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Impaired efferocytosis has been shown to be associated with, and even to contribute to progression of, chronic inflammatory
diseases such as atherosclerosis. Enhancing efferocytosis has been proposed as strategy to treat diseases involving
inflammation. Here we present the strategy to increase ‘eat me’ signals on the surface of apoptotic cells by targeting cell surface-
expressed phosphatidylserine (PS) with a variant of annexin A5 (Arg-Gly-Asp–annexin A5, RGD–anxA5) that has gained the
function to interact with avb3 receptors of the phagocyte. We describe design and characterization of RGD–anxA5 and show that
introduction of RGD transforms anxA5 from an inhibitor into a stimulator of efferocytosis. RGD–anxA5 enhances engulfment of
apoptotic cells by phorbol-12-myristate-13-acetate-stimulated THP-1 (human acute monocytic leukemia cell line) cells in vitro
and resident peritoneal mouse macrophages in vivo. In addition, RGD–anxA5 augments secretion of interleukin-10 during
efferocytosis in vivo, thereby possibly adding to an anti-inflammatory environment. We conclude that targeting cell surface-
expressed PS is an attractive strategy for treatment of inflammatory diseases and that the rationally designed RGD–anxA5 is a
promising therapeutic agent.
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Efferocytosis, the phagocytosis of apoptotic cells, proceeds
rapidly and efficiently in healthy tissues.1 It is of great
importance to tissue homeostasis as it prevents leakage of
potentially cytotoxic or antigenic contents into the extracellular
environment, which would initiate inflammation and might
cause tissue injury, and it counteracts inflammation by
secretion of anti-inflammatory cytokines.2 Diseased tissues
are characterized by a sustained presence of dead cells due
to an imbalance between apoptosis and phagocytosis.
Impaired efferocytosis has been demonstrated to contribute
to progression of chronic inflammatory diseases such
as atherosclerosis3 and systemic lupus erythematosus.4

Enhancing efferocytosis has been proposed as strategy to
treat chronic inflammation.4–6

Efferocytosis depends on recognition of the apoptotic cell
by the phagocyte. Different ‘eat me’ signals on the apoptotic
cell surface, also called ACAMP (apoptotic cell-associated
molecular patterns), have been identified.7 Cell surface-
expressed phosphatidylserine (PS) is the best characterized
and one of the most important ‘eat me’ signals for effero-
cytosis.8,9 PS binds directly to a phagocyte receptor or via

bridging molecules including growth arrest-specific 6, milk
fat globule-epidermal growth factor 8 (MFG-E8) and
annexin A1.9

Annexin A5 (anxA5), a structurally and biophysically well-
characterized member of the annexin multigene family, binds
to PS with high affinity in a Ca2þ -dependent manner.10 It is
used broadly as molecular imaging agent to measure
apoptosis in vitro11 and in vivo in animal models and
patients.10 AnxA5 does not act as a bridging molecule but
inhibits efferocytosis by shielding the PS-expressing surface
of apoptotic cells.12,13 The molecular imaging experience with
anxA5 triggered us to explore whether anxA5 could be
transformed into a therapeutic agent enhancing efferocytosis.
It has been shown that the PS receptor TIM-4 (T-cell
immunoglobulin- and mucin-domain-containing molecule-4)
and integrin avb3/5 act cooperatively during efferocytosis.14

Here we report the transformation of anxA5 from an inhibitory
into a stimulatory protein of efferocytosis by introduction of an
Arg-Gly-Asp (RGD) motif into its N-terminal tail, which is
located apical to the PS-binding sites. We show that RGD–
anxA5 interacts with avb3/5 on the phagocyte, stimulates
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efferocytosis in vitro and in vivo and enhances anti-inflamma-
tory cytokine production. We conclude that RGD–anxA5 is a
promising strategy for treatment of diseases with impaired
efferocytosis.

Results

PS-binding in vitro. First we investigated effects of muta-
tion on PS-binding properties in vitro. RGD–anxA5 exhibited
Ca2þ -dependent PS-binding similar to RGT–anxA5 (Arg-
Gly-Thr–annexin A5), while RGD–M1234, which is an anxA5
variant lacking functional Ca2þ /PS-binding sites,15 showed
no phospholipid-binding activity (Figure 2a). The Ca2þ -
sensitivity of PS-binding was not changed by the introduction
of RGD into anxA5’s N-terminal tail (Figure 2b). In order to
assess binding to apoptotic cells by flow cytometry, RGT–
anxA5 and RGD–anxA5 were labeled with fluorescein, which
yielded 1 : 1 stoichiometric complexes as determined by
matrix-assisted laser desorption/ionization-time of flight/time
of flight (MALDI-TOF/TOF; data not shown). RGD–anxA5
and RGT–anxA5 show comparable dose–response curves
for binding apoptotic cells and the amount of surface-bound
anxA5 depended on functional Ca2þ -binding sites and was
unaffected by the RGD motif (Figure 2c). Furthermore the
Ca2þ -chelator ethylenediaminetetraacetic acid (EDTA) pre-
vented binding and dissociated bound RGD–anxA5 from the
cell (data not shown). On the basis of these results we
conclude that the T8D substitution changes anxA5 binding
neither to PS embedded in a synthetic bilayer nor to PS in its
natural environment of the plasma membrane of apoptotic
cells. These results also indicate that the concave side of
anxA5 is adjustable, allowing structural changes without
interfering allosterically with the convex PS-binding side.

Integrin-binding in vitro. Next, accessibility and function-
ality of the RGD motif was investigated using phorbol
12-myristate 13-acetate (PMA)-stimulated human monocytic
THP-1 cells, which upregulate integrin avb3 expression in
response to phorbol esters.16 By using xCELLigence
technology, PMA-induced adherence and spreading of
THP-1 cells could be monitored over time (Supplementary
Figure S1). On the basis of these analyses, 72-h stimulation
with 50 nM PMA was chosen. RGD–anxA5–fluorescein but
not RGT–anxA5–fluorescein bound to PMA-stimulated
THP-1 cells (Figure 2d) in the presence of ethylene glycol
tetraacetic acid (EGTA). Binding was performed in the
presence of EGTA to avoid PS-dependent binding. EGTA
conditions were chosen such that no dissociation of the
a- and b-subunit of the integrin receptor occurred.17 Binding
of RGD–M1234–fluorescein to THP-1 cells (Figure 2d)
confirmed that the RGD motif mediated binding and not the
Ca2þ /PS-binding sites. Similar results were found with
MCF-7 cells expressing avb5 integrins18 (data not shown).
At physiological Ca2þ concentrations, the RGD motif causes
extra binding to THP-1 cells on top of the PS-binding,
as shown in Figure 2e. This extra binding is blocked by a
100-fold molar excess of cyclic Arg-Gly-Asp (cRGD) showing
that RGD–anxA5 binds to integrins of THP-1 cells in the
presence of 1mM Ca2þ .

RGD–anxA5 enhances efferocytosis by THP-1 macro-
phages in vitro. RGD–anxA5 stimulated efferocytosis by
THP-1 macrophages with 40%, whereas RGT–anxA5
inhibited it with 33% (Figure 3a) and lactadherin stimulates
efferocytosis with 60% (data not shown) as measured with a
recently described efferocytosis assay (Supplementary
Figures S2A and B).13 This 40% stimulation can completely

Figure 1 (a) The ribbon structure is given for human anxA5, colored from N to C terminus following blue-to-red standard coloring. The wild-type sequence from human
anxA5 (PDB accession number 1anw.pdb) was mutated in silico by the introduction of a Thr8Asp missense mutation after which the structure was regularized and minimized
using the ICM Promolecular modeling package (Molsoft LLC). In this minimized structure Asp8 is involved in hydrogen bonding to Arg 285, which may help in stabilization of
the N terminus. The side chains are indicated for the RGD motif. (b) The interaction between Asp 8 and Arg 285 is shown in detail. (c) MALDI-TOF/TOF analysis of a
representative batch of purified RGD–anxA5 showing monomer (37 980 Da), the bis-protonated monomer (18 931 Da) and the dimer (75 933 Da). (d) anxA5 variants and their
modifications, all variants are extended with an N-terminal histidine tag
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be inhibited by a 100-fold molar excess of cRGD (Figure 3b).
Hence, introduction of RGD into the N-terminal tail trans-
formed anxA5 from an inhibitor into a stimulator of
efferocytosis.

TNFa secretion during efferocytosis in vitro. TNFa secre-
tion by PMA-stimulated THP-1 cells was slightly reduced by
the presence of apoptotic cells either in the absence or
presence of RGT–anxA5 and RGD–M1234 (Figure 3c). The
combination of apoptotic cells and RGD–anxA5 dramatically
increased secretion of TNFa (Figure 3c). None of the
annexins affected the basal secretion of TNFa by PMA-
stimulated THP-1 cells in the absence of apoptotic cells (data
not shown). These results indicate that RGD–anxA5 affects
cytokine secretion only in the presence of apoptotic cells,
likely by bridging between cell surface-expressed PS of the
apoptotic cell and avb3 of the THP-1 cell, a property that is not
possessed by RGT–anxA5 and RGD–M1234. Two-dimen-
sional crystallization of RGD–anxA5 on the cell surface may
contribute to enhanced outside-in signaling by integrin
receptor clustering.19 The enhanced TNFa secretion pre-
sumably precludes a therapeutic role for RGD–anxA5.

However, PMA-stimulated THP-1 cells upregulate proinflam-
matory cytokines during efferocytosis20 in contrast to blood-
derived macrophages, which suppress proinflammatory
cytokine production when engulfing apoptotic cells.21 There-
fore, we analyzed effects of apoptotic cells and annexins on
upregulation of TNFa mRNA by bone marrow-derived
macrophages (BMDM) that were differentiated into various
phenotypes. Neither RGD–anxA5 nor RGT–anxA5 caused
an upregulation of TNFa-mRNA in any of the phenotypes
studied (Figure 3d). These findings opened the door to in vivo
studies.

PS-binding in vivo. Next, PS-binding in vivo was deter-
mined in a mouse model of ischemia/reperfusion injury of the
heart. We showed previously that murine cardiomyocytes
exposed to ischemic/reperfusion stress externalized and
internalized PS continuously during a period of more than
60min.22 RGD–anxA5–fluorescein and RGT–anxA5–
alexa568 stained the same cardiomyocytes in the area at
risk if administered intravenously (Figure 4). No uptake of
RGD–anxA5 and RGT–anxA5 was observed in control
mouse hearts (data not shown) and RGD–M1234 failed to

Figure 2 (a) Time courses of anxA5 variants (1mg/ml) binding to a 20 mole% DOPS/80 mole% DOPC bilayer measured by ellipsometry. At the indicated time points
(arrows) 3 mM Ca2þ and 6 mM EDTA were added. (b) Ca2þ -dependent binding curves for RGT–anxA5 (1 mg/ml) and RGD–anxA5 (1mg/ml) to a 20 mole% DOPS/80 mole%
DOPC bilayer. (c) Dose–response curve of fluorescein-labeled RGT–anxA5 and RGD–anxA5 binding to apoptotic Jurkat cells measured by flow cytometry. (d) Binding of
10mg/ml fluorescein-labeled RGT–anxA5, RGD–anxA5 and RGD–M1234 to PMA-stimulated THP-1 cells (1� 106 cells/ml) in the presence of EGTA (1 mM). Mean±S.E.M.
is shown. (e) Adherent THP-1 cells were incubated with fluorescein-labeled RGT–anxA5 and RGD–anxA5 (10 mg/ml) in 10 mM HEPES/pH 7.4, 150 mM NaCl, 5 mM KCl,
1 mM MgCl2 and 1 mM CaCl2 in the absence and presence of cRGD (28mM) during 30 min. Cells were stained with 4,6-diamidino-2-phenylindole. Fluorescein was measured
and number of cells were counted. Fluorescence was normalized for the number of cells. One, two and three asterisks represent P-values o0.05, o0.01 and o0.001,
respectively
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Figure 3 (a) Effects of anxA5 variants (10 mg/ml) on efferocytosis of apoptotic Jurkat cells (2.5� 106 cells/ml) by PMA-stimulated THP-1 cells (106 cells/ml). (b) Effect of
100-fold molar excess of cRGD on efferocytosis of apoptotic Jurkat cells (2.5� 106 cells/ml) by PMA-stimulated THP-1 cells (106 cells/ml) in the presence of RGD–anxA5.
(c) Effects of anxA5 variants (10mg/ml) on TNFa secretion by PMA-stimulated THP-1 cells (106 cells/ml) in the absence and presence of apoptotic Jurkat cells (2.5� 106 cells/ml).
(d) Effects of anxA5 variants (10 mg/ml) on TNFa mRNA expression by M0, M1, M2a and M2c (2.5� 105 cells/well) in the presence of apoptotic L929 cells (6.3� 105 cells/
well). Mean±S.E.M. is shown. One, two and three asterisks represent P-values o0.05, o0.01 and o0.001, respectively

Figure 4 (a–c) Ex vivo images of sections of a mouse heart that was exposed to 30 min ischemia and 24 h of reperfusion. At the start of reperfusion RGT–anxA5–alexa568
(red, 70mg) was injected intravenously. Twenty minutes before sacrifice RGD–anxA5–fluorescein (green, 70 mg) was injected intravenously. The heart was taken out, frozen,
sectioned and analyzed by fluorescence microscopy. (d–f) A higher magnification image of the infarcted area showing a single stained cardiomyocyte
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bind stressed cardiomyocytes (data not shown). These
findings indicate that insertion of the RGD motif into the
N-terminal tail was without effect on the in vivo PS-target
finding activity of anxA5.

RGD–anxA5 enhances efferocytosis in vivo. In order to
assess the impact of RGD–anxA5 on efferocytosis, in vivo
fluorescent apoptotic neutrophils were injected intraperitone-
ally into wild-type C57BL/6J mice. Resident peritoneal
macrophages engulfed apoptotic neutrophils, a process that
was quantified by flow cytometry (Supplementary Figure S2).
RGD–anxA5 enhanced efferocytosis with 20%, while
RGT–anxA5 had no effect on phagocytosis (Figure 5a).

Cytokine release after efferocytosis in vivo. The effect of
efferocytosis on cytokine production was determined by
collecting peritoneal macrophages 30min post-injection of
apoptotic neutrophils in the absence or presence of
annexins. Collected macrophages were cultured for 20 h
and levels of secreted TNFa and IL-10 were measured in the
culture medium. RGD–anxA5 induced an increase of
cytokine secretion from 30 to 75 pg/ml (TNFa, Figure 5b)
and from 40 to 185 pg/ml (IL-10, Figure 5c). RGT–anxA5 did
not alter cytokine secretion.

Endotoxin determination. All anxA5 variants contain less
than one endotoxin units per milliliter.

Discussion

Enhancing phagocytosis has been proposed as therapeutic
strategy to treat inflammation.4–6 Strategies could focus on
the phagocyte and aim to stimulate the molecular machinery
executing phagocytosis23 or focus on the phagocytic prey and
label it with additional ‘eat me’ signals.24

Here we present the strategy to add additional ‘eat me’
signals to the apoptotic cell by targeting PS, which is a
ubiquitous hallmark of apoptosis independent of cell type and
cell death-inducing trigger.25 PS can interact directly or
indirectly via PS-binding proteins with receptors on the
phagocyte.9 The variety of engulfment receptors and apopto-
tic ligands led to the proposal of a ‘tether and tickle’ model, in
which PS could mediate both tethering of the apoptotic cell to
the phagocyte and tickling of the phagocyte by engaging
different receptors.26 TIM-4, a member of the T-cell immuno-
globulin and mucin family, was identified as a PS receptor
mediating tethering.27,28 The integrin avb3 acts as tickling
receptor through binding PS via the opsonin MFG-E829 and
activating Rac1 and Rab5-dependent pathways.14 Both

phagocytic receptors cooperate to engulf the PS-expressing
apoptotic cell,14 indicating that apoptotic cell expresses
sufficient PS to allow multiple interactions with different
receptors and bridging molecules. Recently it was shown
that avb3-dependent efferocytosis is a crucial process in
dampening aggravation of chronic inflammation such as
atherosclerosis.3 Therefore, we reasoned that targeting PS
with ‘eat me’ signals engaging avb3 could be a viable strategy
to treat inflammation. We selected anxA5 as PS-targeting
agent and modified it into an avb3 ligand (RGD–anxA5)
because of (i) themolecular imaging experiencewith anxA5,10

(ii) its elucidated three-dimensional structure30 and (iii) its
property to form a two-dimensional network on the apoptotic
cell surface, thereby clustering receptors with which it
interacts.31

In this paper we demonstrate that anxA5 can be success-
fully transformed from an inhibitor into a stimulator of
efferocytosis. This was accomplished by a T8D substitution
that introduces an RGD motif in the N-terminal tail, which is
located at the concave surface of anxA5 apical to the convex
side harboring the PS-binding sites.32 The T8D substitution
had no deleterious effects on anxA5’s PS-binding properties
in vitro and its apoptotic cell targeting-function in vivo.
In contrast to wild-type anxA5 (RGT–anxA5), RGD–anxA5
possessed the property of binding to avb3 and avb5-expressing
cells and stimulating efferocytosis. The flexible loop con-
formation of the N-terminal tail and the amino acids flanking
the RGD motif likely facilitated ligation of the RGD motif with
the integrin receptor.33 RGD–anxA5 stimulated engulfment of
apoptotic cells in vitro and in vivo. The latter was determined in
a model that exposes resident peritoneal macrophages to
apoptotic neutrophils. It is remarkable and promising that
RGD–anxA5 was capable of stimulating efferocytosis by 20%
in this system, as resident peritoneal macrophages already
use TIM-4 for tethering and MFG-E8 to engage avb3 for
tickling.14

In addition to stimulating efferocytosis, RGD–anxA5
appeared to cause upregulation of TNFa in PMA-stimulated
THP-1 cells. This would preclude RGD–anxA5 as a ther-
apeutic agent, as a shift toward proinflammation aggravates
inflammatory pathologies such as atherosclerosis.34 We
reasoned that RGD–anxA5-induced upregulation of TNFa
could be a consequence of the in vitro model system we
selected to study efferocytosis. It has been shown that avb3
signaling augments TNFa production by PMA-stimulated
THP-1 cells.35 In agreement with our reasoning we demon-
strated that RGD–anxA5 was without noticeable effects on
TNFa production by BMDMs of different phenotypes. Further-
more, RGD–anxA5 caused only a modest stimulation of TNFa

Figure 5 Effects of anxA5 variants (24 mg) on efferocytosis of CFSE-stained apoptotic neutrophils (3.0� 106 cells) by resident peritoneal macrophages of C57BL/6J mice.
(a) Collected peritoneal macrophages were analyzed by flow cytometry and relative phagocytosis was determined. Collected peritoneal macrophages were cultured during
20 h and TNFa (b) and IL-10 release (c) were quantified. Mean±S.E.M. is shown. One and two asterisks represent P-values o0.05 and o0.01, respectively
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production (75 pg/ml) in vivo by resident peritoneal macro-
phages that were exposed to apoptotic cells. Activated
peritoneal macrophages can produce TNFa up to levels of
several 1000s pg/ml.36,37

Adequate efferocytosis is required for resolution of inflam-
mation and suppression of progressive inflammation such as
atherosclerosis.34 It is generally accepted that adequate
efferocytosis involves secretion of anti-inflammatory cyto-
kines such as IL-10.2 PS-mediated tethering and tickling is
intimately linked to efferocytosis and the secreted cytokine
profile. Blocking PS with wild-type anA5 (RGT–anxA5)
resulted in reduced efferocytosis and increased secretion of
proinflammatory cytokines by activated peritoneal macro-
phages.12 Interestingly, we observed no effect of RGT–anxA5
on phagocytosis and cytokine secretion by resident macro-
phages, whereas RGD–anxA5 stimulated efferocytosis and
enhanced TNFa secretion±2-fold and IL-10 secretion±

4-fold. These results support the model that contribution of
PS to efferocytosis depends on themacrophage population.38

Whether RGD–anxA5 exhibits therapeutic effects during
inflammation is currently being investigated in a mouse model
of atherosclerosis. We hypothesize that RDG–anxA5 protects
against atherosclerosis because an RGD-dependent
mechanism triggers IL-10 release during efferocytosis,39

knock-out of the RGD-opsonin MFG-E8 culminates in
reduced IL-10 levels and aggravation of atherosclerosis3

and intravenously administered anxA5 accumulates in ather-
osclerotic plaques.40

In conclusion, targeting cell surface-expressed PS to
enhance efferocytosis is an attractive strategy for treatment
of inflammatory diseases, and the rationally designed
RGD–anxA5 is a promising therapeutic agent.

Materials and Methods
Design, expression and purification of the different anxA5
variants. E. coli M15 (pREP4; Qiagen, Valencia, CA, USA) were transformed with
pQE30Xa (Qiagen) containing cDNA of the anxA5 variants. Bacteria were grown to
0.8 OD600 and expression was induced by adding 0.5 mM isopropyl
b-D-1-thiogalactopyrano-side (IPTG, Eurogentec, Seraing, Belgium). After 3 h,
bacteria were collected and resuspended in phosphate buffer (20 mM, pH 7.4)
containing 500 mM NaCl, 20 mM imidazole and 1% Triton X-100. Bacteria were lysed
by sonification at 12mm amplitude for 6� 10 s. Lysis was continued at room
temperature for 3 h. Cell debris was removed by centrifugation. His-tagged proteins
were isolated from supernatant by chromatography using nickel columns (GE
Healthcare, Amersham, Buckinghamshire, UK) and an imidazole gradient. Figure 1
depicts an endotoxin-free RGD–anxA5 variant and a representative matrix-assisted
laser desorption/ionization-time of flight/time of flight (MALDI-TOF/TOF) mass
spectrometric analysis of a purified recombinantly expressed batch of this variant.

Cell culture. THP-1 cells, a human monocytic cell line (American Type Culture
Collection (ATCC), Manassas, VA, USA), were cultured in RPMI 1640 without
indicator (Gibco-BRL, Invitrogen, Carlsbad, CA, USA) supplemented with 2 mM
glutamine (Gibco-BRL, Invitrogen), 10% heat-inactivated fetal bovine serum
(Gibco-BRL), 100 units/ml penicillin (Gibco-BRL) and 100mg/ml streptomycin
(Gibco-BRL). Differentiation of THP-1 cells in adherent macrophages was
achieved by addition of 50 nM PMA (Promega, Madison, WI, USA) for 72 h. PMA-
induced adhesion and spreading was monitored real-time using xCELLigence
apparatus (Roche, Almere, The Netherlands). The T-cell lymphoma Jurkat cell line
(ATCC) was cultured in RPMI 1640 (Gibco-BRL) supplemented with 10% heat-
inactivated fetal bovine serum (Gibco-BRL), 100 units/ml penicillin (Gibco-BRL),
100mg/ml streptomycin (GIBCO-BRL). L929 cells, a mouse fibroblast cell line
(ATCC) were cultured in DMEM with high glucose (Gibco-BRL) supplemented with
10% heat-inactivated fetal bovine serum (Gibco-BRL), 100 units/ml penicillin
(Gibco-BRL) and 100 mg/ml streptomycin (Gibco-BRL).

Bone marrow-derived macrophages isolation and differentiation.
Bone marrow-derived macrophages isolation and differentiation were isolated as
described by Goossens et al.41 After isolation, macrophages were stimulated with
10 U/ml mouse recombinant IFNg, 20 ng/ml mouse recombinant interleukin (IL)-4
or 10 ng/ml mouse recombinant IL-10 (to induce M1, M2a and M2c macrophages,
respectively) or no cytokines (M0). After 24 h stimulation, macrophages were used
in the efferocytosis assay.

Labeling of anxA5 variants with optical probes. RGD–anxA5 and
RGT–anxA5 were labeled with maleimide-fluorescein (Pierce, Rockford, IL, USA)
and maleimide-alexa568 (Invitrogen, Cergy Pontoise, France) while RGD–M1234
was labeled with fluorescein isothiocyanate (FITC, Invitrogen) according to the
protocols of the manufacturers. FITC-labeled RGD–M1234 was purified by MonoQ
ion exchange chromatography (Akta Explorer, GE Healthcare) to obtain 1 : 1
stoichiometric complexes. Stoichiometry of the complexes was verified with
MALDI-TOF/TOF-analysis (Applied Biosystems, Foster City, CA, USA).

Ellipsometry. PS-binding characteristics of the anxA5 variants was deter-
mined by ellipsometry using a bilayer of 20 mole% dioleoyl-phosphatidylserine/80
mole% dioleoyl-phosphatidylcholine (20 mole% DOPS/80 mole% DOPC; Avanti
Polar Lipids, Alabaster, AL, USA) as described previously.42

Binding to apoptotic Jurkat cells. Jurkat cells (1� 106 cells/ml) were
triggered in culture medium to execute apoptosis by incubation with anti-Fas
antibody (200 ng/ml clone 7C11, Beckman-Coulter, Marseille, France) for 3 h. The
course of apoptosis was determined by flow cytometry (Beckman-Coulter)
using the anxA5-FITC staining protocol (Nexins Research, Kattendijke, The
Netherlands). An aliquot of 25ml cell suspension was added to 220ml binding
buffer (10 mM HEPES/NaOH, pH 7.4, 150 mM NaCl, 5 mM KCl, 1 mM MgCl2 and
2.5 mM CaCl2) and 5 ml with different concentrations of fluorescein-labeled anxA5.

Integrin-binding in vitro. Accessibility of the RGD motif for ligation with
integrin receptors was determined by flow cytometry and fluorescence microscopy.
By using flow cytometry, PMA-stimulated THP-1 cells were scraped and refreshed
in complete RPMI 1640 (Gibco-BRL) at a concentration of 1� 106 cells/ml. An
aliquot of 50ml of the cell suspension was added to 445ml EGTA-containing buffer
(20 mM HEPES, 140 mM NaCl, 1 mM EGTA, pH 7.4) and 5 ml fluorescein-labeled
anxA5 variants solution (200mg/ml). The assay was performed in EGTA-
containing buffer to chelate Ca2þ -ions and prevent Ca2þ -dependent PS-binding.
After 30 min incubation at room temperature, binding of the variants to THP-1
macrophages was analyzed by flow cytometry. Results were calculated offline with
WinMDI 2.8 software. By using fluorescence microscopy the binding of the RGD
motif in the presence of physiological concentrations of Ca2þ was studied.
Fluorescein-labeled RGT–anxA5 and RGD–anxA5 (10 mg/ml) were incubated for
30 min with the adherent THP-1 cells in 10 mM HEPES/pH 7.4, 150 mM NaCl,
5 mM KCl, 1 mM MgCl2 and 1 mM CaCl2 in the absence and in the presence of
cRGD (100-fold molar excess). After nucleus staining, overview pictures were
taken and fluorescence was quantified using Leica QWin software. Fluorescence
was normalized for the number of cells.

Efferocytosis assay in vitro with THP-1 cells. Efferocytosis was
quantified by flow cytometry as described.13 Briefly, THP-1 cells were
differentiated with PMA to adherent macrophages as described. PMA-stimulated
cells were washed twice with phosphate-buffered saline (PBS, Braun Melsungen,
Germany). Jurkat cells were preincubated for 10 min with carboxyfluorescein
succinimidyl ester (CFSE; Invitrogen) in serum-free RPMI 1640 medium, washed
twice with PBS, refreshed in complete RPMI 1640 medium (1� 106 cells/ml) and
treated with or without anti-Fas antibody (200 ng/ml clone 7C11). Apoptotic Jurkat
cells were added to the differentiated THP-1 cells at a ratio 2.5 : 1 in the presence
of anxA5 variant (10 mg/ml) and cRGD (100 times molar excess) if stated in the
text. After 20 h of incubation, THP-1 macrophages were washed twice with PBS
and collected with 0.5% trypsin/EDTA (Gibco-BRL). Efferocytosis of CFSE-Jurkat
cells and subsequent processing in the phagolysosome induces a left shift of Fl-1
signal in the Fl-1 versus Fl-3 plot due to acidification of the phagolysosome
(Supplementary Figure S2).

Two-photon laser scanning microscopy. Efferocytosis of apoptotic
jurkat cells by differentiated THP-1 cells was visualized by two-photon laser
scanning microscopy (TPLSM; as described previous by Douma et al.43).
The procedure of cell treatment is identical to the flow cytometry protocol
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described above, with the exception that at the end of the incubation period THP-1
cells were fixed with 3.7% formaldehyde in PBS for 10 min at room temperature.
Fixed THP-1 cells were stained with Phalloidin-Texas Red (Invitrogen) according
to the protocol of the manufacturer.

xCELLigence cell adhesion assay. Cell adhesion and spreading of
THP-1 cells were measured in 96-well plates with xCELLigence RTCA apparatus
(Roche, Almere, The Netherlands) as described previously.44 Impedance is
expressed in terms of a Cell Index (CI). CI is a dimensionless value representing
the impedance between sensing electrodes. Impedance changed by adhesion of
cells to the surface and was monitored in time. Using this technique, we monitored
adherence of 50 000 THP-1 cells/well during differentiation with 50 nM PMA.

Efferocytosis assay in vitro with bone marrow-derived macro-
phages. After 24 h stimulation, macrophages were used in the efferocytosis
assay. L929 were stimulated to undergo apoptosis with doxorubicin (10 mM)
overnight at a concentration of 2.0� 106 cells/ml. Apoptotic L929 cells were
washed twice with PBS and added to M0-M1-M2a or M2c macrophages at a ratio
2.5 : 1 in the presence or absence of anxA5 variants (10mg/ml). After 3 h of
incubation, BMDM were washed twice with PBS and collected for mRNA isolation.
RNA was isolated with the High Pure RNA Isolation Kit (Roche, Basel,
Switzerland). A quantity of 200 ng total RNA was reverse transcribed using the
iScript cDNA Synthesis Kit (Bio-Rad, Veenendaal, The Netherlands). Quantitative
PCR was performed using 10 ng cDNA, 300 nM of each primer, and IQ SYBR
Green Supermix (Bio-Rad) in a total volume of 20 ml. Results are compared to
each subtype without apoptotic Jurkat cells.

Ischemia/reperfusion of mouse heart in vivo. Induction of cardiac
ischemia and subsequent reperfusion were performed as described previously.45

After left thoracotomy and exposure of the heart, the left anterior descending
coronary artery was ligated for 30 min and subsequently reperfusion was
established for 24 h. At the start of reperfusion RGT–anxA5–alexa568 (red, 70mg)
was injected intravenously. Twenty minutes before sacrifice RGD–anxA5–
fluorescein (green, 70mg) was injected intravenously. The heart was taken out,
frozen, sectioned and analyzed by fluorescence microscopy (Leica DMRBE,
Rijswijk, The Netherlands).

Efferocytosis assay in vivo. Efferocytosis was performed with apoptotic
neutrophils in C57BL/6J mice (Charles River Laboratories, Wilmington, MA, USA)
as described elsewhere.46 To study in vivo efferocytosis by resident peritoneal
macrophages, mice were injected intraperitoneal (i.p.) with CFSE-labeled
apoptotic human neutrophils (3� 106 cells per mouse). Neutrophils were
preincubated with the anxA5 variants (RGT–anxA5 and RGD–anxA5) for 5 min
in buffer (20 mM HEPES, 140 mM NaCl, 1,8 mM CaCl2 pH 7.4) before i.p.
injection. Mice were sacrificed 30 min after i.p injection, and peritoneal cells were
collected by lavage with 3 ml of ice-cold PBS containing 3 mmol/l EDTA.
Efferocytosis was assessed by flow cytometry using a BD FACs Calibur platform
(San Jose, CA, USA). After in vivo efferocytosis the macrophages were cultured in
a 24-well plate and supernatant was taken for cytokine determination. To show the
phagocytosis, the macrophages were stained with myeloperoxidase (MPO)
according the protocols of the manufacturers to show the specificity of the assay
(Supplementary Figure S2).

All animal experiments were approved by the local Animal Experimental
Committee.

Cytokine analysis. Efferocytosis with THP-1 macrophages was performed
as described above with the exception that the Jurkat cells were not stained with
CFSE. After efferocytosis, supernatant was centrifuged at 300g for 3 min to
remove free Jurkat cells. Human tumor necrosis factor-a (TNFa)-ELISA was
performed as described elsewhere.47

Immunoreactive levels of murine IL-10 and TNFa (MCYTOMAG-70K-04) were
measured in the supernatant of cultured peritoneal macrophages by using Milliplex
mouse cytokines (Merck Millipore, Billerica, MA, USA). The samples were prepared
according to the manufacturers’ instructions and analyzed on Bio-Plex 200 Systems
(Bio-Rad, Hercules, CA, USA).

Endotoxin determination. The endotoxin content was measured with the
Endosafe PTS spectrophotometer using the Endosafe PTS cartridge (0.1 EU
sensitivity, Charles River Laboratories).

Statistics. Statistics were performed by the non-parametric Mann–Whitney
t-test.

One, two and three asterisks represent P-values o0.05, o0.01 and o0.001,
respectively.
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