
Identification of an acetylation-dependant Ku70/FLIP
complex that regulates FLIP expression and HDAC
inhibitor-induced apoptosis

E Kerr1,3, C Holohan1,3, KM McLaughlin1, J Majkut1, S Dolan1, K Redmond1, J Riley1, K McLaughlin1, I Stasik1, M Crudden1,

S Van Schaeybroeck1, C Fenning1, R O’Connor2, P Kiely2, M Sgobba1, D Haigh1, PG Johnston1,4 and DB Longley*,1,4

FLIP is a potential anti-cancer therapeutic target that inhibits apoptosis by blocking caspase 8 activation by death receptors.
We report a novel interaction between FLIP and the DNA repair protein Ku70 that regulates FLIP protein stability by inhibiting
its polyubiquitination. Furthermore, we found that the histone deacetylase (HDAC) inhibitor Vorinostat (SAHA) enhances the
acetylation of Ku70, thereby disrupting the FLIP/Ku70 complex and triggering FLIP polyubiquitination and degradation by the
proteasome. Using in vitro and in vivo colorectal cancer models, we further demonstrated that SAHA-induced apoptosis is
dependant on FLIP downregulation and caspase 8 activation. In addition, an HDAC6-specific inhibitor Tubacin recapitulated the
effects of SAHA, suggesting that HDAC6 is a key regulator of Ku70 acetylation and FLIP protein stability. Thus, HDAC inhibitors with
anti-HDAC6 activity act as efficient post-transcriptional suppressors of FLIP expression and may, therefore, effectively act as ‘FLIP
inhibitors’.
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FLIP is an anti-apoptotic protein that blocks the activation of

apoptosis mediated by death receptors, such as Fas, TRAIL

receptor 1 (TRAIL-R1/DR4) and TRAIL-R2 (DR5).1 By binding

to the adaptor protein FADD, FLIP inhibits apoptosis by

blocking the processing and activation of procaspase 8 (FLICE)

by death receptor complexes termed DISCs (death-inducing

signalling complexes).2 We previously reported that FLIP

inhibits apoptosis induced by chemotherapeutic agents3 and

that high FLIP expression is an independent adverse prog-

nostic biomarker in colorectal cancer (CRC).4 These and other

studies have indicated that inhibition of FLIP constitutes a

promising therapeutic strategy for the treatment of CRC.
Ku70 and its binding partner Ku80 are critical components

of the non-homologous end joining (NHEJ) DNA repair
machinery.5 Ku70 is regulated by acetylation, which is
mediated by the histone acetyl transferases (HATs); CREB-
binding protein (CBP) and PCAF, and its acetylation can be
enhanced by treating cells with histone deacetylase (HDAC)
inhibitors.6 Ku70 acetylation disrupts its DNA-binding activity
and sensitises cells to DNA-damaging agents.7 In addition,
cytoplasmic Ku70 binds to and regulates the pro-apoptotic
Bcl-2 family member, Bax.6 Ku70 simultaneously inhibits Bax

degradation via the ubiquitin proteasome system (UPS) and
prevents its translocation to the mitochondria.8 Moreover,
it has been reported that Ku70 may have intrinsic de-
ubiquitinating (DUB) activity.8 The Ku70–Bax complex is
disrupted by Ku70 acetylation, which promotes Bax translo-
cation to mitochondria and apoptosis induction.6

Herein, we report a novel interaction between FLIP and
Ku70 that regulates FLIP stability. This interaction is acetyla-
tion-dependant and is disrupted by HDAC inhibitors with
activity against HDAC6. Disruption of the Ku70–FLIP inter-
action subsequently leads to FLIP degradation by the UPS
and induction of caspase 8-dependant apoptosis.

Results

FLIP interacts with Ku70. A yeast-2-hybrid screen was
carried out to identify novel binding partners for the long FLIP
splice variant (FLIP(L)). One of the novel proteins identified
was Ku70. The interaction between FLIP(L) and Ku70 was
confirmed by re-transformation assay (Figure 1a).
Immunoprecipitation experiments confirmed that FLIP(L)
interacts with Ku70 in CRC cells (Figure 1b). Despite the
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predominant site of Ku70 expression being nuclear, the
interaction between FLIP(L) and Ku70 was more prominent
in cytosolic fractions (Figure 1c), suggesting that the primary
site of the interaction is cytosolic. Ku70 also interacted with the
short FLIP splice form, FLIP(S) (Supplementary Figure S1A).
To map Ku70’s interaction with FLIP, we generated a series of
Flag-tagged Ku70 constructs. The region from 430 to 609
amino acids interacted strongly with FLIP, however, neither
the 496–609 nor the 535–609 fragments interacted
(Figure 1d). These mapping experiments indicate that Ku70
binds FLIP via a region between amino acids 430 and 496,
which encompasses one of its sites of interaction with Ku80.

Ku70 binds to DED2 of FLIP. To identify the regions of
FLIP that are important for the FLIP–Ku70 interaction, we
used a FLIP peptide array of overlapping 25-mer peptides,
each shifted by four amino acids, encompassing the entire
FLIP(S) sequence.9 Duplicate membranes were overlaid with
lysates from cells transfected with Flag-Ku70, and the Flag
epitope detected by immunoblotting. Strong binding of Ku70
to the array was detected in four regions (Figure 2a and
table). To map the FLIP–Ku70 interaction to specific amino
acids, alanine substitution arrays were constructed for
peptides 17, 30, 41 and 46. Several alanine substitutions in
peptide 30 (but not the other 3 peptides) were found to
disrupt the binding of Ku70 (Figure 2b). By using viral FLIP
MC159 as a template,10 a homology model of human
FLIP(S) was generated. The model predicted that two of
the candidate residues identified in the alanine substitution
array, Y119 and R122, are prominently surface exposed and,
therefore, available for making protein–protein interactions
(Figure 2c); the other candidate residues were predicted

to be buried. Mutation of FLIP(S) R122, but not Y119, to
alanine significantly diminished binding to Ku70 (Figure 2d).
Thus, these studies identify R122 as a critical site of
interaction between FLIP and Ku70. This region of FLIP
death effector domain 2 (DED2) is present in all FLIP splice
forms and is adjacent to the ‘hydrophobic patch’ region
reported to be important for binding to FADD.11 Binding of
FADD and procaspase 8 to FLIP was unaffected by R122A
mutation indicating that FADD/procaspase 8 and Ku70
interact with distinct regions of FLIP (Figure 2d).

SAHA disrupts the FLIP–Ku70 interaction and induces
FLIP degradation. Treatment with the HDAC inhibitor
Vorinostat (SAHA, suberoylanilide hydroxamic acid) for 2 h
disrupted the interaction between endogenous FLIP and
Ku70 (Figure 3a), and increased Ku70 acetylation after 1 h
(Figure 3b). Increased Ku70 acetylation following SAHA
treatment was also observed in three other CRC cell
lines (Supplementary Figure S1B). Although Ku70 was
primarily expressed in the nucleus, acetylated Ku70 was
detectable at similar levels in the nucleus and the cytosol, and
increased in both sub-cellular locations following SAHA
treatment (Supplementary Figure S1C). We were unable to
detect the acetylation of FLIP following SAHA treatment
(Supplementary Figure S1D), suggesting that it is not directly
modified by acetylation. Ku70 acetylation following SAHA
treatment decreased its capacity to bind to FLIP (Figure 3b).
Cohen et al.6 demonstrated that mimicking the acetylation of
lysine residues K539 or K542 in Ku70 by mutating them
to glutamine disrupted its ability to inhibit Bax-mediated
apoptosis. We found that mutation of either of these residues
to glutamine impaired the ability of Ku70 to interact with FLIP
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Figure 1 FLIP interacts with Ku70. (a) Yeast-2-hybrid re-transformation assay: blue colonies are visible when pGADT7Rec-Ku70 was co-transfected with pGBKT7-
FLIP(L), but not pGBKT7-empty vector (EV) indicating that Ku70 and FLIP(L) interact. (b) Lysates from HCT116 cells transfected with Flag-tagged FLIP(L) were
immunoprecipitated (IP) with anti-Ku70 or control IgG antibodies and then immunoblotted (IB) for the presence of Flag-tagged FLIP(L). (c) Nuclear (Nuc) and cytosolic (Cyt)
fractions were prepared from HCT116 cells, and equal amounts of protein were immunoprecipitated (IP) with anti-FLIP (H202) antibody and then immunoblotted (IB) for Ku70
and FLIP. Short (2.50) and long (100) exposures are presented and the relative levels of FLIP and Ku70 in the inputs are also shown. (d) Schematic diagram of Ku70 and Flag-
tagged Ku70 expression constructs. Protein lysates from HCT116 cells transfected with Flag-tagged Ku70 constructs were immunoprecipitated with anti-FLIP (H202) antibody
and then immunoblotted for Flag-tagged Ku70. Successful immunoprecipitation of FLIP was confirmed using the anti-FLIP antibody, NF6. The color reproduction of this figure
is available at the Cell Death and Differentiation journal online
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(Figure 3c). Collectively, these results indicate that Ku70
acetylation inhibits its ability to interact with FLIP.

Disruption of FLIP–Ku70 binding following SAHA treatment
correlated with increased polyubiquitination of FLIP(L) and
FLIP(S) (Figure 3d) and rapid downregulation of both splice
forms from B4 h following treatment (Figure 3e). SAHA
treatment also downregulated FLIP protein expression in three
other CRC cell lines after 6 h at sub-IC50 doses (Supplemen-
tary Figures S2C and E). In contrast to other studies, which
have found that HDAC inhibitors downregulate FLIP at the
transcriptional level,12,13 we found no evidence of transcrip-
tional suppression of FLIP in CRC cells (Supplementary
Figures S2A and D). Moreover, co-treatment with the protea-
some inhibitor MG132 attenuated SAHA-induced FLIP down-
regulation (Supplementary Figure S2B), providing further
evidence that FLIP downregulation is mediated by the UPS.

Ku70 post-transcriptionally regulates FLIP express-
ion. Transfection with three different Ku70-targeted
siRNAs resulted in Ku70 depletion and significant decrea-
ses in FLIP expression (Figure 4a). Similar effects were
observed in three other CRC cell lines (Figure 4b). However,
Ku70 depletion had no effect on FLIP mRNA expression

(Figure 4c). siRNA-mediated Ku70 downregulation resulted
in apoptosis as indicated by poly(ADP-ribose) polymerase
(PARP) cleavage (Figure 4d), flow cytometry (Figure 4e) and
caspase 3/7 activation (Supplementary Figure S3A). The
FLIP downregulation observed in Ku70-depleted cells was
not an indirect result of caspase activation, as inhibition of
apoptosis with the pan-caspase inhibitor z-VAD-fmk failed to
prevent FLIP downregulation in Ku70-depleted cells
(Figure 4d). Furthermore, the half-lives of both FLIP(L) and
FLIP(S) were significantly reduced in Ku70-depleted cells,
with almost undetectable levels of FLIP 1 h after treatment
with the protein synthesis inhibitor cycloheximide (Figure 4f).
Importantly, Ku70 downregulation resulted in increased
levels of polyubiquitinated FLIP(L) and FLIP(S) (Figure 4g),
suggesting that Ku70 enhances the half-life of FLIP by
inhibiting its degradation via the UPS.

SAHA- and Ku70 siRNA-induced apoptosis is caspase
8-dependant. Analysis of other apoptotic proteins indicated
that unlike FLIP, none were significantly affected by SAHA
treatment after 6 h, however, Bax was upregulated and XIAP
downregulated 24 h following SAHA treatment (Figure 5a).
Despite being acetylated, total Ku70 expression was not
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affected by SAHA treatment (Figure 5a). Expression of
several BH3-only proteins was also assessed: NOXA and
BID were not significantly altered following SAHA treatment,
whereas PUMA was downregulated and BIM upregulated
(Figure 5b). As the upregulation of Bax and BIM at 24 h
coincided with the onset of apoptosis as determined by PARP
cleavage, we directly assessed the roles of the initiator
caspases, caspase 8 and caspase 9 during SAHA-induced
apoptosis. siRNA-mediated inhibition of caspase 8
significantly inhibited SAHA-induced apoptosis in each CRC
cell line as assessed by flow cytometry (Figure 5c), PARP
cleavage (Supplementary Figure S4A) and analysis of
caspase 3/7 activity (Supplementary Figure S4C). In
contrast, caspase 9 silencing failed to inhibit SAHA-induced
apoptosis (Figure 5c). Furthermore, caspase 8 activity
increased following SAHA treatment and correlated with
increased activity of the executioner caspases 3/7
(Figure 5d). SAHA treatment also resulted in significant
increases in caspase 8 activity in other CRC cell lines
(Supplementary Figure S4B). Notably, increased caspase 8
activity was detected in Ku70-depleted HCT116 cells
(Supplementary Figure S3A), and the apoptosis induced by
Ku70 silencing was caspase 8-dependant (Figure 4e). Similar
results were observed in HT29 and RKO cells, although not in
H630 cells, in which Ku70 silencing failed to activate either
caspase 8 or caspase 3/7 (Supplementary Figures S3B and
S3C); this may be because FLIP downregulation following

Ku70 depletion was less pronounced in this cell line
(Figure 4b). Interestingly, given Ku70’s role in regulating
Bax-mediated apoptosis,6 Ku70 depletion still resulted in
significant (albeit reduced) levels of apoptosis in Bax-null
HCT116 cells, and this was again caspase 8-dependant
(Figure 4e).

SAHA- and Ku70 siRNA-induced apoptosis is FLIP-
dependant. Using an HCT116 FLIP(L) overexpressing cell
line (FL17), we obtained direct evidence for the importance of
FLIP downregulation during SAHA-induced apoptosis. SAHA
failed to downregulate FLIP(L) in this cell line (Figure 6a) as it
activated transcription of the exogenous transgene
(unpublished observations). Lack of FLIP(L) downregulation
in this cell line correlated with significantly reduced levels of
SAHA-induced apoptosis compared with the parental cell line
as determined by PARP cleavage (Figure 6a) and flow
cytometry (Figure 6b). Of note, FLIP(L) overexpression did
not prevent SAHA-induced cell cycle arrest in G2/M phase
(Figure 6b), indicating that FLIP regulates the cytotoxic rather
than the cytostatic effects of SAHA. SAHA also sensitised
CRC cells to apoptosis induced by rTRAIL and
chemotherapeutic agents in a FLIP-dependant manner
(Supplementary Figures S5A-D). These results establish
direct evidence for FLIP downregulation as a major
mechanism of apoptosis induction by SAHA alone and in
combination with other anti-cancer agents. Ku70 siRNA-
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induced apoptosis was also significantly reduced in FLIP(L)-
overexpressing cells (Figure 6c).

To assess the importance of FLIP downregulation for the
in vivo effects of SAHA, we used the FL17 FLIP(L)-over-
expressing model. In both parental and FL17 xenografts,
treatment with SAHA resulted in increased acetylation of
histone H4, a marker of HDAC inhibition (Figure 6d). SAHA
treatment resulted in potent FLIP(L) downregulation in the
parental xenografts and also decreased FLIP(L) expression in
the FL17 xenografts. However, the levels of FLIP(L) expres-
sion that were maintained in SAHA-treated FL17 tumours
were comparable to those in vehicle-treated parental xeno-
grafts. Notably, SAHA treatment failed to inhibit the growth of
FL17 xenografts, whereas the growth of the parental
xenografts was significantly inhibited by SAHA (Figure 6e).
These results are the first to demonstrate that SAHA down-
regulates FLIP in vivo and that FLIP downregulation is
important for its anti-tumour activity.

Inhibitors with anti-HDAC6 activity regulate FLIP
expression and Ku70 acetylation. To identify the HDACs
involved in regulating Ku70 acetylation, we used the HDAC

inhibitor Droxinostat,14 which, although less potent, has a
more restricted activity than SAHA: Droxinostat is an inhibitor
of HDACs 6 and 8, and (to a lesser extent) HDAC3;14 SAHA
inhibits HDACs 1, 2, 3, 6 and (to a lesser extent) 8.15

In agreement with earlier studies,16 we found that Droxinostat
potently downregulated FLIP expression and did so at early
(6 h) time points post-treatment (Supplementary Figure S6A).
However, unlike these earlier studies, we found that this
downregulation was post-transcriptional, as this agent had no
effect on FLIP mRNA expression (Supplementary Figure
S6B). Droxinostat-induced apoptosis correlated with FLIP
downregulation (Supplementary Figure S6C), and FLIP
downregulation was not caspase dependant (Supplementary
Figure S6D). Like SAHA, Droxinostat-induced apoptosis was
caspase 8-dependant (Supplementary Figures S6D and 7A).
Using a ‘caspase-trap’ assay,17 we demonstrated that
caspase 8 rather than caspase 9 was the first caspase
activated in HCT116 cells in response to treatment with both
SAHA and Droxinostat for 4 h (Figure 7b). In addition,
Droxinostat-induced apoptosis was inhibited in FL17 cells
(Figures 7c and d). Given the reported importance of Bax for
HDAC inhibitor-induced apoptosis,6 it was notable that the
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inhibitory effects of caspase 8 silencing or FLIP over-
expression on HDAC inhibitor-induced apoptosis were more
profound than loss of Bax (Figures 7a and d). Furthermore, in
contrast to a previous study,18 we found that HDAC inhibitor-
induced apoptosis was not p53-dependant in HCT116
cells (Figure 7d). We previously reported that apoptosis
induction following siRNA-mediated FLIP silencing is prima-
rily driven by the TRAIL receptor DR5.3 In agreement with
this, SAHA- and Droxinostat-induced cell death were both

significantly attenuated when DR5 was silenced, and this
effect was further enhanced when DR4 was co-silenced with
DR5 (Figure 7e).

As Droxinostat and SAHA both inhibit HDAC6, we
hypothesised that HDAC6 may be involved in regulating FLIP
expression. To test this, we used an HDAC6-selective
inhibitor Tubacin.19 Both Tubacin and Droxinostat increased
Ku70 acetylation to the same extent as SAHA (Figure 8a).
By comparison, acetylation of Ku70 in response to
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Entinostat, which inhibits HDACs 1–3, but not HDAC6,15 was
significantly less than that induced by the other HDAC
inhibitors (Figure 8a). In addition, siRNA-mediated depletion
of HDAC6 resulted in significantly increased Ku70 acetylation

(Figure 8b). Like SAHA and Droxinostat, Tubacin treatment
resulted in rapid FLIP protein downregulation (Figure 8c), but
had no significant effect on FLIP mRNA expression
(Figure 8d). Tubacin also caused an increase in acetylation
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of a-tubulin, a marker of HDAC6 inhibition, whereas acetyla-
tion of histone H4, a marker of nuclear HDAC inhibition, was
significantly lower following Tubacin treatment than following
SAHA treatment (Figure 8c). In contrast, Entinostat failed to
downregulate FLIP expression in HCT116 cells after 6 h at a
concentration that potently increased acetylation of histone
H4, but had no effect on acetylation of a-tubulin (Figure 8e).
In addition, Tubacin-induced apoptosis was highly FLIP-
dependant as determined by flow cytometry (Figure 8f),
consistent with FLIP downregulation being a primary mechan-
ism of apoptosis induction in response to this agent.

Discussion

We previously demonstrated that FLIP is an important regu-
lator of apoptosis induction and drug resistance in CRC. 3,20

We carried out a yeast-2-hybrid screen to identify novel
FLIP-interacting proteins, with the aim of identifying novel
regulators of FLIP expression or function. This screen
identified Ku70, a DNA repair protein that was initially
characterised as being critical for NHEJ.21 Ku70 was

subsequently shown to have an apoptosis-regulating function
through its ability to bind to and sequester Bax.6 Both the
DNA- and Bax-binding activities of Ku70 are acetylation
dependant.6,7 Acetylation of Ku70 at residues K539 and K542
in its C-terminus by CBP and PCAF disrupt its ability to inhibit
Bax-mediated apoptosis.6 Moreover, Ku70 was reported to
have intrinsic DUB activity that inhibits Bax degradation via
the UPS.8

We found that FLIP interacts with Ku70 via a region in the
DED2, using a site (R122) adjacent to the region that is
functionally important for FLIP binding to FADD.11 Binding of
FADD and procaspase 8 to FLIP was unaffected by mutation
of R122, indicating that Ku70 interacts with a region of FLIP
that is distinct from the region with which it interacts with these
DISC components. Furthermore, Ku70 did not bind to FLIP via
the same region it binds Bax, but rather via a region previously
shown to be important for dimerisation with Ku80 (amino acids
430–496).22 Therefore, FLIP interacts with the same region of
Ku70 with which it engages Ku80 and does so using a region
in DED2 not involved in its DISC recruitment. In addition,
fractionation experiments suggested that similar to Bax, the
primary sub-cellular location of the FLIP–Ku70 interaction is
cytoplasmic.

Ku70 depletion resulted in significant decreases in FLIP
expression. Furthermore, the decrease in FLIP expression
following Ku70 silencing was because of a decrease in protein
stability. Treatment with the HDAC inhibitor SAHA resulted in
the acetylation of Ku70 and disrupted its interaction with FLIP.
Moreover, mimicking Ku70 acetylation by mutating the
residues K539 and K542 to glutamine resulted in reduced
Ku70–FLIP binding. These lysine residues are present in the
flexible C-terminal linker region adjacent to the region of Ku70,
which binds FLIP (amino acids 430–496). It is possible that
acetylation of this flexible linker region causes a conforma-
tional change of Ku70 that disrupts binding of FLIP in the
adjacent 430–496 region, or that acetylation disrupts binding
of an as yet unidentified binding partner (or partners) that is
important for maintaining the Ku70–FLIP complex.

Although we found no evidence of FLIP acetylation
following SAHA treatment, polyubiquitination of both FLIP(L)
and FLIP(S) was increased, and both splice forms were
rapidly downregulated in a proteasome-dependant manner. A
direct link between Ku70 and FLIP ubiquitination status was
indicated by the increased levels of polyubiquitinated FLIP(L)
and FLIP(S) in Ku70-silenced cells. In contrast to numerous
other studies,12,13 we found no evidence that SAHA down-
regulated FLIP expression at the transcriptional level. How-
ever, our findings agree with a recent study in breast cancer
models, which also found that SAHA-induced FLIP down-
regulation was post-transcriptional.23 In addition, a related
pan-HDAC inhibitor Panobinostat (LBH589) was recently
reported to cause FLIP polyubiquitination and proteasomal
degradation in pancreatic cancer cells.24 Collectively, these
findings suggest that SAHA causes Ku70 acetylation, result-
ing in the disruption of its interaction with FLIP leading to
degradation of FLIP by the UPS.

Although Ku70 is a substrate for the HATs CBP and PCAF,6

the HDACs that regulate Ku70 acetylation have not been
previously characterised. In this study, we provide evidence
that HDAC6 is a key deacetylase for Ku70 as, in addition to
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Vorinostat (inhibitor of HDAC1-3, 6 and 8)15 and Droxinostat
(inhibitor of HDAC3, 6 and 8),14 the HDAC6-specific inhibitor
Tubacin19 potently increased the acetylation of Ku70.
Moreover, both Droxinostat and Tubacin also caused rapid
FLIP downregulation. In contrast, Entinostat, which inhibits
HDAC1–3, but has no activity against HDAC6,15 failed to
downregulate FLIP at early time points and had less impact on
Ku70 acetylation. During revision of this manuscript, another
study was published that also found that HDAC6 deacetylates
Ku70.25 HDAC6 is a unique HDAC that has key roles in
regulating protein turnover by the proteasome through its
regulation of HSP90 and by the aggresome through its ability
to recruit polyubiquitinated proteins to the tubulin cytoske-
leton.26 Thus, this study identifies a further potential role for
HDAC6 in regulating protein stability through its ability to
deacetylate Ku70, thereby stabilising FLIP. By deacetylating
Ku70, HDAC6 may also regulate Bax and possibly other as
yet unidentified Ku70-binding partners.

Although a number of studies have shown that HDAC
inhibitor-mediated downregulation of FLIP sensitises various
cancer cell lines to death ligands, such as TRAIL,23,27,28 to our
knowledge, no previous studies have directly examined
whether FLIP downregulation is a sufficient death signal for
apoptosis induction when these agents are administered as
single agents. We found that FLIP downregulation in response
to HDAC inhibitors results in caspase 8- and DR5-mediated
apoptosis, phenocopying the mechanism of apoptosis that we
previously observed in CRC cells following siRNA-mediated
downregulation of FLIP.3 We also demonstrate for the first
time that SAHA downregulates FLIP in vivo and that FLIP(L)
overexpression abrogates SAHA’s in vivo anti-tumour activity.
FLIP(L) overexpression or caspase 8 downregulation had a
greater inhibitory effect on HDAC inhibitor-induced apoptosis
than loss of Bax, suggesting that the extrinsic apoptotic
pathway is at least as important as the intrinsic pathway in
mediating the effects of HDAC inhibitors in CRC cells.

From a cancer therapeutics perspective, these results
suggest that HDAC inhibitors with anti-HDAC6 activity act as

efficient post-transcriptional suppressors of FLIP expression in
CRC. HDAC inhibitors are promising anti-cancer therapeutics
that have demonstrated pre-clinical and clinical activities in
haematological and solid cancers, and SAHA was the first of
this class of compound to be FDA approved.29–33 There
have been several early phase clinical trials in advanced,
chemotherapy-resistant CRC examining SAHA in combina-
tion with standard 5-Fluorouracil (5-FU)-based chem-
otherapy.34–36 In one of these studies, 21/38 5-FU-refractory
patients had stable disease and 1 had a partial response.34

The plasma concentrations of SAHA achieved in these
patients were similar to the concentrations that we find are
sufficient to downregulate FLIP. Of note, we found that SAHA
synergized with both 5-FU and oxaliplatin to induce apoptosis
in CRC cells; however, this synergy was abolished in cells
overexpressing FLIP(L). Thus, FLIP and components of the
extrinsic pathway, such as caspase 8, may be useful predictive
biomarkers for the targeted use of HDAC inhibitors in CRC.

In conclusion, we provide evidence that Ku70 regulates
FLIP ubiquitination and that HDAC inhibitor-mediated acety-
lation of Ku70 disrupts the interaction between FLIP and Ku70
resulting in degradation of FLIP via the UPS and induction of
caspase 8-dependant apoptosis (summarised in Figure 9).

Materials and Methods
Reagents. The following reagents were used: Vorinostat (Zolinza, SAHA; Selleck
Chemicals, Suffolk, UK); Droxinostat (4-(4-chloro-2-methylphenoxy)-N-hydro-
xybutanamide, compound #5809354) and its inactive analogue 4-(4-chloro-2-
methylphenoxy)-N-(3-ethoxypropyl)butanamide (compound #7271570, ChemBridge
Corporation, San Diego, CA, USA). Tubacin was a kind gift from Dr. Ralph
Mazitschek and Dr Stuart Schreiber (Howard Hughes Medical Institute, Broad
Institute of Harvard and MIT). Entinostat (MS-275) was synthesised in the laboratory
as previously described.37,38 Cycloheximide and MG132 (Sigma-Aldrich, Dorset,
UK). Biotinylated z-VAD-fmk (Val-Ala-Asp-CH2F) and immobilised Streptavidin slurry
were purchased from MP Biomedicals (Cambridge, UK) and Thermo Fisher Scientific
(Leicestershire, UK), respectively.

Cell culture. HCT116, H630, HT29 and RKO human CRC cell lines were used
as previously described.3,39 Matched isogenic p53 and Bax-null HCT116 cell lines
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Figure 9 Schematic overview of main findings. Ku70 binds to and stabilizes FLIP by inhibiting its polyubiquitination. This maintains FLIP expression at a level at which it
can prevent caspase 8 activation by complexes containing the adaptor protein FADD such as those formed after death receptor activation. HDAC inhibitors, particularly those
that target HDAC6 such as SAHA, Droxinostat and Tubacin cause increased acetylation of Ku70, and this disrupts the FLIP/Ku70 complex, resulting in FLIP polyubiquitination
and degradation via the proteasome. In the absence of FLIP, caspase 8 homodimers can be brought together by FADD, resulting in caspase 8 activation and apoptosis
induction
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were kindly provided by Professor B Vogelstein (Johns Hopkins University School of
Medicine, Baltimore). FL17 cells were generated and cultured as previously
described.20

Expression constructs. Flag-tagged FLIP(L), FLIP(S) and Ku70 expression
constructswere generated in the pCMV-3Tag-6 vector (Agilent Technologies,
Berkshire, UK). The GST-tagged FLIP(S) expression construct was generated in the
pGEX6P-3 vector (GE Healthcare, Herts, UK). Mutagenesis was carried out using the
KOD Extreme polymerase (Novagen, Nottingham, UK), with the template plasmid
digested using DpnI (New England Biolabs, Herts, UK).

Western blotting and sub-cellular fractionation. Western blots were
carried out as previously described.3 Isolation of nuclear and cytosolic fractions was
carried out by lysing the cells for 10 min on ice in buffer A (10 mM HEPES, 1.5 mM
MgCl2, 10 mM KCL, 0.5 mM DTT, 0.5% NP40, pH7.9) followed by centrifugation at
3000 r.p.m. for 10 min. The supernatants were retained as the cytosolic fractions, and
the pellets were subjected to further lysis in buffer B (5 mM HEPES, 1.5 mM MgCl2,
0.2 mM EDTA, 0.5 mM DTT, 26% glycerol (v/v), pH 7.9). NaCl was added to a final
concentration of 300 mM, and the samples were homogenized using a Dounce
homogenizer (VWR, Dublin, Ireland). After a 30-min incubation on ice, the lysates
were centrifuged for 20 min at 24 000 g, and the resulting supernatants collected as
the nuclear fractions.

Antibodies. Mouse monoclonal (Western): FLIP (NF6; Alexis, San Diego,
CA, USA), Caspase 8 (12F5; Alexis) and PARP (eBioscience, San Diego, CA, USA),
b-Actin and Flag-HRP (Sigma, Dorset, UK), Ku70, ITCH (both BD Transduction
Laboratories, Oxfordshire, UK) and Noxa (Abcam, Cambridge, UK).Rabbit polyclonal
(Western and IP): Caspase 9, caspase 3, acetylated lysine, acetylated-a-tubulin,
XIAP, Bcl-2, Bcl-XL, Mcl-1, Bax, Bak, Bid, Bim, PUMA (Cell Signaling Technology,
Beverly, MA, USA), c-FLIP (H202), Ku70 (Santa Cruz Biotechnology, Santa Cruz,
CA, USA) and Hyperacetylated Histone H4 (Millipore, Watford, UK). Horseradish
peroxidase-conjugated sheep anti-mouse and sheep anti-rabbit secondary antibodies
were used as appropriate (Amersham, Buckinghamshire, UK).

Yeast-2-hybrid. The Matchmaker GAL4-based yeast-two-hybrid system was
used (Clontech, Saint Germain en Laye, France). Human FLIP(L) was used as the
bait protein and expressed as a fusion to the GAL4 DNA-binding domain in pGBKT7
vector. A cDNA library generated from HCT116 cells was cloned into pGADT7 prey
vector. The yeast-two-hybrid screen for FLIP(L)-interacting proteins was carried out
according to the manufacturer’s instructions.

Immunoprecipitation (IP) reactions. Protein lysates were prepared using
CHAPS (10 mM HEPES, 150 mM NaCl, 1% CHAPS, pH 7.4) or NP-40 (0.2%
NP-40, 20 mM Tris-HCL (pH 7.4), 150 mM NaCl, 10% glycerol) buffers. Lysates
(0.5–2 mg) were pre-cleared overnight with sheep anti-rabbit IgG Dynalbeads
(Invitrogen, Paisley, UK). Antibodies (1–2mg) were conjugated with sheep anti-
rabbit IgG Dynal beads for at least 1 h and then washed before incubation with pre-
cleared lysates for at least 4 h. After several washes, Dynal beads were
resuspended in Laemmli loading buffer and heated at 95 1C for 5 min before
immunoblot analysis. Ubiquitin IP experiments were carried out using the Ubiquitin
Enrichment kit (Thermo Scientific, Surrey, UK) according to the manufacturer’s
instructions.

Recombinant protein purification and GST pull-downs. GST and
GST-tagged FLIP(S) were expressed in IPTG-stimulated BL21 bacteria. Bacterial
cell lysates were purified using Glutathione-Sepharose beads (GE Healthcare
Bio-Sciences AB, Uppsala, Sweden) and dialysed using Slide-A-Lyzer Dialysis
Cassettes (Thermo Scientific). For pull-downs, GST-tagged proteins (10mg) were
conjugated to Glutathione-Sepharose beads and incubated with pre-cleared protein
lysates (500mg) for 2 h at 4 1C with constant mixing. Beads were washed several
times and resuspended in Laemmli loading buffer before western blot analysis.

FLIP peptide array analysis. FLIP peptide arrays were generated as
previously described9 using the Genbank sequence U97074.1. The arrays were
blocked in 5% milk/PBS/0.5% Tween-20 for 1 h and then overlaid with lysates
prepared from the cells transfected with Flag-tagged Ku70 or EV. Following several
washes (PBS/0.5% Tween-20), bound Flag-tagged Ku70 was detected by
immunoblotting.

Caspase ‘trap’ assay. This assay was performed as previously described.17

Flow cytometry. Apoptosis was determined using propidium iodide (PI)
staining to evaluate the percentage of cells with DNA content o2N as previously
described.3 For annexin V/PI analysis, cells were harvested and analysed acc-
ording to the manufacturer’s instructions (BD Biosciences, Oxford, UK).

siRNA transfections. The non-silencing control (SC) siRNA, FLIP-, caspase
8-, caspase 9, DR4- and DR5-targeted siRNAs were obtained from Dharmacon
(Chicago, IL, USA) and were the same as those previously described.3,40 siRNAs
targeting Ku70 and HDAC6 were obtained from Qiagen (West Sussex, UK). siRNA
transfections were carried out using OligofectAMINE (Invitrogen).

Quantitative PCR (Q-PCR). RNA was isolated using the RNA STAT-60
reagent (Biogenesis, Poole, UK) and reverse transcribed using Moloney murine
leukemia virus-based reverse transcriptase kit (Invitrogen). Q-PCR analysis of the
FLIP gene expression was performed using the SYBR Green method or TaqMan
Gene Expression Assays (Applied Biosystems, Foster City, CA, USA).

Animal model experiments. Female BALB/c nude mice were maintained
as previously described.3 All experiments were carried out in accordance with the
Animals (Scientific Procedures) Act, 1986 under a Project Licence (PPL 2590b)
approved by the Department of Health, Social Services and Public Safety, Northern
Ireland. Mice were implanted sub-cutaneously on each flank with 2� 106 HCT116
or FL17 cells using Matrigel (BD, Oxford, UK). After the tumours reached
B100 mm3, mice were randomised to receive vehicle control (10% DMSO/45%
PEG400) or 100 mg/kg Vorinostat delivered IP on a 5-day on/2-day off schedule for
2 weeks. Tumour volumes were determined as previously described.3 To extract
protein, xenografts were homogenized in RIPA buffer.

Caspase activity assay. Caspase-8 or caspase-3/7-GLO reagents (25 ml)
(Promega, Southampton, UK) were incubated with 1–10 mg of protein lysate diluted
in cell culture medium in a total volume of 50 ml for 1–2 h at room temperature.
Luciferase activity was then determined using a luminometer.

Statistical analysis. Student’s t-test was used for the statistical analysis;
*denotes Po0.05;. **denotes Po0.01; ***denotes Po0.001; and ns denotes not
significant compared with control.
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