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Glycobiology of cell death: when glycans and lectins
govern cell fate

RG Lichtenstein*,1 and GA Rabinovich*,2,3

Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral
role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver
intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs.
Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during
physiologic and pathologic settings.
Cell Death and Differentiation (2013) 20, 976–986; doi:10.1038/cdd.2013.50; published online 24 May 2013

Bullet Points

(1) Glycosylation of classical death receptors fine-tunes cell
death programs.

(2) Intracellular lectins and glycan-modifying enzymes
mediate autophagy and control host immunity and
inflammation.

(3) Endogenous lectins and glycans are critical signals in the
resolution of cell death.

Open Questions

(1) Is there a hallmark ‘glycosylation signature’ that char-
acterizes the initiation, execution and resolution of cell
death programs in physiologic and pathologic settings?

(2) How do C-type lectins tailor adaptive immunity following
phagocytosis of apoptotic cells?

(3) What is the precise role of intracellular and extracellular
galectins in the control of cell death programs?

Historical Overview

During the 1960s as part of the revolution in developmental
biology, Lockshin andWilliams1 coined the term ‘programmed
cell death (PCD)’. Several years later, Kerr and co-workers2

defined the morphological changes in cells undergoing this
process, also known as apoptosis. At that time, glycobiology,
which is the study of carbohydrates and their recognition by
motif-specific carbohydrate-binding proteins or lectins, lagged

far behind the studies that defined the structural and cellular
biology of cell death. Although lectins were already known
because of their ability to agglutinate red blood cells,3 the
involvement of lectins and glycans in PCD had not been
elucidated. Two decades later, pioneering studies suggested
that lectin-like molecules constitutively expressed on the
surface of macrophages can selectively recognize changes
on glycans decorating the surface of apoptotic thymocytes,4,5

although these studies likewise did not provide substantial
insight into the mechanisms by which lectin–glycan interac-
tions regulate cell death. More compelling evidence was
obtained several years later, when Griffiths and co-workers6

identified apoptotic changes within lymphoid tissues after
injection of plant lectins in vivo, followed by additional
studies7,8 documenting cell shrinkage andDNA fragmentation
in lymphocytes exposed in vitro to plant lectins. This approach
set the basis for therapeutic strategies aimed at eliminating
aberrantly glycosylated cancer cells.9

The emergence of functional studies on animal lectins
during the 1990s has provided the appropriate framework to
better understand their roles in cell death.10 Galectins can
function inside the cells by modulating signaling pathways,11

although they also act extracellularly by establishing multi-
valent interactions with cell surface glycans and delivering
signals that lead to disruption of cellular homeostasis.12–14

We discuss here the contribution of glycan–lectin interac-
tions to the initiation, execution and resolution of apoptosis
and their emerging roles in other cell death programs
including autophagy. Understanding the function of
lectin–glycan recognition systems in cell death will facilitate
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the implementation of novel therapeutic strategies aimed at
controlling unbalanced cell proliferation and survival in several
pathologic conditions.

Lectins and Glycans in the Initiation of Cell Death

The surface of the living cells is decorated by a complex layer
of glycosylated molecules that store relevant biological
information. The glycosylation machinery is responsible
for assembling a diverse repertoire of glycan structures,
collectively termed ‘glycome’, through the synchronized
action of a portfolio of glycan-modifying enzymes including
glycosyltransferases and glycosidases. To create the large
repertoire of glycan structures, each of these glycosyltrans-
ferases uses a single-nucleotide sugar substrate and forms
specific linkages between one monosaccharide and a glycan
precursor. The nature and extent of glycosylation of a given
protein depends on the presence of N- and O-linked

glycosylation sites in the protein backbone, as well as on the
expression and activities of particular glycosyltransferases
and glycosidases within a specific cell or tissue.15 Membrane-
anchored or soluble lectins are responsible of decoding
glycan-containing information and controlling cellular
homeostasis by modulating signaling, receptor trafficking
and endocytosis.16,17 Through different mechanisms,
lectin–glycan recognition systems have important roles in
the initiation of cell death (Figure 1).

Glycans Exposed on Death Receptors Control Cell Death

Glycosylation can modulate the function of death
receptors including CD95 (Fas) and tumor necrosis factor
receptor 1 (TNFR1) by allowing or sterically hindering
their ligation by FasL or TNF superfamily ligands. Several
glycosyltransferases and glycosidases comprising the
‘glycosylation machinery’ control death by displaying or
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Figure 1 Influence of glycans and glycan-binding proteins in death receptor signaling and function. In tumor cells, alterations of the components comprising the
‘glycosylation machinery’ generate aberrant O-glycans and N-glycans on Fas and TRAIL receptors, which modulate apoptosis. Upregulation of GALNT3, FUT and GDP-FUC
as a result of DNA methylation increases tumor cell sensitivity to extrinsic apoptosis through TRAIL. In addition, a2-6-linked sialic acid decorating Fas receptor on tumor cells
blocks Fas ligand internalization, Fas–FADD complex formation and activation of caspase-8 and -3, thus attenuating cell death via the extrinsic pathway. Intracellular and
extracellular galectins can modulate survival and apoptotic signaling pathways in tumor cells. Intracellular galectin-1 decreases Akt activity and induces apoptosis. By contrast,
intracellular galectin-3 either free or associated with C2-ceramide cooperates with PI3K/Akt to increase tumor cell survival. However, in some cases, intracellular galectin-3
promotes extrinsic and intrinsic apoptosis, either through association with Fas or via phosphorylation at serine 6. Extracellular galectin-3 inhibits the extrinsic apoptosis
cascade by anchoring TRAIL receptors through glycosylation-dependent mechanisms. Moreover, glycosylation of intracellular Fas ligands in tumor cells facilitates ligand
secretion as a strategy of tumor-immune escape (a). Fas receptor on immune cell bears N-glycans to stabilize complexes like DISC, generated during the execution
of the extrinsic apoptotic pathway. Increased a2-6 sialylation of N-glycans impairs Fas internalization, FADD–Fas complex formation, activation of caspase-8 and -3 and
T-cell homeostasis. a2-6 sialylation further interferes with galectin-1 binding to glycoproteins (e.g. CD45, CD43), and also interrupts ligand binding to TNFR1 on macrophages
and decreases apoptosis. Galectin-1 interacts with Fas on resting T cells and stimulates both the intrinsic and extrinsic apoptotic signaling routes (b). GALNT3, N-acetyl
galactosyltransferase-3; FUT, fucosyltransferase; GDP-FUC, guanosine diphosphate-fucose; Akt, serine/threonine-specific protein kinase; Ser6, serine at position 6; CD45,
protein tyrosine phosphatase; CD43; sialophorin
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masking cell surface glycans. Upregulation of particular
glycosyltransferases
(N-acetyl galactosamine (GalNAc) transferases and fucosyl-
transferase) leads to fucosylated core-2 O-glycans in
TNF-related apoptosis-inducing ligand receptor (TRAIL-R1/
DR4 and TRAIL-R2/DR5), which increases the sensitivity of
cancer cells to TRAIL-induced apoptosis. Exposure to
glycosylated TRAIL enhances recruitment of death-inducing
signaling complex (DISC), Fas-associated death domain
(FADD) and caspase-8, all of which are involved in the
extrinsic apoptotic pathway, providing a potential predicative
marker for TRAIL-based cancer therapy.18 Consistent with
these observations, a lower degree of fucosylation, which
occurs by mutation of the GDP-mannose-4-6-dehydratase
(GMDS) gene increases resistance to TRAIL-induced apop-
tosis in human colon cancer cells.19 TheGMDS is an essential
enzyme responsible for converting GDP-mannose into GDP-
fucose in the de novo fucosylation pathway. As a result, tumor
cells evade NK cell-dependent immune surveillance.19 This
observation was further supported by removing the DNA’s
methyl groups of highly resistant tumor cells.20 Treatment with
the methyltransferase inhibitor zebularine decreases DNA
methylation and increases the expression of fucosylation-
related genes, which subsequently decrease resistance to
TRAIL-induced apoptosis20 (Figure 1a).
N-glycosylation of death receptors also regulates apoptotic

programs. Whereas TRAIL bears two potential O-glycosyla-
tion sites,18 Fas contains two N-glycosylation sites.21 In the
presence of Fas ligand, Fas-associated N-glycans contribute
to stabilize the core DISC structure, DISC–DISC interactions
and procaspase-8 oligomerization21 (Figure 1b). By contrast,
when Fas is aberrantly glycosylated because of localization of
the protein tyrosine phosphatase SHP-1 in the endoplasmic
reticulum (ER), Fas fails to oligomerize in response to Fas
ligand and T-cell homeostasis is impaired.22 Accordingly,
sialic acid residues decorating N-glycans reduce the
sensitivity of B-cell lymphomas to Fas ligand-induced

apoptosis.23–25 More recent studies revealed that a2-6
sialylation blocks Fas internalization, formation of the Fas–
FADD complex and activation of caspase-8 and -3 in colon
carcinoma cells.26 However, it remains unclear whether sialic
acid residues interfere with Fas signaling or whether the intact
glycan structures control particular molecular cascades
leading to cell death. In this regard, Schneider and co-
workers27 found that Fas ligand bears three N-glycans that
are essential for its efficient secretion. This effect was
substantiated in tumor models showing that heavily glycosy-
lated Fas ligand was associated with exosomes when
secreted from malignant cells, possibly to induce apoptosis
of Fas-bearing immune cells as a strategy of immune
escape.28 Thus, glycosylation of death receptors and
their canonical ligands may critically regulate the initiation of
apoptosis by hindering ligand–receptor interactions, influen-
cing the formation of signaling complexes and/or modulating
ligand secretion from effector cells. Solid and hematopoietic
malignancies often use their unique glycosylation machinery
to modify death receptor’s glycans, thereby increasing
resistance to apoptosis. However, glycan-binding proteins
and glycans may themselves control initiation or termination
of lethal signaling.12

Cross-talk Between Lectins and Death Receptors in the
Initiation of Cell Death

When endogenous (cell membrane) or exogenous (soluble)
glycan-binding proteins are recruited to signaling death
receptors (Table 1), the apoptotic machinery is positively or
negatively regulated through the establishment of multivalent
interactions between glycosylated receptors and glycan-
binding proteins. These interactions control signaling thresh-
olds, receptor clustering and endocytosis.12 Depending on the
activation or differentiation status of T cells, exposure to
galectin-1 leads to growth arrest or inhibition of cytokine
secretion.29 Binding of galectin-1 to N- and O-glycans on cell

Table 1 Involvement of galectins at different stages of programmed cell death

Member Function Receptor/target protein Cell type Reference

Galectin-1 Proapoptotic Fas T cells 16,30

Akt Breast carcinoma 35

CD43, CD45 T cells 39,46,47

Galectin-3 Proapoptotic Fas B and T cell lines 32

Antiapoptotic C2-ceramide B and T cell lines 32

Antiapoptotic PI3K/Akt Bladder carcinoma 33

Antiapoptotic TRAIL Breast carcinoma 34

Proapoptotic Akt Breast carcinoma 35

Antiapoptotic TRAILR1, TRAILR2 Colon cancer 36

Ser6-phosphorylated galectin-3 Proapoptotic TRAIL Breast cancer 37,38

Galectin-3 Antiapoptotic Bcl-2 T cells 72

Tyr79-, Tyr118-phosphorylated galectin-3 Antiapoptotic c-Abl, Arg tyrosine kinase Carcinoma 74

Galectin-7 Proapoptotic Bcl-2 Carcinoma 71

Galectin-8 Autophagy Autophagic proteins Salmonella-infected cells 81

Galectin-9 Proapoptotic TIM-3 Th1 cells 60

Galectin-1 Phagocytosis Phosphatidylserine recruitment Activated neutrophils 102,103

CD45 and fodrin T cells 111

Galectin-2 Phagocytosis Phosphatidylserine exposure Activated T cells 104

Galectin-3 Phagocytosis Monocytes/macrophages Apoptotic thymocytes 93–95

MerTK Apoptotic neutrophils 101

Phosphatidylserine exposure Activated neutrophils 102,103

Galectin-4 Phagocytosis Phosphatidylserine exposure Activated T cells 104

Galectin-8 Phagocytosis Phosphatidylserine exposure HL-60 myeloid cells 104
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surface glycoproteins triggers apoptosis of activated T cells.16

However, galectin-1 also binds to resting T cells and
contributes to the amplification of Fas ligand-mediated
apoptosis.30 This effect involves direct interaction of galec-
tin-1 with Fas, upregulation of Fas on the surface of resting
T cells and changes in the mitochondrial membrane poten-
tial30 (Figure 1b). In addition, sialylation-dependent regulation
of apoptosis has been demonstrated for TNFR1, an alter-
native death receptor in macrophages. Lack of a2-6-linked
sialic acid facilitates the initiation of apoptosis by increasing
cellular sensitivity to apoptotic stimuli including TNF and
Fas ligand.31

Similar to galectin-1, galectin-3 also associates with Fas
and controls the Fas signaling route.32 By forming a complex
with the internal Fas domain, endogenous galectin-3
promotes DISC formation, caspase-8 recruitment and
caspase-3 cleavage, whereas it represses apoptotic signals
through the C2-ceramide.32 On the other hand, the antiapop-
totic function of intracellular galectin-3 is associated with
TRAIL activity. Expression of galectin-3 is significantly
elevated in TRAIL-resistant bladder carcinoma cells and
cooperates with phosphatidylinositol 3-kinase (PI3K)/Akt
to increase tumor cell survival.33 In breast carcinoma,
overexpression of galectin-3 induces inactivation of Akt
possibly through redox-dependent mechanisms, thereby

enhancing TRAIL-induced cytotoxicity.34 In contrast, galec-
tin-1 has been proposed as a candidate inhibitor, which
decreases Akt activity and induces apoptosis of breast cancer
cells.35 Recently, Mazurek and co-workers36 documented a
direct interaction between galectin-3 and TRAIL, further
emphasizing the antiapoptotic properties of this lectin.
When galectin-3 is expressed on colon cancer cells, it
promotes the formation of a heterodimeric complex with
TRAIL-R1 and TRAIL-R2 by anchoring these death receptors
through glycosylation-dependent mechanisms.36 However,
the antiapoptotic properties of galectin-3 are lost when this
lectin is post-translationally modified by phosphorylation at
serine 6.37 This phosphorylation event promotes sensitivity of
breast cancer cells to TRAIL by enhancing extrinsic
and intrinsic apoptotic pathways, inactivating PI3K/Akt
survival pathway and stimulating the phosphatase activity38

(Figure 1a).

Apoptosis Mediated by Lectin–Glycan Interactions
through Death Receptor-Independent Mechanisms

In addition to the classical death receptors, several
transmembrane glycoproteins and lectin receptors can
transduce intracellular signals leading to cell death.
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Galectin Counter-Receptors in the Initiation of Cell Death

Soluble galectins form multivalent complexes with a selected
repertoire of glycosylated receptors, leading to a shift in the
molecular composition of the receptor interactome. Clustering
and segregation of CD45 with CD3 and CD7 with CD43 are
crucial for initiating death following galectin-1 binding to
T cells.39 The CD45 phosphatasemediates apoptosis through
modulation of the extrinsic pathway affecting downstream
signaling mechanisms after internalization into the cell. Upon
engagement of CD45, both caspase-3 activation and clea-
vage of the DNA fragmentation factor DFF-40 occur.40 In
response to galectin-1, activated T cells downregulate the
expression of the antiapoptotic B-cell lymphoma-2 down-
regulate the (Bcl-2) protein and activate effector caspases.41

Mechanistically, this lectin triggers endonuclease G nuclear
translocation,42 p56/Lck tyrosine phosphorylation43 and acti-
vator protein-1 activation.44,45 Moreover, galectin-1 stimu-
lates the release of ceramide and promotes c-Jun N-terminal
kinase (JNK) activation. As a result, Bcl-2 accumulation is
condensed and Bcl-2 phosphorylation is elevated, generating
heterodimerization with the proapoptotic protein Bax. These
molecular events lead to caspase-3 and -9 activation resulting
in T-cell death.45

Expression of core-2 O-glycans (Galb1–3 [N-acetyl gluco-
samine] b1–6 GalNAc) on the surface of T cells allows

clustering of CD45, which facilitates galectin-1-induced

apoptosis.46 The absence of this glycan and particularly the

presence of a2-6-linked sialic acid on CD45 N-glycans

counteract inhibition of CD45 tyrosine phosphatase activity,

which is an essential step in galectin-1-induced cell death.47

Interestingly, differential glycosylation of T-helper (Th) cell

subsets selectively regulates susceptibility to cell death.

In contrast to Th1 and Th17 cells, survival of Th2-polarized

lymphocytes is controlled by a2-6 sialylation of cell surface

glycoproteins, which adjusts the threshold for galectin-1

binding.48 However, binding of galectin-1 to CD45 or CD43

leads to apoptosis. This lectin binds to CD43 leading

to dendritic cell migration and promotion of a regulatory

phenotype.29,49 Moreover, galectin-1 binding to core-2

O-glycans on CD45 induces cell surface retention of this

glycoprotein and amplification of CD45 phosphatase activity

in microglial cells. This effect leads to the inhibition of the

mitogen-activated protein kinase p38, cAMP response

element binding and NF-kB-dependent signaling, which

ultimately prevent M1 microglia activation and promote

neuroprotection.50 Thus, binding of galectin-1 to identical

glycoproteins may result in different cellular outcomes

depending on the particular target cell and the spatiotemporal

regulation of glycosyltransferases, responsible for building the

‘cellular glycome’.
Interestingly, glycosylation changes dramatically according

to cellular activation and differentiation. For example, the

contraction or resolution phase of CD8þ T-cell responses is

accompanied by the synthesis of extra core-2 O-glycans and

the concomitant loss of a2-3 sialylation of core-1 O-glycans.

These events render activated CD8þ T cells susceptible to

apoptosis even in Bcl-2-transgenic mice.51 In Bim-deficient

mice however, removal of a2-3-linked sialic acid reduces

the accumulation of CD8þ T cells without diminishing

apoptosis.51 Unlike the mechanism of CD8þ T-cell homeo-
stasis, CD4þ T cells interact with the macrophage
galactose-type lectin, a C-type lectin receptor expressed
on dendritic cells through binding to CD45, resulting in
the reduction of CD45 phosphatase activity and induction
of apoptosis.52

In contrast to intracellular galectin-3, which possesses
antiapoptotic properties, secreted galectin-3 displays pro-
apoptotic activity through binding to CD7 and CD29
(b1-integrin)

53 or to CD45 and CD71.54 Crosslinking of CD7
and CD29 by galectin-3 results in cytochrome c release and
caspase-3 activation. Interestingly, intracellular galectin-3 can
prevent apoptosis induced by galectin-1, most likely by
stabilizing the mitochondria.42 However, the antiapoptotic
effects of intracellular galectin-3 are attenuated by syntexin, a
member of the annexin family, which prevents galectin-3
translocation to the perinuclear membrane and facilitates its
secretion.55 Moreover, the proapoptotic activity of extracel-
lular galectin-3 is modulated by the glycan composition of
relevant receptors. Low a2–6 sialylation increases the affinity
of galectin-3 to CD29, thereby amplifying cell death signals.56

Interestingly, a2–6 sialylation also showed significant effects
on cancer immunoediting, a process in which cell death plays
a critical role.57

An interesting example of how lectin–receptor interactions
control inflammatory response has been shown for galectin-8.
Binding of galectin-8 to CD44 activates the proapoptotic
machinery in joint inflammatory cells and promotes relief
of inflammation. This effect depended on the formation of
multiprotein complexes that comprised of soluble CD44 and
fibrinogen.58 Accordingly, delivery of galectin-1 to sites of
inflammation promoted T-cell apoptosis and attenuated
inflammation in different models of autoimmune disease.59

These findings emphasize the relevance of apoptosis as a
therapeutic modality in chronic inflammatory conditions.
Interestingly, the T-cell immunoglobulin mucin domain 3
(TIM-3) has been implicated in T-cell apoptosis. Binding of
galectin-9 to TIM-3 triggers selective death of Th1 cells60

through Ca2þ -calpain-caspase-1 mechanisms.61 The proa-
poptotic effects of galectin-9 involve the formation of stable
dimeric structures containing two carbohydrate recognition
domains (CRDs) and require the presence of complex
N-glycans on target cells.62 Recent studies implicated the
human leukocyte antigen B-associated transcript (Bat3) as a
molecular adaptor linked to the intracellular tail of TIM-3,
which protects Th1 cells from galectin-9-induced apoptosis.63

However, studies on TIM-3–galectin-9 interactions were so
far based on exposure to exogenous galectin-9. Whether an
additional ligand competes with galectin-9 for TIM-3 is less
clear. In this regard, galectin-9-independent TIM-3 activity has
been documented.64 More recently, a subset of TIM-3 and
programmed death 1-positive FoxP3þ T regulatory cells,
which was sensitive to galectin-9, has been found within
graft-infiltrating T cells.65

Among the various glycoproteins that serve as binding
partners for galectins, CD29 preferentially interacts with
galectin-2, whereas CD3 selectively binds galectin-4. Upon
binding to CD29, galectin-2 elicits apoptosis of activated
T cells through mechanisms involving reduction of the
mitochondrial transmembrane potential (Dcm) and
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enhancement of cytochrome c release subsequent to
caspase-3 and -9 activation. Galectin-2 triggers mitochondrial
outer membrane permeabilization (MOMP) in activated
T cells as documented by enhancement of the Bax to Bcl-2
ratio.66 However, it is not clear whether galectin-2 or galectin-
2-activated Bcl-2 homology-3 (BH3) stimulates MOMP by
triggering oligomerization of Bax in the outer mitochondrial
membrane, which forms channels to allow mitochondrial
protein escape from the inner mitochondria.67 On the other
hand, galectin-4 binding to CD3 promotes T-cell apoptosis
through a calpain-sensitive but caspase-independent
pathway.68 Although galectin-2 and galectin-4 promote T-cell
death in vitro, the physiologic relevance of these interactions
in vivo remains uncertain.

Endogenous Glycans and Lectins in the Execution of
the Cell Death Programs

The involvement of endogenous lectin–glycan recognition
systems in cell death programs is illustrated in Figure 2.
Intracellular galectins can fine-tune responses that amplify
or attenuate execution of cell death triggered by a variety of
stimuli. Here we discuss selected examples showing how
interactions between intracellular galectins and their ligands
can regulate cellular homeostasis (Table 1).
Intracellular galectin-7 is regarded as a p53-regulated

proapoptotic protein expressed by stratified epithelia.69

Galectin-7 is overexpressed in apoptotic keratinocytes
exposed to UV irradiation.70 Exposure to proapoptotic stimuli
increases galectin-7 expression, which induces upregulation
of caspase-3, augments cytochrome c release and promotes
JNK activation.69 Recently, analysis of the Bcl-2 interactome
identified galectin-7 as a mitochondrial Bcl-2-interacting
protein in colon carcinoma cells. Following treatment of
purified mitochondria with tBid, a truncated BH3-interacting
domain death agonist or with lonidamine, an activator of the
mitochondrial transition-permeability pore opening, mitochon-
drial galectin-7 promoted the release of cytochrome c and
second mitochondria-activator of caspases (Smac)/DIABLO
factors. This response was prevented when exogenous
galectin-7 was added to cell cultures, suggesting that
mitochondrial galectin-7–Bcl-2 heterodimers selectively
enhance the intrinsic apoptotic pathway.71 In this regard,
earlier studies have demonstrated the ability of intracellular
galectins to interact with or mimic Bcl-2 proteins to control
apoptosis. Intracellular galectin-3 forms heterodimers with
Bcl-272 similar to homologous proteins like Bax,73 suggesting
a model in which the ratio of Bcl-2 to intracellular
galectin-3 dictates cell fate. As discussed earlier, intracellular
galectin-3 displays antiapoptotic properties and its
phosphorylation at serine 6 prevents the transmission of
antiapoptotic signals.38 By contrast, phosphorylation at
tyrosine 79 and tyrosine 118 by c-Abl and Arg tyrosine
kinases represses galectin-3 lysosomal-dependent degrada-
tion via the chaperone-mediated autophagy (CMA), and
association of galectin-3 with these kinases increases the
antiapoptotic activity of this lectin.74 Thus, phosphorylation of
intracellular galectin-3 serves as a regulatory mechanism to
control selectively the apoptotic machinery.

Glycosylation-Related Molecules are Integral
Components of the Autophagy and Apoptosis
Machineries

Interestingly, the activity of glycosidases, including a-galacto-
sidase, a-mannosidase and neuraminidase, is modulated
by c-Abl and Arg tyrosine kinases during autophagy in
lysosomes, highlighting another cellular event in which
the glycosylation machinery controls cell death programs.75

The main role of glycan-degrading enzymes in cellular
autophagy was initially studied for a-mannosidase in the
yeast Saccharomyces cerevisiae. Under starvation condi-
tions, a-mannosidase acts as a selective cargo protein,
trafficking from the cytosol to the vacuole (the yeast ortholog
of mammalian lysosome) through a sequential mechanism
involving assembly into an oligomer in the cytosol, sequester-
ing into a double-membrane vesicle called autophagosome
and fusing with the vacuole. After fusion, the autophagic
content is released to the vacuolar lumen and the content
is degraded by hydrolases.76 The selective transport of
a-mannosidase is promoted by the autophagy protein 34
(Atg34), which links the mannosidase to Atg8 (a yeast
homolog of mammalian light chain-3; LC3) during auto-
phagy.77,78 In mammalian cells, the trafficking of lysosomal
a-mannosidase to the lysosome after its synthesis in the
ER–Golgi depends on the phosphorylation of mannose
residues in high-mannose glycans.79 Recently, a study on
type-II mucolipidosis, a neurometabolic lysosomal trafficking
disorder of childhood, revealed accumulation of polyubiquiti-
nylated protein aggregates like p62 and the vesicle-
associated form LC3-II as well as unchanged expression
of Beclin-1, which disarms the autophagic machinery of
neuronal tissue as a result of impairment in the activity
of lysosomal glycan-metabolizing enzymes.80

Endogenous galectin-8 participates in the intracellular
cascades of autophagy. In damaged organelles and infected

cells, galectin-8 has been defined as a sensor of nonspecific

damage and an autophagy-inducing signal for eradicating

bacterial infections. In vesicles of Salmonella-infected cells

and following mechanical damage of the lysosomes and

endosomes, glycans are exposed, facilitating binding of host

galectin-8. In a setting of cellular infection, bound galectin-8

recruits and binds autophagic proteins including the nuclear

dot protein 52 kDa (NDP52) and LC3, as well as other

components of the autophagy machinery, capturing the

bacterium in the autophagosome, which is then destroyed in

the lysosome by digestive enzymes.81 Li and co-workers82

recently solved the crystal structure of the NDP52–galectin-8

complex showing that NDP52 selectively binds galectin-8 but

not other galectins to restrict the growth of Salmonella in

human cells. Thus, it appears that endogenous galectin-8 is

part of an innate defense mechanism in the cytosol that

restricts bacterial replication and inflammation. In some

cases, such a mechanism is similar to ER-stress-elicited

autophagy, which is commonly cytoprotective.
The ER compartment is responsible for the quality control

of newly synthesized proteins and glycoproteins. When a

protein or glycoprotein is incorrectly folded, the ER-stress

sensor (IRE1) initiates an ER-associated degradation (ERAD)

pathway to degrade the misfolded protein by an array

Glycans and lectins govern cell fate
RG Lichtenstein and GA Rabinovich

981

Cell Death and Differentiation



of proteins and enzymes, including the ER degradation-
enhancing a-mannosidase-like protein (EDEM).83,84

ER stress is caused by the accumulation of misfolded
proteins, impairment of N-glycan biosynthesis and synthesis
of central ER proteins,85 and is facilitated by infectious
processes,86 which activate the IRE1-dependent pathway.
Recent studies have shown direct and indirect involvement of
EDEM in modulating apoptosis and autophagy. Repression of
IRE1 signaling and suppression of apoptosis are events
observed in the absence of the protein-tyrosine phosphatase
(PTP)-1B, which impairs EDEM transcription, IRE1-depen-
dent JNK activation and XBP-1 splicing.85 Similar to the
cytoprotective function of galectin-8, EDEM in the ERAD
process can facilitate the reduction of hepatitis envelope
proteins in hepatitis B virus-infected cells in an autophagy-
dependent manner with the purpose of protecting host cells.87

Accordingly, a-mannosidase-like protein and the hydrolase
share functions of controlling both apoptosis and autophagic
cell death under the title of cargo proteins, although they differ
in their intracellular localization. Whereas EDEM is concen-
trated in the ER, a-mannosidase is distributed in the cytosol to
form vacuoles (Cvt) or autophagosomes.77

ER stress can also be caused by impairment of Golgi
proteins. In this respect, Smits and co-workers88 showed that
in vivo deficiency of Golgi-associated microtubule-binding
protein 210 (GMAP-210) increased death of chondrocytes
and other cells in the humerus and ulna cells during skeletal
development. GMAP-210 is one of the proteins tethering
vesicles to the Golgi and maintaining its architecture.89

Deficiency of GMAP-210 alters glycosylation in the Golgi of
chondrocytes and fibroblasts, promoting accumulation of the
proteoglycan perlican, which is a hallmark of patients with
achondrogenesis.88 Although disassembly of Golgi apparatus
during apoptosis is well documented,90,91 the involvement of
GMAP-210 in the abnormal synthesis of glycosylated mole-
cules and cell death represents the first evidence associating
the Golgi apparatus with the initiation of a stress response.
Whether components of the glycosylation machinery may
serve as intermediates of cell death in the Golgi apparatus
remains an open question.

Glycans and Lectins in the Resolving Stages of Cell Death

Removal of apoptotic cells involves the sequential action of
multiple steps, through which phagocytes selectively recog-
nize and engulf apoptotic cells. These include the activity of
specific chemoattractants, which assist phagocytes to sense
dying cells92 (‘find me’ signals) and mechanisms involved in
the engulfment of dying cells (‘eat me’ signals). Lectin–glycan
recognition systems have been identified as part of the
apoptosis-resolving machinery (Figure 3 and Table 1).
Among the biological activities displayed by galectin-3, this

lectin serves as a selective chemoattractant for monocytes
and macrophages93 and promotes phagocytosis of apoptotic
thymocytes,94,95 suggesting a role for this lectin as a ‘find me’
signal for these cell types. While extracellular galectin-3
contributes to macrophage recruitment, intracellular galectin-
3 contributes to apoptotic cell clearance.94 Conversely, the
offset of ‘find me’ signals is the ‘keep out’ or ‘don’t find me’
signals, which are sent out by dying cells and negatively

regulate phagocyte recruitment. For example, the 80 kDa
glycoprotein lactoferrin operates as a negative regulator
released by dying cells to halt neutrophil migration in response
to chemokines in the apoptotic milieu.96 As intelectin-1, a
C-type lectin that binds galactose and GalNAc residues acts
as a receptor for lactoferrin on phagocytes,97 the involvement
of lectin–glycan interactions in mediating ‘keep-out’ signals
remains to be determined.
In the second phase, ‘eat me’ signals displayed by apoptotic

cells promote the recognition of dying cells and the initiation of
phagocytosis. Glycans and lectins have a professional role in
the recognition of infected apoptotic cells. A prominent player
of these late apoptotic events is the ER chaperone calreticulin
(CRT) expressed on apoptotic cells. Calreticulin is a lectin
specific for monoglucosylated N-glycans, which participates
in the quality control of protein/glycoprotein folding. CRT acts
as a coreceptor for opsonin C1q and as an endocytic pattern
recognition receptor on macrophages.98 Similarly, soluble
pattern recognition glycan-binding proteins such as ficolin-2,
ficolin-3 and collectins contribute to clearance of dying cells.99

For example, the surfactant protein A, a lung collectin,
recognizes apoptotic neutrophils as inflammation resolves
and mediates phagocytosis by alveolar macrophages.100

Another interesting opsonin recently proposed to be
involved in apoptotic neutrophil clearance is galectin-3, which
interacts with Mer receptor tyrosine kinase (MerTK) to
facilitate MerTK-mediated phagocytosis.101 Nevertheless,
galectin-3 does not exclusively function as a chemoattractant
or bridging ligand in phagocytosis. This galectin, as well
as galectin-1 and galectin-4, are prominent inducers of
phosphatidylserine exposure, a common ‘eat me’ signal
recognized by phagocytic receptors on the surface of
apoptotic cells. Galectin-1, galectin-3 and galectin-8 enhance
phosphatidylserine exposure on activated neutrophils and
myeloid HL-60 cells, whereas galectin-2 and galectin-4 induce
the same effect on activated T lymphocytes. In both cell types,
exposure to soluble galectins promotes phosphatidylserine
exposure without engaging a full apoptotic program.102–104

Interestingly, other ‘eat me’ signals may function together
with phosphatidylserine with the common aim of executing
phagocytosis.105 Engulfment depends on particular phago-
cytic receptors used to ingest apoptotic cells.106 This is clearly
illustrated by studies showing how phagocytes clear circulat-
ing activated platelets as a way of dampening vascular
inflammation. Although activated platelets express phospha-
tidylserine, clearance is initiated by interaction between the
tethering lectin, P-selectin on activated platelets and
the sialyl-Lewisx glycan epitope on P-selectin glycoprotein
ligand-1 expressed on resting neutrophils. As a consequence,
neutrophils release granules and upregulate b2-integrins,
which stabilize adhesion to activated platelets. Finally,
neutrophils engulf the tethered platelets and confine them
into phagosomes.107 Other studies illustrate the formation of a
multiprotein complex with phosphatidylserine that is essential
to execute phagocytosis. The macrophage-secreted glyco-
protein, milk fat globule-EGF-factor 8 (MFG-E8), binds to
phosphatidylserine on apoptotic cells before cell engulf-
ment.108,109 Recent studies showed that TIM-4 expressed
by phagocytes forms a complex with phosphatidylserine
on apoptotic pro-B cells as a first event in the promotion of
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phagocytosis. As a result, aVb3-integrin is activated and forms
a complex with MFG-E8, which also binds to phosphatidyl-
serine, allowing apoptotic cell uptake.110 Also, CD45-
mediated death of T cells via galectin-1 requires the presence
of fodrin, a cytoskeletal linker molecule that attaches CD45 to
the actin cytoskeleton. Degradation of fodrin is essential to
accelerate uptake of apoptotic cells by macrophages.111

In addition, glycans also participate as ‘eat me’ signals for
apoptotic cells. Specifically, a low content of sialic acid in
apoptotic cells serves as an ‘eat me’ signal in different cell
types, including HeLa cells infected with influenza virus A.112

Also, reduced amounts of terminal a2-6- and a2-3-linked sialic
acid on apoptotic T cells favor their engulfment by phago-
cytes.113 In addition, Galb1-3GalNAc-enriched glycoepitopes
on apoptotic bodies have been identified as ‘eat me’ signals,
allowing clearance of dying cells by macrophages.114 Phago-
cytes can interact with sialyl-poly-lactosaminyl glycans on the
bridging receptor CD43 expressed on apoptotic T cells and
promote their phagocytosis.115

The mechanisms underlying changes in the ‘apoptotic cell
glycome’ and their link to phagocytosis remain elusive. It is
possible that glycan-modified proteins in apoptotic cells
first bind filaments, that is, vimentin-like lectins,116 siglecs
(e.g. siglec-5)117 or C-type lectin receptors118 on neighboring

phagocytes. In the case of vimentin, the interactions with
apoptotic cells promote phosphorylation of filaments, which
disassemble them and recruit tetramers to the cell surface.
Tetramers facilitate the engulfment of apoptotic cells.116

Alternatively, fluctuations in cell surface glycosylation may
regulate the balance of ‘eatme’ and ‘don’t eatme’ signals, with
critical implications in corpse uptake.
On the other hand, inhibitory siglecs reduce phagocytosis

when they form complexes with sialic acid-containing ligands.
For example, Siglec-5 facilitates infection through binding
to sialic acid present on the streptococcus b-protein, an
effect that impairs phagocytosis.119 Moreover, Siglec 11
expressed on the surface of microglia cells binds polysialic
acid on neuron’s NCAM and suppresses phagocyte
activation.120 Hence, the picture that has emerged is that
siglecs can modulate clearance of dying cells through
glycosylation-dependent ‘self/non-self’ recognition.
The engulfment of apoptotic cells is facilitated by the

presence of many receptors expressed on scavenger cells,
some of which were previously specified as ‘eat me’ signals.
Additional lectin receptors such as DC-SIGN and mannose-
binding receptor are upregulated on macrophages and
dendritic cells and have been proposed to participate in
the removal of human apoptotic thymocytes.121 In line with
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this finding, Dectin-1, another C-type lectin receptor, has been
reported to sense and phagocytose apoptotic tumor cells.118

Furthermore, scavenger cells expressing these lectin recep-
tors can ingest apoptotic cells and act as antigen-presenting
cells (APCs) presenting epitopes derived from ingested
apoptotic cells to effector T cells. It is worth noting that APCs
engulfing apoptotic cells can secrete soluble mediators and
cytokines capable of activating or blunting adaptive immune
responses.118,122 Thus, silent clearance of ‘unwanted-self’
or ‘dangerous’ immune cells, via lectin–glycan interactions,
represents an evolutionarily conserved homeostatic mechan-
isms to reduce or prevent exuberant inflammatory responses.

Conclusions and Future Directions

The study of the cellular glycome has provided new insights
into a variety of physiologic processes. Interactions between
endogenous lectins and glycans can set the threshold
for cellular activation, differentiation and survival. Here, we
discuss the relevance of lectin–glycan recognition systems in
the initiation, execution and resolution of cell death and
provide selected examples that illustrate their important roles
in these processes. While differential glycosylation of death
receptors controls the transmission of lethal signals, soluble
or cell surface-associated glycan-binding proteins can initiate
apoptotic programs indirectly by interacting with death
receptors or directly by crosslinking a myriad of cell surface
glycoproteins. In addition, intracellular galectins and glycan-
modifying enzymes have important roles in the execution of
cell death programs including apoptosis and autophagy.
These intracellular galectins and glycan-modifying enzymes
not only orchestrate degradation of self or foreign cargo in
response to cellular damage and infection but also control
immune responses and inflammation. Moreover, incorrect
glycan presentation alters autophagy, which contributes to
disease severity. Finally, endogenous lectins and glycans can
serve as ‘find me’, ‘keep out’ and ‘eat me’ signals in the
resolution of apoptosis. The current wealth of information
allows the visualization of strategies through which manipula-
tion of lectin–glycan recognition systemsmay contribute to the
control of cell death programs with critical implications in the
resolution of inflammation, chronic infection, autoimmunity,
neurodegeneration and cancer.
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22. Charlier E, Condé C, Zhang J, Deneubourg L, Di Valentin E, Rahmouni S et al. SHIP-1
inhibits CD95/APO-1/Fas-induced apoptosis in primary T lymphocytes and T leukemic
cells by promoting CD95 glycosylation independently of its phosphatase activity.
Leukemia 2010; 24: 821–832.

23. Dall’Olio F, Chiricolo M. Sialyltransferases in cancer. Glycoconj J 2001; 18: 841–850.
24. Peter ME, Hellbardt S, Schwartz-Albiez R, Westendorp MO, Walczak H, Moldenhauer G

et al. Cell surface sialylation plays a role in modulating sensitivity towards
APO-1-mediated apoptotic cell death. Cell Death Differ 1995; 2: 163–171.

25. Keppler OT, Peter ME, Hinderlich S, Moldenhauer G, Stehling P, Schmitz I et al.
Differential sialylation of cell surface glycoconjugates in a human B lymphoma cell line
regulates susceptibility for CD95 (APO-1/Fas)-mediated apoptosis and for infection by a
lymphotropic virus. Glycobiology 1999; 9: 557–569.

26. Swindall AF, Bellis SL. Sialylation of the Fas death receptor by ST6Gal-I provides
protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem 2011;
286: 22982–22990.

27. Schneider P, Bodmer JL, Holler N, Mattmann C, Scuderi P, Terskikh A et al.
Characterization of Fas (Apo-1, CD95)–Fas ligand interaction. J Biol Chem 1997; 272:
18827–18833.

28. Abrahams VM, Straszewski SL, Kamsteeg M, Hanczaruk B, Schwartz PE, Rutherford TJ
et al. Epithelial ovarian cancer cells secrete functional Fas ligand. Cancer Res 2003; 63:
5573–5581.

29. Rabinovich GA, Ilarregui JM. Conveying glycan information into T-cell homeostatic
programs: a challenging role for galectin-1 in inflammatory and tumor microenvironments.
Immunol Rev 2009; 230: 144–159.

30. Matarrese P, Tinari A, Mormone E, Bianco GA, Toscano MA, Ascione B et al. Galectin-1
sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death
via mitochondrial hyperpolarization, budding, and fission. J Biol Chem 2005; 280:
6969–6985.

Glycans and lectins govern cell fate
RG Lichtenstein and GA Rabinovich

984

Cell Death and Differentiation



31. Liu Z, Swindall AF, Kesterson RA, Schoeb TR, Bullard DC, Bellis SL. ST6Gal-I regulates
macrophage apoptosis via a2-6 sialylation of the TNFR1 death receptor. J Biol Chem
2011; 286: 39654–3962.

32. Fukumori T, Takenaka Y, Oka N, Yoshii T, Hogan V, Inohara H et al. Endogenous
galectin-3 determines the routing of CD95 apoptotic signaling pathways. Cancer Res
2004; 64: 3376–3379.

33. Oka N, Nakahara S, Takenaka Y, Fukumori T, Hogan V, Kanayama HO et al.
Galectin-3 inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced
apoptosis by activating Akt in human bladder carcinoma cells. Cancer Res 2005; 65:
7546–7553.

34. Lee YJ, Song YK, Song JJ, Siervo-Sassi RR, Kim HR, Li L et al. Reconstitution of
galectin-3 alters glutathione content and potentiates TRAIL-induced cytotoxicity by
dephosphorylation of Akt. Exp Cell Res 2003; 288: 21–34.

35. Wells V, Mallucci L. Phosphoinositide 3-kinase targeting by the beta galactoside binding
protein cytokine negates akt gene expression and leads aggressive breast cancer cells to
apoptotic death. Breast Cancer Res 2009; 11: R2.

36. Mazurek N, Byrd JC, Sun Y, Hafley M, Ramirez K, Burks J et al. Cell-surface galectin-3
confers resistance to TRAIL by impeding trafficking of death receptors in metastatic colon
adenocarcinoma cells. Cell Death Differ 2012; 19: 523–533.

37. Mazurek N, Conklin J, Byrd JC, Raz A, Bresalier RS. Phosphorylation of the beta-
galactoside-binding protein galectin-3 modulates binding to its ligands. J Biol Chem 2000;
275: 36311–36315.

38. Mazurek N, Sun YJ, Liu KF, Gilcrease MZ, Schober W, Nangia-Makker P et al.
Phosphorylated galectin-3 mediates tumor necrosis factor-related apoptosis-inducing
ligand signaling by regulating phosphatase and tensin homologue deleted on
chromosome 10 in human breast carcinoma cells. J Biol Chem 2007; 282: 21337–21348.

39. Pace KE, Lee C, Stewart PL, Baum LG. Restricted receptor segregation into membrane
microdomains occurs on human T cells during apoptosis induced by galectin-1.
J Immunol 1999; 163: 3801–3811.
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