS. Treatment with GA is associated
with a decreased production of TNF-a and IL-12p70 by
monocyte-derived DCs, reduced CD40 expression and
reduced pro-inflammatory activity in pDCs.78–81 GA has also
been shown to induce type II anti-inflammatory monocytes
that share some functional and phenotypic characteristics
with anti-inflammatory DCs and have an important role in the
therapeutic effects of GA in MS.82 Thus it is possible that
similar molecular mechanisms operate in the induction of anti-
inflammatory DCs and type II monocytes by GA.
Laquinimod is a new oral immumodoulatory agent that is

under development for the treatment of RRMS.83–86 Among
other effects, Laquinimod has been shown to modulate the
T-cell response in rodents and humans as a result of its effects
on signal transducer and activator of transcription 1 (STAT1),
mitogen-activated protein kinase and NF-kB signaling in
DCs.87,88 Thus, by modulating DC function, Laquinimodmight
alter the balance between effector and regulatory T cells and
therefore suppress the pathogenic T-cell response that drives
RRMS.
Taken together, these data suggest that the modulation of

DC activity is a potential therapeutic approach for MS and other
immune-mediated diseases, particularly for the re-establishment
of antigen-specific tolerance. However, these drugs were not
specifically designed to target DCs and obviously affect many
cell types and biological processes in vivo, potentially leading
to unwanted side effects. Thus the study of the pathways that
control DC activity might lead to the development of new and
more effective therapies for autoimmunity.

Regulation of DC Activity

Newly generated immature cDCs have strong phagocytic
activity but express relatively low levels of MHC and
costimulatory molecules, resulting in a limited capacity to
activate T cells. The activation of cDCs by microbial or
inflammatory signals triggers a cascade of signaling pathways
that boost the expression of MHC and costimulatory molecules
and, consequently, the ability of cDCs to induce adaptive
immune responses. Interestingly, the analysis of the transcrip-
tional response to stimulation suggest that most of the
chromatin marks in DCs are established during the develop-
ment of DCs and are not affected by their activation, while a
limited number of transcription factors and signaling pathways
mediate the maturation of DCs and potentially their ability to

activate T cells.89,90 The pathways that regulate DC activation
have been extensively discussed elsewhere; in the following
sections, we will focus on a handful of pathways of interest.

Nuclear factor jB (NF-jB). The transcription NF-kB signal-
ing has a central role in DC activation and the transcriptional
programs that regulate their ability to activate and polarize
T cells.89,91–93 Because of its important role in the immune
response, NF-kB activity is tightly regulated. One important
regulator of NF-kB is the A20 ubiquitin-editing enzyme.94

A20 catalyzes the removal of K63 linked poly ubiquitin chains
(which activate signaling) and the addition of K48 poly
ubiquitin chains, which promote proteasomal degradation.
A20 controls the ubiquitination of several proteins involved in
NF-kB signaling and regulation, actively limiting NF-kB-
dependent signaling. Consequently, A20-deficient DCs are
hyper-responsive to stimulation, and mice with a specific
deletion of A20 in DCs show an accumulation of activated T
cells and develop spontaneous autoimmunity.95,96 Notably,
A20 polymorphisms are also associated with human auto-
immune disease,94 highlighting the physiological relevance
of NF-kB regulatory pathways for DC function.
NF-kB activation is an important component of DC

activation; however, recent data by Ohashi and coworkers
suggest that different members of the NF-kB family of
transcription factors have different roles in DC maturation
and function.92 Using bone marrow-derived DCs and the
RIPgp/B6model (rat insulin promoter expressing glycoprotein
of LCMV virus, in C57BL/6 mice) of diabetes they found that
nfkb1-deficient DCs promote the differentiation of effector
CD4þ and CD8þ T cells that drive autoimmune inflammation
in the absence of activation bymicrobial signals.92 These data
suggest that the immature/quiescent state of DCs is actively
maintained by a specific transcriptional program controlled by
nfkb1. However, it is not yet known whether this interpretation
model also applies to DCs in vivo.

STAT3. The transcription factor STAT3 mediates the effects
of several cytokines that regulate DC differentiation and
function. STAT3 participates in the signaling cascade
triggered by FLT3L, a molecule important not only for the
differentiation of pDCs and cDCs but also for their anti-
inflammatory effects.97–99 In addition, it has been recently
shown that a long noncoding RNA targeting STAT3 regulates
the activity of mouse and human DCs.100 The importance of
STAT3 for the regulation of DC function is further highlighted
by the effects of STAT3 deficiency. Mice harboring STAT3-
deficient DCs show enhanced cytokine production following
activation, resistance to IL-10–mediated suppression and
increased APC function.101 Moreover, naive mice with a
specific deficiency of STAT3 in DCs develop spontaneous
peribronchial and gut inflammation, suggesting that STAT3-
dependent signaling controls DC function under homeostatic
conditions. In addition, these findings suggest that STAT3
signaling in DCs contributes to the anti-inflammatory effects
of other STAT3-activating cytokines, such as IL-27.

Aryl hydrocarbon receptor (AHR). The AHR is a ligand-
activated transcription factor that regulates several biological
processes, including development102,103 and the immune
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response.104 The AHR has an important role in the control of
the adaptive immune response, through mechanisms that
involve the epigenetic remodeling and direct transactivation
of target genes.104–113 For example, we have found that the
AHR controls the differentiation of Tr1 cells in response to
IL-27.44,114 Recent data suggest that AHR also controls DC
activation in vitro and in vivo, affecting the course of CNS
inflammation. Although the specific molecular mechanisms
involved in the effects of AHR signaling in DCs are mostly
unknown, AHR is known to regulate the activity and
degradation of NF-kB and activator protein 1,115,116 mole-
cules known to control the response of DCs to stimula-
tion.89,91 Regardless of the molecular mechanisms involved,
AHR has profound effects on DC function. AHR activation
decreases the expression of MHC class II and costimulatory
molecules and also the production of Th1- and Th17-
polarizing cytokines by DCs.41,117–123 Indeed, AHR activation
boosts the ability of DCs to promote the differentiation and
expansion of FoxP3þ Tregs.41,118–120 These effects involve
at least two types of tolerogenic metabolites: (1) Kynurenins.
AHR activation upregulates the expression of IDO in
DCs,119,120 which catalyzes the production of kynurenine.
(2) RA. AHR activation in DCs induces the enzymatic
machinery that controls the production of RA,112 a metabolite
that promotes the differentiation of FoxP3þ Tregs.124 These
observations suggest that AHR in DCs constitutes a potential
target or therapeutic immunomodulation.

Regulation of DC Function by IL-27

IL-27 is composed of Ebi3 and IL-27p28.125 IL-27 suppresses
Th1/Th2 and Th17 responses.126–128 In addition, IL-27
promotes the differentiation of Tr1 cells through mechanisms
that involve the activation of STAT3- and AHR-dependent
signaling.42,44,114,129 The anti-inflammatory effects of IL-27 are
highlighted by the development of exaggerated Th17 immunity
and severe EAE by IL-27 receptor alpha (IL-27Ra)-deficient
mice.130 IL-27 is produced by innate cells in response to TLR
activation, by a mechanism that involves the autocrine effects
of IFN-b.131,132 As exogenous IFN-b triggers IL-27 production
by cells of the innate immune system including DCs,133 it has
been proposed that the beneficial effects of IFN-b treatment in
RRMS involve the induction of IL-27 synthesis and its effects on
Tr1 and Th17 cell differentiation.77 Recent data suggests that,
in addition to its activities on T cells, the immunoregulatory
effects of IL-27 involve its effects on DCs.
The receptor for IL-27, constituted by the glycoprotein 130

subunit of the IL-6 receptor plus a unique IL-27Ra chain,134 is
expressed by T cells and also by cells of the innate immune
system including DCs.135,136 However, the role of IL-27
signaling in DCs during CNS autoimmunity is unknown. We
recently found increased IL-27Ra expression in cDCs than in
pDCs.137 Moreover, we found that mice carrying IL-27Ra-
deficient DCs develop exacerbated CNS inflammation follow-
ing EAE induction. The activation of IL-27R signaling in DCs
results in a decreased ability to promote the differentiation of
effector Th1 and Th17 cells, concomitant with an increased
differentiation of FoxP3þ Tregs and Tr1 cells in vivo and
in vitro. Similar anti-inflammatory effects of IL-27 have been
recently reported on pDCs and human DCs.138,139

A genome-wide analysis of the effects of IL-27 on DCs
found that it modulates NF-kB and A20 signaling and
upregulates the expression of molecules with anti-inflamma-
tory activity such as TGFb1 and IDO; IL-27 also induces the
expression of the ectonucleotidase CD39 (ectonucleoside
triphosphate diphosphohydrolase 1) in DCs in a STAT3-
dependent manner.137 Indeed, the anti-inflammatory effects
of IL-27 signaling in DCs on EAE were mediated by the
upregulation of CD39 and the degradation of extracellular
adenosine triphosphate, which activates the NLRP3 (NLR
(NOD-like receptor) family, pyrin domain containing 3)
inflammasome in DCs137 (Figure 3).

Therapeutic Effects of Vaccination with IL-27
Conditioned DCs

The anti-inflammatory effects of IL-27 on T cells and DCs
support its therapeutic use in MS and other autoimmune
diseases. IL-27, however, has been reported to act directly on
T cells to boost CD8þ T-cell responses,140–144 suggesting
that IL-27 administration could potentially have undesired
detrimental side effects in immune-mediated disorders.
DC vaccination induces immunity to tumors and patho-

gens145 and has been recently approved by the US Food and
Drug Administration (FDA) for the treatment of advanced
prostate cancer.146 Conversely, vaccination with tolerogenic
DCs induces antigen-specific tolerance.147,148 Thus, based
on the tolerogenic effects of IL-27 signaling in DCs, and to
avoid the potential pathogenic effects of IL-27 administration,
we investigated the therapeutic effects of vaccination with IL-
27-conditioned DCs on EAE. We found that IL-27 conditioned
DCs loaded with myelin antigens arrest CNS inflammation
and EAE development in preventive and therapeutic para-
digms in a CD39-dependent manner.137 Interestingly, DC
vaccination with IL-27-conditioned DCs arrests the immune
response directed against the antigen use to induce EAE and
also the subsequent spreading of the immune response
against additional CNS antigens as measured with antigen
arrays.110,149,150 Taken together, these data demonstrate that
IL-27 signaling in DCs limits inflammation in the CNS through
CD39-dependent mechanisms. It is still unknown, however,
whether this immunoregulatory axis is relevant for the
regulation of inflammation in other tissues and whether
CD39 is involved in the anti-inflammatory effects of other
STAT3-activating cytokines that act on DCs, such as IL-10.

Nanoparticles (NPs) for the Induction of Antigen-
Specific Tolerance

Our DC vaccination experiments suggested that IL-27
signaling in DCs might provide targets for the therapeutic
modulation of the immune response. However, the use of
cell-based therapies in the clinical practice is limited by the
logistical issues associated with the preparation of DC
vaccines from each patient under highly controlled conditions.
In order to address these limitations, we investigated the

signaling pathways controlled by IL-27 in DCs. Our transcrip-
tional analysis identified AHR as a potential mediator of the
modulatory effects of IL-27 in DCs.137 Indeed, this finding is
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not surprising, because AHR also mediates the effects of
IL-27 in T cells during Tr1 differentiation.44,114

The broad expression pattern of AHR, however, constitutes
a challenge for the therapeutic exploitation of its immunomo-
dulatory effects. However, recent developments in nanotech-
nology provide new approaches for the cell-specific delivery of
one or several compounds in vivo.151 Based on the
tolerogenic effects of AHR activation in DCs, we engineered
NPs to co-deliver the endogenous non-toxic AHR ligand
2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl
ester (ITE) together with myelin-specific antigens to APCs
in vivo113 (Figure 4).
We found that ITE-loaded NPs activate AHR signaling in

DCs, inducing a tolerogenic phenotype characterized by the
reduced ability to generate Th1 and Th17 cells, and an
increased ability to promote FoxP3þ Treg differentiation
in vitro and in vivo.113 Accordingly, NPs loaded with ITE and
myelin antigens suppress the development of EAE both in
preventive and therapeutic paradigms. These effects were
mediated by the activation of AHR signaling in DCs, because
they were not observed in mice carrying a specific deletion of
AHR in DCs. Taken together, these data show that the
activation of tolerogenic signaling pathways in DCs with NPs
offers a new avenue for the selective regulation of the immune
response in immune-mediated disorders.108

Conclusion and Future Directions

Considering the central role of DCs in the regulation of the
immune response, it is important to identify the molecular

pathways that regulate their activity, because these pathways
might provide new targets for therapeutic immunomodulation.
Furthermore, candidate pathways should be examined in DCs
from patients affected by immune-mediated disorders, to
determine their relevance for the regulation of human DCs
and also their potential to revert DC abnormalities associated
with disease pathology.
A related issue is whether tolerogenic DC lineages exist or

whether they represent alternative stages of DC maturation
or activation. The analysis of transcriptional programs
associated with tolerogenic DCs will certainly address this
point and provide additional tools for their characterization and
manipulation.
Finally, it is important to develop methods for the efficient

generation of immunogenic or tolerogenic DCs that can be
implemented in a clinical setup for the treatment of human
diseases by DC vaccination. The approval by the FDA of DC
vaccination as a therapy for prostate cancer is an encouraging
step, but much more has to be done to efficiently translate
these findings to the clinic. An alternative to this approach is
the development of NP-based strategies for the specific
modulation of signaling pathways in DCs. However, these
approaches have to be optimized to include the production of
biocompatible materials in large scale and also to reach
specific DC populations in the periphery and target organs.
Nevertheless, considering the recent advances in our under-
standing of DC function and regulation in autoimmunity, a new
generation of DC-based immunomodulators can be envi-
sioned in the near future for the therapeutic manipulation of
antigen-specific immunity.

Figure 3 IL-27 acts on DCs to control Treg and Teff differentiation via ENTPD1 (CD39) upregulation. (a) Extracellular ATP (eATP) activates the NLRP3 inflammasome in
DCs and promotes the differentiation of effector T cells. (b) ENTPD1 (CD39) induced by IL-27 in a STAT3-dependent manner degrades eATP, limits effector T-cell
differentiation and promotes the generation of regulatory T cells
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