
pRb/E2F-1-mediated caspase-dependent induction
of Noxa amplifies the apoptotic effects of the
Bcl-2/Bcl-xL inhibitor ABT-737
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Although Bcl-2 family members control caspase activity by regulating mitochondrial permeability, caspases can, in turn, amplify
the apoptotic process upstream of mitochondria by ill-characterized mechanisms. We herein show that treatment with a potent
inhibitor of Bcl-2 and Bcl-xL, ABT-737, triggers caspase-dependent induction of the BH3-only protein, Mcl-1 inhibitor, Noxa. RNA
interference experiments reveal that induction of Noxa, and subsequent cell death, rely not only on the transcription factor E2F-1
but also on its regulator pRb. In response to ABT-737, pRb is cleaved by caspases into a p68Rb form that still interacts with
E2F-1. Moreover, pRb occupies the noxa promoter together with E2F-1, in a caspase-dependent manner upon ABT-737 treatment.
Thus, caspases contribute to trigger the mitochondrial apoptotic pathway by coupling Bcl-2/Bcl-xL inhibition to that of Mcl-1, via
the pRb/E2F-1-dependent induction of Noxa.
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The Bcl-2 family, composed of anti- and pro-apoptotic
proteins, are major regulators of apoptosis1–4 upstream of
mitochondrial permeability and caspase activity. Pro-apopto-
tic proteins include multi-domain proteins, such as Bax and
Bak, and their upstream effectors the Bcl-2 homology 3 (BH3)-
only proteins, such as Bid, Bim, Puma, Bad, Noxa and so on.
The anti-apoptotic members are frequently overexpressed in
cancer cells and they promote survival, in great part, by
physically interacting with the BH3 domain of their
pro-apoptotic counterparts. Small molecules that bind to the
BH3-binding grove of Bcl-2 homologs (the so-called ‘BH3
mimetics’) have been developed as pro-apoptotic inhibitors of
these proteins.5 There are subtle yet significant differences in
the BH3-binding interfaces of Bcl-2 homologs: Bim or Puma
interact with all known Bcl-2 homologs, whereas Bad interacts
preferentially with Bcl-2 and Bcl-xL and Noxa with Mcl-1.6,7

These differences explain why currently known BH3-mimetics
only inhibit subsets of anti-apoptotic proteins.8 One of these
compounds is ABT-737, which occasionally presents in vitro
monotherapy toxicity.5 It potently inhibits the BH3-binding
activity of Bcl-2, Bcl-xL and Bcl-w but not that of Mcl-1 and
Bfl-1.9 ABT-737 promotes cell death by displacing, from its
targets, ‘BH3 activators’ such as Bim or Puma (BH3-only
proteins that can directly activate multi-domain proteins when
free from anti-apoptotic proteins)10,11 and/or active Bax.12

Efficient induction of apoptosis by ABT-737 requires that pro-
apoptotic proteins are not sequestered by an excess of empty

Mcl-1 or Bfl-1 that are not efficiently inhibited by ABT-737.
Thus, sensitivity to ABT-737 is enhanced by combined
treatments that decrease Mcl-1 expression and/or induce
Noxa, a BH3-only protein that essentially functions as an
inhibitor of Mcl-1.13–18

ABT-737 is a powerful tool to investigate how death signals
induced by direct inhibition of subsets of anti-apoptotic Bcl-2
family members lead to cell demise. Caspase activity
contributes to the final stages of cell death induced by
inhibition of Bcl-2 homologs. However, executioner caspases
were found to be required for full-blown Bax activation
and mitochondrial permeabilisation in response to diverse
stimuli.19 In addition, when caspase activity is blocked,
subsets of mitochondria remain refractory to permeabilisation
and allow cells to survive to death stimuli.20,21 Thus, caspase
activity might also amplify the apoptotic process upstream of
mitochondria, and fuel signals initiated by inhibition of some
Bcl-2 homologs by ill-characterized mechanisms.

It is notable that, whereas the pro-apoptotic activity of
ABT-737 relies on the nearly immediate ability of this
compound to disrupt pre-existing complexes,8,22 its effects
on whole cells sometimes take numerous days to be manifest,
implying that de novo synthesis of key actors might intervene.
ABT-737 treatment was shown to induce the transcription of
death receptor 523 and to induce a twofold change in the
transcription of nearly 430 genes when added to renal
carcinoma cells.24 Most relevantly here, low-level activation
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of the caspase cascade was incriminated in some of these
transcriptomic effects.24 Thus, caspases may contribute to
the long-term biological effects of Bcl-2/Bcl-xL inhibition.
Whether and how this could actually amplify cell death
induced by such inhibition remains to be determined.

In this manuscript, we show that caspase activity con-
tributes to the response of cancer cells to ABT-737 by
promoting the transcriptional induction of Noxa. Transcrip-
tional pathways known to modulate levels of the Bcl-2 protein
family (including that of Noxa) involve p53 or E2F-1.25,26

E2F-1 differs from that of other E2F family members due to its
ability to regulate not only cell-cycle progression but also
apoptosis as it directly induces the expression of p73, of
caspase 3 and 7 and of some pro-apoptotic Bcl-2 family
members.27–34 We show here that E2F-1 is a major
contributor of caspase-dependent induction of Noxa in
response to ABT-737 treatment. Caspases cleave the E2F-
1 regulator pRb in ABT-737-treated cells, giving rise to a
p68Rb truncated form, which has a direct role in Noxa and cell
death inductions together with E2F-1. Thus, caspase activity
provides a feed-forward mechanism that amplifies the
mitochondrial apoptotic pathway by coupling inhibition of
Bcl-2/Bcl-xL to that of Mcl-1, via the induction of E2F-1
transcription of Noxa by a pRb-dependent mechanism.

Results

ABT-737 induces late but specific Bax and caspase-
dependent apoptosis in the glioma U251 cells. The
effects of ABT-737 were investigated on glioma U251 cells
in which significant cell death rates were measured only after
48 h of treatment with 2 mM of ABT-737, whereas no cell
death was detected at earlier time points (Figure 1a). These
delayed effects of ABT-737 were confirmed to be on-target

effects, as simultaneous silencing of Bcl-2 and Bcl-xL, but not
that of either one alone, induced cell death at a similar rate to
that measured upon ABT-737 treatment (Figures 1a and b).
This indicates that the viability of U251 requires the sustained
and combined activities of Bcl-2 and Bcl-xL. Consistent
with a role for the canonical mitochondrial apoptotic pathway
in delayed cell death that results from Bcl-2/Bcl-xL inhibition,
knock down of Bax expression by siRNA significantly
reduced cell death rates induced by ABT-737 treatment
(Figure 1c). Finally, pre-treatment of U251 cells with a
pan-caspase inhibitor before addition of ABT-737 inhibited
cell death (Figure 1a), showing that the late effects of
ABT-737 on cell viability rely on caspase activation.

E2F-1-dependent induction of the BH3-only Noxa
has a key role in the induction of U251 cell death by
ABT-737. The delayed effects on cell death of ABT-737
suggest that the mounting of a death signal, possibly via the
de novo synthesis of a key factor, might contribute to the
response. Kraft and colleagues recently identified the noxa
gene (PMAIP1) as one gene whose expression is strongly
induced by ABT-737.24 Consistently, we observed a strong
increase of Noxa expression in U251 cells upon ABT-737
treatment at both protein and mRNA levels (Figures 2a and
b). Importantly, silencing of Noxa significantly decreased cell
death rates induced by ABT-737 treatment (Figure 2c),
indicating that such induction has a role in cell death
induction.

Transcriptional factors such as p53 and E2F-1 are known to
regulate Noxa expression. As U251 cells express a mutated
p53 (R273H), we focused on E2F-1, as the mRNA levels of
another E2F-1 target p73 were also found to be upregulated
by ABT-737 (Supplementary Figure S1A). Silencing of E2F-1
by RNA interference prevented Noxa induction by ABT-737
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Figure 1 ABT-737 induces caspases and Bax-dependent cell death in U251. (a) U251 cells were treated for 24 or 48 h by ABT-737 at 2 mM and/or Z-VAD-FMK at 50mM
(zVAD). (b and c) U251 cells were transfected with the indicated siRNA. Forty-eight hours later, cells were harvested (b) or treated by ABT-737 at 2 mM for an additional 48 h
(c). Western blot analysis of Bcl-2, Bcl-xL (b) and Bax (c) was performed. Cell death in a–c was assessed by a trypan blue staining procedure. Data presented in a–c are
mean±S.E.M. of three independent experiments
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(Figure 3a) and decreased cell death rates (Figure 3b).
Conversely, transient overexpression of E2F-1 in U251 cells
increased Noxa expression (Figure 3c), affected cell viability
by itself and enhanced cell sensitivity to ABT-737 treatment

(Figure 3d). By contrast, overexpression of a transcriptionally
inactive mutant of E2F-1 (E132)30 had no effect (Figure 3d).
Notably, upregulation of Noxa and sensitization to ABT-737
induction of cell death by overexpression of E2F-1 were also
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Figure 2 The BH3-only Noxa is involved in ABT-737 induction of cell death. (a) U251 cells were treated by ABT-737 at 2 mM for 48 h and western blot analysis of Noxa was
performed. (b) noxa mRNA levels were measured in U251 cells treated or not by ABT-737 at 2 mM and/or QVD-OPh at 10mM for 48 h by real-time RT-PCR analysis and
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for an additional 48 h. Western blot analysis of Noxa was performed and cell death was assessed by a trypan blue staining. Data presented in b and c are mean±S.E.M. of
three independent experiments
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Figure 3 E2F-1 and pRb are involved in the induction of cell death and Noxa by ABT-737. (a and b) U251 cells were transfected with the indicated siRNA. Forty-eight
hours later, cells were treated by ABT-737 at 2mM for an additional 48 h. Western blot analysis of Noxa (a), pRb and E2F-1 (b) was performed, and cell death was assessed by
a trypan blue staining (b). (c and d) U251 cells were transfected with pcDNA3Flag (vector control), pE2F1Flag (E2F1) or pE2F1E132 (E132) vector. Twenty-four hours later,
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observed in the colorectal cancer p53-null HCT116 cells
(Supplementary Figure S2), establishing that p53 is dispen-
sable for E2F-1 -dependent induction of Noxa.

Taken together, these results indicate that ABT-737
treatment induces E2F-1-dependent Noxa upregulation,
thereby contributing to cell death induced by the inhibition of
Bcl-2 and Bcl-xL.

The E2F-1 regulatory protein pRb is cleaved by
caspases upon ABT-737 treatment. To understand how
ABT-737 treatment might influence E2F-1 activity, we
investigated its influence on the expression of E2F-1 and of
its regulator pRb. We observed no detectable modification in
the expression levels of E2F-1 upon ABT-737 treatment
(Figure 4a). We did not detect any modification of the
phosphorylation of full-length pRb at Ser 807–811, a
phosphorylation that relieves E2F-1 effects on cell-cycle
progression from the negative regulation of pRb (Figure 4a).
However, ABT-737 treatment modified the size of pRb
polypeptides. Three bands of 100, 68 and 48 kDa, respec-
tively, in addition to the 110 kDa band corresponding to
full-length pRb, were immunodetected in lysates from
ABT-737-treated U251 cells (Figures 4b and c). These
bands were not detected in ABT-737-treated cells in which
pRb was silenced, confirming that they all correspond to pRb
polypeptides (Figure 4d). Notably, the truncated pRb

polypeptides were also observed in cells in which Bcl-2 and
Bcl-xL were silenced simultaneously, but not when either one
of them was downregulated alone, indicating that their
appearance results from an on-target effect of ABT-737
(Figure 4e).

Kinetic analysis of ABT-737-treated U251 cells indicated
that the appearance of the truncated forms of pRb was
concomitant with increases in cell death rates, suggesting
that it may associate with a pro-death mechanism (Figure 5a,
see also below). It is documented that cleavage of pRb by
caspases 3 and 7 at the DEAD site truncates pRb at the
C-terminal end, giving rise to a band of 100 kDa, whereas
two bands of 48 and 68 kDa, respectively, are obtained
after cleavage at the DSID site (Figure 5b).35–37 In U251 cells
pre-treated with a pan-caspase inhibitor before ABT-737, the
p68Rb form was no longer detected (Figure 5c). Moreover,
neither the p68Rb nor the p48Rb forms were detected after
treatment of cells with ABT-737 in which Bax expression had
been silenced (Figure 4d).

These data support the notion that pRb is cleaved
by caspases that are activated as a result of Bax-dependent
mitochondrial permeabilisation in response to ABT-737.

pRb contributes to caspase-dependent induction of
Noxa. As pRb cleavages occurred concomitantly to cell
death and as Noxa is an actor of this cell death, we wondered
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if pRb might have a role in Noxa induction upon ABT-737
treatment. Consistent with a positive role for pRb in these
events, silencing of pRb by RNA interference prevented the
upregulation of Noxa by ABT-737, as observed when E2F-1
was silenced (Figure 3a). Moreover, it had no effect on the
viability of U251 cells by itself but it significantly decreased
cell death rates induced by ABT-737 treatment (Figure 3b).

Involvement of pRb in Noxa induction prompted us to
investigate whether caspases contribute to Noxa induction
upon ABT-737 treatment. Pretreatment of U251 cells with a
pan-caspase inhibitor impeded the induction of Noxa (at both
protein and mRNA levels) by ABT-737 (Figures 2b and 5d).
Importantly, kinetics of pRb cleavages and Noxa induction
followed the kinetics of caspase activation. Indeed,
induction of Noxa was detected at 40 h of ABT-737 treatment
(Figure 5d), a time point that coincided with detectable
appearance of pRb cleavage products (Figure 5a), detectable
enhancement of specific caspase activity (Figure 5e)
and detectable enhancement of cell death rates (Figure 5a).
This puts forth a temporal link between caspase activation and
Noxa induction by ABT-737.

Taken altogether, these data argue that pRb and caspases
participate to Noxa induction in response to ABT-737.

pRb and E2F-1 bind to the Noxa promoter upon ABT-737
treatment. The regulation of E2F-1 transcriptional activity by
pRb is, in great part, due to a physical interaction between

these two proteins.27,28 It is well established that the binding
of the hypophosphorylated pRb to E2F-1 inhibits the ability of
the latter to induce the expression of genes involved in cell-
cycle progression.38 By contrast, recent data showed that
hyperphosphorylated pRb can maintain an interaction with
E2F-139 and that pRb may also function, in certain instances,
as a binding partner for E2F-1 to positively upregulate
pro-apoptotic genes, such as p73.40,41 To further understand
how, upon ABT-737 treatment, E2F-1 and pRb contribute to
induce Noxa expression and cell death, we studied the
interactions between E2F-1 and the forms of pRb, in addition
to their individual and combined presence on the noxa
promoter.

By co-immunoprecipitation assays using antiE2F-1 anti-
bodies and lysates from ABT-737 or mock-treated cell, we
observed that E2F-1 interacted with full-length pRb in U251
cells treated with ABT-737 or not (Figure 6, top panel), even in
its phosphorylated form (Figure 6, bottom panel). The p68Rb
form, but not the p48Rb form, co-immunoprecipitated with
anti E2F-1 antibodies upon ABT-737 treatment (Figure 6,
bottom panel). This is consistent with the fact that p68Rb still
harbors the domain of interaction with E2F-1, whereas p48Rb
does not (Figure 5b).38 The use of pRb antibodies
(that recognized both full-length and p68Rb forms) in
reverse immunoprecipitation experiments confirmed that
E2F-1 co-immunopreciptated with pRb in cells treated with
ABT-737 or not (Figure 6, top panel).
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The data above suggest that pRb may cooperate with
E2F-1 to induce Noxa transcription upon ABT-737 treatment.
Thus, we studied the ability of these two proteins to occupy
noxa and p73 promoter regions. Chromatin immunoprecipita-
tion (ChIP) experiments showed that both E2F-1 and pRb
were present on noxa and p73 promoter regions and that this
occupancy was increased by ABT-737 treatment (Figure 7a).
Also, in correlation with the expression patterns of these
genes following ABT-737 treatment, RNA polymerase II was
observed bound to these promoters. The recruitment of pRb
on these promoters appeared specific as it was not recruited
on the promoter of plk1 (a E2F-1 target gene involved in cell-
cycle progression), whereas E2F-1 was present as expected
(Figure 7a).

To further investigate whether E2F-1 and pRb occupy
promoter regions in ABT-737-treated cells as binding part-
ners, serial chromatin immunoprecipitation assays were
performed (Figure 7b). E2F-1 and pRb were indeed recruited
together on noxa and p73 promoters upon ABT-737. More-
over, the pRb complexes present on these promoters were
associated with RNA polymerase II stabilization in response
to ABT-737. These results indicate that pRb-E2F1-RNA
polymerase II complexes bind specifically to noxa and p73
promoter regions, supporting the notion that these complexes
function as transcriptional inducers of these genes in
response to ABT-737.

The antibodies used in the ChIP assays cannot discriminate
full-length pRb from its p68Rb-truncated form. We thus
performed numerous assays to investigate whether cas-
pase-cleaved p68Rb contributes to E2F-1 transcriptional
activation of pro-apoptotic genes upon ABT-737 treatment.
First, we performed ChIP assays in cells pretreated with a pan
caspase inhibitor before ABT-737 (Figure 7c) to evaluate a
role for caspases in pRb recruitment to critical promoters. We
observed that the recruitment of pRb, and that of RNA

polymerase II, on p73 and noxa promoters in ABT-737-treated
cells were strongly reduced by caspase inhibition. Second, we
analyzed the presence of pRb forms in the chromatin and in
the soluble fractions of nuclear extracts of U251 cells treated
with ABT-737 or not. The full-length pRb form was detected in
both fractions of untreated cells while p68Rb strongly
accumulated in the chromatin fraction of treated cells
(Figure 7d). Third, we directly tested the ability of p68Rb to
induce Noxa expression independently from caspases.
Breast cancer BT549 pRb-negative cell line was infected with
retroviruses allowing expression p48Rb or p68Rb truncated
forms alongside with a GFP marker (Figure 7e). The ectopic
expression of p68Rb was sufficient by itself to trigger a
dramatic accumulation of Noxa in BT549 cells treated with a
pan-caspase inhibitor. Induction of Noxa by ectopic p68Rb
was also patent in ABT-737-treated BT549 cells. By contrast,
no Noxa induction was observed in uninfected cells or in cells
expressing ectopic p48Rb (Figure 7e).

As the recruitment of pRb on the noxa and p73 promoter
together with RNA polymerase II is caspase-dependent, as
the p68Rb form is chromatin bound and as its ectopic
expression leads to Noxa induction, our data strongly argue
that caspase cleavage of pRb into p68Rb contributes to Noxa
transcription in ABT-737-treated cells.

Nutlin-3a sensitizes p53-mutated breast cancer cells to
ABT-737 by upregulating Noxa in a pRb- and E2F-1-
dependent manner. As treatment with the Mdm2 inhibitor
Nutlin-3a was shown to enhance the pRb/E2F-1 path-
way,33,34 we reasoned that it may increase cell sensitivity
to ABT-737, provided pRb is present. We found that
combination of Nutlin-3a to ABT-737, but not treatment with
anyone alone, induced dramatic cell death in the breast
cancer cell lines MDA-MB-231 and MDA-MB-468, cells that
carry p53 mutations (R280K and R273H, respectively) and
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constitutively express low levels of pRb (Figures 8a and b).
A strong induction of Noxa protein expression, associated
with a cleavage of pRb, was detected in both the cell lines
treated with ABT-737 and Nutlin-3a (Figure 8b). Moreover,
silencing of either Bax, Noxa, pRb or E2F-1 lead to a
decrease of MDA-MB-231 cell death in response to the
combination treatment ABT-737/Nutlin-3a (Figure 8c). Silen-
cing of E2F-1 and pRb impeded Noxa induction in ABT-737/
Nutlin-3a-treated cells, suggesting that they regulate Noxa
expression under these conditions (Figure 8c). By contrast,
neither cell death nor induction of Noxa were observed in
ABT-737/Nutlin-3a-treated BT549 cells, which lack pRb
expression, consistent with the notion that cell death induced
by ABT-737/Nutlin-3a involves pRb (Figures 8a and d).

Thus, cell death induced by ABT-737 combined with
Nutlin-3a may recruit pRb and E2F-1 and relies on their ability
to increase Noxa expression.

Discussion

We report here that inhibition of Bcl-2 and Bcl-xL by
ABT-737 enhances a caspase-dependent increase in Noxa
induction mediated by E2F-1 and, less expectedly, by its

regulator protein pRb. Transcriptional upregulation of Noxa
was previously described in response to treatment with BH3-
mimetics.24,42 As Noxa potently binds to Mcl-1,6 its ability to
promote ABT-737 induction of cell death generally relies
on its capacity to inhibit Mcl-1 that is not targeted by
ABT-737.13–17 Silencing of Mcl-1 increased cell death rates
in ABT-737-treated U251 cells (without affecting Noxa
expression in untreated or ABT-737-treated cells,
Supplementary Figures S3A and S3B). This is consistent
with the notion that, in these cells, Mcl-1 represents a major
restrain to ABT-737 efficiency that Noxa induction contributes
to overcome. The novel perspective that emerges
from our study is that caspases impact on mitochondrial
permeability by triggering Noxa-mediated Mcl-1 inhibition in
response to inhibition of Bcl-2 and Bcl-xL and that this occurs
via transcription-dependent mechanisms that involve E2F-1
and pRb.

The transcription factor E2F-1 is a key actor of this caspase-
dependent induction of Noxa, as evidenced by its role in cell
death induced by ABT-737, by its influence on Noxa
expression and its ability to occupy the noxa promoter.
E2F-1 was already described to promote apoptosis in
response to either DNA damage or oncogenic stress, in part,
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through regulating the transcription of genes encoding for
BH3-only proteins.25,27,28,30 In U251 cells, ABT-737 had no
effect on Puma expression, which appeared dispensable for
efficient induction of apoptosis (Supplementary Figures S3A
and S3C). By contrast, the E2F-1 target gene p73 was
enhanced upon ABT-737 treatment (Supplementary Figure
S1A) and its silencing affected cell death and also impeded
the expression of Noxa (Supplementary Figure S1B). Thus,
p73 may by itself contribute to cell death in response to
ABT-737. This suggests that E2F-1 (and pRb as discussed
below) may regulate Noxa transcription (and cell death)
not only directly but also indirectly via its transcriptional
target p73.

A recent work showed that pRb participates (even in its
phosphorylated form) to form a transcriptionally active
complex with E2F-1 to regulate expression of pro-apoptotic
genes.40,41 Our data are mostly consistent with these data, as
they show that, upon ABT-737 treatment, pRb interacts with
E2F-1, is recruited to both noxa and p73 promoters and
contributes to Noxa expression and to cell death induction,
contrary to current understanding of the regulation of E2F-1 by

pRb. Strikingly, our data establish that caspase cleavage of
pRb may favor these molecular events. One feature of pRb is
that it can provide a link between caspase activation and
E2F-1 activity as it is cleaved by caspases during chemother-
apy-induced cell death, at two distinct sites.37 Upon ABT-737
treatment also, pRb is cleaved at these two sites and gives
rise to the p68Rb and p48Rb forms. Cleavage of pRb was
proposed to promote apoptosis via the release of E2F-1 from
cleaved pRbs.37,43 Nevertheless, the p68Rb-truncated form
keeps the domain of interaction with E2F-1 and, in agreement,
we found that p68Rb interacts with E2F-1 upon ABT-737
treatment. As caspase activity is required to upregulate Noxa
and as a siRNA-targeting pRb expression impedes the
induction of Noxa, we propose that p68Rb has an active role
in the E2F-1 upregulation of Noxa (Supplementary Figure S4).
We suggest that it does so by engaging complexes in which
E2F-1 is transcriptionally active and that encompass
RNA polymerase II. Supporting this, we found that the
p68Rb truncated form is present in the chromatin fraction of
ABT-737-treated cells, that caspase inhibition affects the
recruitment of pRb and RNA polymerase II on noxa and p73
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promoters and that ectopic expression of p68Rb in the
BT549 pRb-negative cells promotes a strong induction of
Noxa independently from caspases.

In conclusion, our studies put forth the notion that, upon
inhibition of Bcl-2/Bcl-xL, caspases can trigger Mcl-1 inhibition
through induction of Noxa. They do so by generating a
cleaved form of p68Rb that exerts a previously unforeseen
positive regulation of the noxa promoter together with E2F-1,
with which it interacts. Enhancement of this transcriptional
pathway may constitute an efficient way to overcome
cancer cell resistance to ABT-737, independently of p53,
as exemplified by the fact that the combination of ABT-737
with Nutlin-3a induces Noxa and promotes cell death in breast
cancer cells carrying mutant p53, provided pRb is expressed.

Materials and Methods
Cell lines and cell culture. The U251, MDA-MB-231, MDA-MB-468 and BT
549 cell lines obtained from ATCC, were grown in DMEM and RPMI medium,
respectively. HCT116 p53� /� cells, grown in McCoy’s 5A, were kindly provided
by Dr B. Vogelstein (The John Hopkins Kimmel Cancer Center, Baltimore, MD,
USA). When specified, ABT-737 was used at 2mM, Nutlin-3a (Sigma, St Louis,
MO, USA) at 10mM, zVAD-FMK (Promega, Madison, WI, USA) at 50 mM and
QVD-OPh (R&D System, Minneapolis, MN, USA) at 10 mM.

Plasmids, siRNAs and transfection. The E2F-1 cDNA from
pSG5LHAE2F1 vector (Addgene, Cambridge, MA, USA, ref. 10736)44 was
cloned into pcDNA3Flag from pcDNA3Flagp53 (Addgene ref. 10838)45 and the
resulting plasmid, named pE2F1Flag, was sequenced. The E132 E2F-1, which
carries a point mutation within the DNA-binding domain, was expressed from a
plasmid obtained from Addgene (ref. 24224).46 Following siRNAs were used:
siBax (HSC.RNAI.N138761.10.1), siBcl-2 (HSC.RNAI.N000633.6.1), siBcl-xL
(BCL2L1 ON-TARGETplus L-003458-00), siE2F1 (HSC.RNAI.N005225.10.3),
siNoxa (AC2Z4U4), siPuma (ON-TARGETplus smart pool t-004380-00-0005),
sip73 (HSC.RNAI.N0055427.10.8), sipRb (sc-29468) and SiScramble (siScr)
(SC37007). Plasmids and siRNAs were transfected according to manufacturer’s
instructions (Invitrogen, Carlsbad, CA, USA) using Lipofectamine 2000 and
lipofectamine RNAi Max, respectively.

Retroviral production. The bicistronic retroviral pMIG vector containing
an internal ribosome entry site upstream of the enhanced GFP gene,47 was used
to introduce cDNAs corresponding to p48Rb or p68Rb using BglII/HpaI and
BamHI/PmeI sites, respectively. Retroviruses were produced in Phoenix cells
maintained in DMEM with 10% (vol/vol) FBS. Briefly, 10 Phoenix cells were
transfected with 45mg of pMIG (mock, encoding p48Rb or p68Rb) and 5mg of
pVSVG (encoding the vesicular stomatitis virus G protein) complexes with PEI.6

Forty-eight hours after transfection, viral supernatants were collected. MOI was
determined by flow cytometry and BT549 cells were infected at MOI of 1.

Cellular assays. Cell viability was determined by a trypan blue staining
procedure. Caspase activities were measured using the Caspase Glow assay
system according to the manufacturer’s protocol (Promega) and were normalized
to the activity measured under control condition. Immunoprecipitations
were performed at 4 1C on cell extracts (500mg) from cells lysed in lysis buffer
(HEPES 10 mM; NaCl 150 mM; 1% CHAPS; pH7.4; protease inhibitors; 0.5%
Nonidet P-40). Cell extracts were precleared with 20ml of protein G-agarose
(Sigma-Aldrich, St Louis, MO, USA) for 1 h, and cleared extracts were
immunoprecipitated with 4 mg of the indicated antibodies overnight followed by
the addition of 50ml of protein G-agarose for 1 h. Immunoprecipitated proteins
were washed in lysis buffer and once with 10 mM Tris, pH 8, 100 mM EDTA and
then eluted with heated sample buffer. To extract proteins from the chromatin and
soluble nuclear fraction, cells were collected with a rubber scraper. The pellet was
resuspended in solution A (10 mM Hepes pH7.9, 1.5 mM MgCl2, 10 mM KCl,
0.5 mM DTT, 0.5 mM PMSF) and submitted to three freezing/thawing cycles. The
mixture was centrifuged at 2000 r.p.m. for 5 minutes. The pellet was washed in
solution A and then resuspended in solution C (20 mM Hepes pH 7.9, 25%
glycerol, 1.5 mM MgCl2, 420 mM NaCl, 0.2 mM EDTA, 0.5 mM DTT, 0.5 mM

PMSF). The mixture was incubated for 30 min in ice and then centrifuged at
12 000 r.p.m. for 15 min. The supernatant represents the soluble nuclear fraction.
The pellet, corresponding to the chromatin fraction, was resuspended in lysis
buffer (SDS: 1%; EDTA: 10 mM; Tris-Hcl ph 8,1: 50 mM; protease inhibitors
Na3VO4 1 mM, NaF 100� ) and sonicated. The mixture was centrifuged at
13 000 r.p.m. and the supernatant that corresponds to the chromatin fraction was
collected.

RNA extraction and quantitative real-time PCR. Total RNAs
were extracted with RNAeasy mini kit (Qiagen, Valencia, CA, USA). The quality
of the RNAs was assessed by analysis on an Agilent 2100 bioanalyser (Agilent
Biotechnologies, Santa Clara, CA, USA). RNAs were retro-transcribed using
Superscript transcriptase (Superscript II, Invitrogen). Following forward
and reverse primers were used: p73 (50-CTTCAACGAAGGACAGTCTG-30 and
50-AAGTTGTACAGGATGGTGGT-30), Noxa (50-GCTGGAAGTCGAGTGTGCTA-30

and 50-CCTGAGCAGAAGAGTTTGGA-30). Real-time PCR was carried out as
previously described.48

Immunoblot analysis and antibodies. After two washings with cold
PBS, cells were lysed in ice-cold lysis buffer (SDS: 1%; EDTA: 10 mM; Tris-Hcl ph
8,1: 50 mM; protease inhibitors Na3VO4 1 mM, NaF 100� ) and extracts were
sonicated. Protein extracts were separated by SDS-PAGE, transferred onto a
PVDF membrane (Millipore, Billerica, MA, USA) and revealed with a
chemiluminescence kit (Millipore). Following antibodies were used: actin
(MAB1501R, Millipore), b-tubulin (T0198, Sigma), Bax (A3533, Dako, Glostrup,
Denmark), Bcl-2 (1017-1, Epitomics, Burlingame, CA, USA), Bcl-xL (1018-1,
Epitomics), E2F-1 (3742, Cell Signaling, Danvers, MA, USA), Mcl-1 (sc-819, Santa
Cruz Biotechnologies, Santa Cruz, CA, USA), Noxa (ALX-804-408, Enzo Life
Science, New York, NY, USA), pRb XZ55 (554144, BD Pharmingen, San Diego,
CA, USA), pRb G3-245 (554136, BD Pharmingen), phospho-pRb (S807-811)
(558389, BD Pharmingen), p73 (5B429, Imgenex, San Diego, CA, USA), Puma
(4743, Sigma), and Flag (F1804, Sigma). The following antibodies against E2F-1
C-20 (sc-193, Santa cruz Biotechnologies), pRb 4H1 (9309, Cell Signaling) and
polymerase II (sc-899, Santa Cruz Biotechnologies) were used for immunopre-
cipitations and ChIP assays.

ChIP and serial ChIP assay. Single (ChIP) and serial ChIP experiments
were performed essentially as previously described.49 The following primers were
used: NOXA IS: 50-CGTCTAGTTTCCCTACGTC-30; 50-AGATGCCAACTACACAC
G-30, p73-1100: 50-TGAGCCATGAAGATGTGC-30; 50-GCTGCTTATGGTCTGATG
CTTATG-30,39 p73 control 50-CAATTGTCCCCCTCTTCTGA-30; 50-GTGGCAGAA
GGGTGCTTAAA-30 and PLK1 IS 50-GTTTTCCCCGGCTGGGTCCG-30; 50-AAGC
TGCGCTGCAGACCTCG-30.

Data analysis. Data were from at least three independent experiments.
Statistical analysis of data was performed using one-tailed Student’s t-test on
GraphPad Prism (La Jolla, CA, USA). Error bars represent S.E.Ms. The following
symbols are used: *, ** and *** that correspond to a P value inferior to 0.05, 0.01
and 0.001, respectively.
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