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The early-response gene product IEX-1 (also known as IER3) was recently found to interact with the anti-apoptotic Bcl-2 family
member, myeloid cell leukemia-1 (Mcl-1). In this study we show that this interaction specifically and timely controls the
accumulation of Mcl-1 in the nucleus in response to DNA damage. The IEX-1 protein is rapidly induced by c-irradiation, genotoxic
agents or replication inhibitors, in a way dependent on ataxia telangiectasia mutated (ATM) activity and is necessary for Mcl-1
nuclear translocation. Conversely, IEX-1 protein proteasomal degradation triggers the return of Mcl-1 to the cytosol. IEX-1 and
Mcl-1 are integral components of the DNA damage response. Loss of IEX-1 or Mcl-1 leads to genomic instability and increased
sensitivity to genotoxic and replicative stresses. The two proteins cooperate to maintain Chk1 activation and G2 checkpoint
arrest. Mcl-1 nuclear translocation may foster checkpoint and improve the tumor resistance to DNA damage-based cancer
therapies. Deciphering the pathways involved in IEX-1 degradation should lead to the discovery of new therapeutic targets to
increase sensitivity of tumor cells to chemotherapy.
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Cells respond to DNA damage by activating a protein
network that recognizes the damaged DNA, triggering cell
cycle checkpoints, repair of the damaged DNA and/or cell
death. The DNA damage response (DDR) is regulated by two
primary signaling pathways activated downstream of the
effector kinases, ataxia-telangiectasia mutated (ATM) and
ATM-and Rad3-related (ATR), which are mutated in
ataxia-telangiectasia and Seckel syndrome, respectively.
ATM is activated in response to agents inducing DNA
double-strand breaks (DSBs), whereas ATR responds to a
broad spectrum of genotoxic stresses. In the presence of
DSBs, the Mre11/Rad50/Nbs1 complex accumulates at DNA-
damage sites, forming subnuclear foci. Recruitment of ATM to
this complex fosters its activation, leading to phosphorylation
of numerous substrates, including the histone H2AX that
serves as a scaffold for the recruitment of DNA repair and
checkpoint signaling proteins. ATM triggers the processing of
DSBs into extended regions of single-stranded DNA. ATR is
then recruited and activated to RPA-coated ssDNA. ATM and
ATR phosphorylate the checkpoint kinases Chk1 and Chk2,
respectively, which will give cell the time to repair the
damaged DNA by arresting their cycle at the G1-S or G2-M
transitions and within the S phase.1

In the face of irreparable damage the cell may activate its
apoptotic machinery. On the contrary, in response to low
levels of damage and during the checkpoint arrests,
apoptosis needs to be suppressed to allow repair and avoid

unnecessary cell destruction. The correct balance between
cell cycle arrest and apoptosis is crucial to ensure genomic
stability. This suggests a high and complex interplay between
proteins controlling the DDR and the apoptotic pathways.
Evolutionary conserved Bcl-2 family members are central
regulators of apoptosis. Myeloid cell leukemia-1 (Mcl-1) is an
anti-apoptotic member of this family. Models of Mcl-1 knock-
out mice have shown its requirement for embryonic develop-
ment and differentiation of various hematopoietic lineages.2–4

Mcl-1 is regulated at transcriptional, post-transcriptional and
post-translational levels.5,6 Its anti-apoptotic function is
regulated by interaction with other Bcl-2 family members.7

Outside of this family, Mcl-1 interacts with proteins regulating
apoptosis or cell proliferation, including fortilin, cdk1 and
PCNA.8–10 Recent studies have identified immediate early-
response gene X-1 (IEX-1, also known as IER3) as a new
partner of Mcl-1.11,12 IEX-1 is an early-response gene product
that is rapidly induced by growth factors, ionizing radiations
and viral infections. Conflicting data have been reported
concerning its role in survival: IEX-1 was found to not only
increase apoptosis in response to TNF-a,11,13–15 but also to
contribute to growth factor-mediated survival15,16 and to
prevent activation-induced T-cell death.17,18 Other functions
have been attributed to IEX-1 such as regulation of ERK, Akt
and NF-kB signaling pathways.14,16,19

Unlike a previous report,12 we found that although IEX-1
and Mcl-1 inhibit staurosporin-induced apoptosis, this function
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is independent of their interaction. A recent study reported
that Mcl-1 translocates to the nucleus after treatment with
etoposide.20 In this study we show that Mcl-1 nuclear
translocation is a general response to genotoxic stress and
that it is strictly and timely controlled by IEX-1. IEX-1
expression is rapidly induced by DNA-damaging agents in
an ATM-dependent manner and is necessary for Mcl-1
nuclear translocation. Conversely, IEX-1 protein degradation
triggers Mcl-1 return to the cytosol. IEX-1 and Mcl-1 are
integral components of the DDR pathway. They cooperate to
maintain Chk1 activation, and regulate proper G2 checkpoint
arrest and repair of DNA lesions and cell survival after
treatments with various DNA-damaging agents.

Results

Mcl-1 nuclear accumulation is induced by genotoxic
stress and is controlled by IEX-1. Anti-HA antibodies could
immunoprecipitate Mcl-1 but not Bcl-2 from cells transfected
with HA-IEX-1 and either Myc-Mcl-1 or Flag-Bcl-2 (Figure 1a
and Supplementary Figure S1-a). Immunofluorescence (IF)
analysis revealed that expression of GFP-IEX-1 induced a
striking accumulation of endogenous Mcl-1, but not of Bcl-2 or
Bcl-xL, to the nucleus (Figure 1b and Supplementary Figure
S1-b). Measurement of mean pixel intensities in the nucleus
and in the cytoplasm of random cells showed that Mcl-1, but
not Bcl-2 or Bcl-xL, was enriched in the nucleus of the
cells overexpressing GFP-IEX-1 (Supplementary Figure S1-c).
IEX-1 possesses a nuclear localization signal (NLS) and a
putative transmembrane (TM) region.15,21,22 Deletion of IEX-1
NLS prevented Mcl-1 nuclear accumulation but not Mcl-1/IEX-
1 interaction (Supplementary Figure S1a and b) whereas
deletion of IEX-1 TM (IEX-1-DTM) abolished both events
(Figures 1a and b). Thus, IEX-1-induced Mcl-1 nuclear
accumulation is dependent on its interaction with Mcl-1 and
requires an intact NLS.

Endogenous IEX-1 expression and Mcl-1 nuclear accumu-
lation were conjointly induced by a variety of DNA-damaging
agents such as etoposide, ionizing radiations (IRs) and the
replicative inhibitor hydroxyurea (HU) (Figure 1c). IEX-1 could
be detected by IF as soon as 30 min after IR (data not shown).
The Mcl-1 nuclear/cytoplasmic (N/C) IF intensity ratio was
increased in the nucleus of all cells after IR (0.87±0.016 and
1.8±0.06 for non-treated and IR-treated cells, respectively,
Supplementary Figure S1-c). Confirming these results, cell
fractionation indicated that the nucleus of resting cells
contains 15% (N/C ratio of 0.18) of total Mcl-1, whereas this
level reached up to 40% (N/C ratio of 0.8) after IR or HU
(Figure 1d). Neither IEX-1 overexpression nor DNA damage
had any effect on total Mcl-1 levels or half-life (Figure 1d and
Supplementary Figure S1-d).

Endogenous IEX-1 and Mcl-1 colocalized in the nucleus
and could be co-immunoprecipitated from the nuclear fraction
of HeLa cells after HU or IR treatments (Figures 1c and e).
IF analysis in cells subjected to detergent extraction before
fixation showed that although the global intensity of the signal
was greatly decreased under these conditions, most of the
IR-treated cells stained positively for nuclear Mcl-1 and
IEX-1 (Figure 1f). In contrast, the Mcl-1 signal was entirely

lost in non-treated cells. This further supports Mcl-1 delocaliza-
tion upon IR and indicates that IEX-1 and Mcl-1 associate, at
least partially, with the chromatin fraction after DNA damage.

HeLa cells expressing IEX-1 short hairpin RNAs (shRNAs)23

showed a great decrease in both IEX-1 induction and Mcl-1
nuclear accumulation upon HU or IR treatment (Figures 2a
and b). Fractionation experiments showed that IR increased
Mcl-1 levels in the nuclear fraction of cells expressing scramble
but not IEX-1 shRNAs (Figure 2c). Moreover, although in
IEX-1þ /þ hematopoietic progenitors Mcl-1 had entirely moved
from the cytoplasm to the nucleus 3 h after IR, its localization
remained unchanged in IEX-1�/� cells (Figure 2d). Expression
of IEX-1 in IEX-1�/� mouse embryonic fibroblasts (MEFs)
restored IR-mediated Mcl-1 nuclear staining (Supplementary
Figure S2). Thus, IEX-1 induction is a prerequisite for IR-
induced Mcl-1 nuclear translocation.

ATM activity is required for IEX-1 expression and to
maintain Mcl-1 in the nucleus. Both IR- or HU-mediated
IEX-1 expression and Mcl-1 nuclear accumulation were
abolished in ATM-deficient GM3189 lymphoblastoid cells
and upon treatment of HeLa cells with the ATM inhibitors
caffeine and KU-55933 (Figures 3a and b), showing that
these events require ATM activity.

IEX-1 is a short half-life protein, sensitive to degradation by
the proteasome. In cells treated overnight with HU and then
released in HU-free medium, IEX-1 staining was strong at 5 h,
started to fade at 9 h and disappeared at 16 h (Figure 3c).
Mcl-1 localized to the nucleus as long as IEX-1 was present
and returned to the cytosol when IEX-1 vanished. Addition of
the proteasome inhibitor,N-acetyl-Leu-Leu-NorLeu-al (LLnL),
at 5 h prevented IEX-1 disappearance and Mcl-1 nuclear exit.
In the absence of HU, treatment with LLnL alone for 4 h did not
induce IEX-1. In agreement with previous reports,5,6 Mcl-1
expression increased slightly under these conditions but it
remained mostly located in the cytoplasm. No apoptosis could
be detected up to 16 h, showing that neither the nuclear
localization of Mcl-1 nor its relocalization to the cytosol is
linked to cell death. Thus, IEX-1 is necessary to both bring and
maintain Mcl-1 into the nucleus.

To determine whether ATM activity is required to maintain
IEX-1 expression once induced, the cells were synchronized,
arrested in G2 by IR and then treated with caffeine or
KU-55933.24 Inhibition of ATM activity accelerated IEX-1
degradation and triggered Mcl-1 nuclear exit (Figure 3d),
showing that IEX-1 induction and degradation, as well as the
subsequent nucleo-cytoplasmic movement of Mcl-1, are DNA
damage- and ATM-controlled events.

Mcl-1-deficient cells show prolonged DNA damage and
impaired DNA repair. To assess the role of Mcl-1 in the
DDR, we first monitored the extent of DNA damage by
analyzing the presence of g-H2AX foci. At 30 min after HU
treatment, most Mcl-1þ /þ and Mcl-1�/� MEFs presented
g-H2AX foci. However, g-H2AX staining declined more
rapidly in wild-type (WT) than in Mcl-1�/� cells (Figure 4a
and Supplementary Figure S3-a). Mcl-1�/� MEFs regained
normal g-H2AX foci disappearance kinetics upon infection
with a Mcl-1-encoding but not with an empty vector. The
slower removal of g-H2AX foci, indicative of prolonged DNA
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damage, was also found after irradiation of shMcl-1-
expressing HeLa cells (Supplementary Figure S3-b).

Persistent DNA damage may result from defects in DNA
repair, cell cycle checkpoints or both. To analyze the first
possibility, we performed comet assays. DNA breaks are
visible by increased DNA mobility or ‘comet tails’. The comet
tail moment was measured to quantify the extent of
unrepaired DNA. Just after irradiation, all the cells showed

comparable amounts of DNA breaks. However, 1 h later,
Mcl-1þ /þ MEFs had rejoined 74% of the breaks, whereas
63% of them remained unrepaired in Mcl-1�/� cells. This
defect was completely restored upon re-expression of Mcl-1 in
Mcl-1�/� cells (Figure 4b). Interestingly, non-treated-Mcl-1�/�

cells had a basal tail moment slightly but reproducibly higher
than control cells, showing that they contain unresolved DNA
damage. This suggests that Mcl-1 could have a role in the
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repair of both induced and spontaneous DNA damage
occurring during normal DNA replication.

Mcl-1 deficiency leads to impaired Chk1 phosphory-
lation and G2/M arrest. To get insights into the mecha-
nisms by which Mcl-1 influences the DDR, we examined
whether its expression affected DNA damage signaling. ATM
phosphorylation was not decreased but was rather more
pronounced in shMcl-1-expressing HeLa cells (Figure 5a).
The loss of Mcl-1 led to a decreased IR-induced Chk1
phosphorylation on serines 296, 345 and 317, the three
sites targeted by ATR (Figures 5a and b). This effect was
particularly striking at longer time points, suggesting that Mcl-1
is not required to activate Chk1 but to maintain its activity. No
decrease in the phosphorylation of the other ATM/ATR
substrates, Chk2, RPA32, Rad17, SMC1 and NBS1, could
be observed. The prolonged phosphorylation of H2AX
confirmed the sustained presence of g-H2AX foci in Mcl-1-
deficient cells. These data suggest that Mcl-1 contributes to
DDR by maintaining selectively Chk1 activation.

Chk1 is required for intra-S and G2/M checkpoint activation.
To analyze both phases of the cell cycle, the cells were doubly
labeled with BrdU and propidium iodide (PI). Inhibition of
Mcl-1 expression had no effect on the unperturbed cell cycle
(Figure 5c). IR induced accumulation of control cells in the
S and G2 phases of the cell cycle. Mcl-1 downregulation had
no effect on the S-phase progression or on the accumulation

in G2 until 6 h after IR. However, at 24 h after IR, although
control cells were still blocked in G2, shMcl-1-expressing cells
had already started to re-enter in G1. A similar shorter G2
arrest was observed in Mcl-1-deficient MEFs (Supplementary
Figure S3-c). Thus, Mcl-1 is indispensable to maintain Chk1
phosphorylation and the G2 checkpoint, allowing correct DNA
repair in response to DNA damage.

IEX-1- and Mcl-1 act on the same pathway to regulate the
DDR. HeLa cells expressing IEX-1-shRNA, as well as
IEX-1�/� MEFs, showed spontaneous DNA breakage and,
after IR, sustained g-H2AX staining, delayed repair of DSBs
(Figure 6a and Supplementary Figure S4-a), reduced length
of the G2/M arrest (Figure 6b) and decreased Chk1
phosphorylation (Figure 6c and Supplementary Figure S4-
b). Infection of IEX-1�/� MEFs with IEX-1-encoding vector
rescued completely the kinetics of g-H2AX foci removal and
of DNA repair in response to IR (Figure 6a and Supple-
mentary Figure S4-a). Thus, IEX-1 deficiency recapitulates
Mcl-1 deficiency, suggesting that the two proteins act on
the same pathway in the DDR. In agreement with this
hypothesis, IEX-1�/� cells expressing the IEX-1-DTM
mutant, which fails to interact with Mcl-1, behaved as
IEX-1�/� cells transfected with GFP (Figure 6a and
Supplementary Figure S4-a). Moreover, expression of IEX-
1 could rescue the kinetics of disappearance of g-H2AX foci
in HeLa cells expressing shIEX-1 but not in cells expressing
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shIEX-1 and shMcl-1 together (Figure 6d). This shows that
the ability of IEX-1 to affect the DDR requires association
with Mcl-1 and its translocation to the nucleus.

We then determined the region of Mcl-1 involved in IEX-1
binding. Truncation of the C-terminal 20 amino-acids of Mcl-1
(DCter), encoding the transmembrane region, abolished its
interaction with IEX-1 (Figure 7a). Mcl-1 WT, but not DCter,
could fully restore DNA repair as well as Chk1 phosphoryla-
tion in Mcl-1�/� MEFs (Figures 7b and c). However, Mcl-1 WT
was unable to restore the rapid disappearance of g-H2AX foci
of Mcl-1�/� MEFs in which IEX-1 expression had been

knocked down by IEX-1 shRNAs (Figure 7d). Altogether,
these results show that IEX-1 and Mcl-1 require each other
and act on a unique pathway to regulate the DDR.

IEX-1- or Mcl-1-deficient cells show genomic insta-
bility. Mcl-1�/� MEFs and IEX-1�/� progenitors showed
increased sensitivity to IR, relative to their WT counterparts
(Figures 8a and b). After IR or HU, up to 62% of shIEX-1- and
shMcl-1-expressing cells presented micro or fragmented
nuclei, which could be easily distinguished from apoptotic
cells (Figure 8c). Spontaneous micronuclei were also observed
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at a frequency slightly higher (1.4- to 2-fold) in these cells than
in shControl-expressing cells. Other abnormalities, indicative of
increased genomic instability, such as nuclear blebbing,
multinucleation or unequal division, were also observed in
the absence of IEX-1 or Mcl-1.

IEX-1-deficient mice also showed genomic instability. At 1
month after whole-body irradiation, metaphase spreads of
cells isolated from IEX-1�/� bone marrows and spleens
showed a significant increase in chromosomal aberrations
when compared with controls (Figure 8d). Thus, the absence
of IEX-1 leads to sustained DNA lesions in hematopoietic
cells. However, no difference in survival between WT and
IEX-1�/� mice was observed at that time, suggesting that
compensatory mechanisms would limit the effect of this defect
on irradiated organisms.

Discussion

Cell cycle arrest, survival and DNA repair are coordinately
controlled in the face of DNA damage. Recent data have
revealed the existence of unexpected direct interactions
between checkpoint/repair components and members of the
Bcl-2 family or other regulators of the apoptotic pathway. For
example, Bid and APAF translocate to the nucleus and affect
S-phase arrest after DNA damage,25–27 and Bax and Bcl-2
negatively regulate homologous recombination.28 In this
study we show that Mcl-1 is an integral component of
the DDR, in multiple types of primary and transformed cells,
and in response to various stresses such as IR, genotoxic

agents or replication inhibitors. Cells lacking Mcl-1 show
altered G2 checkpoint, leading to extended DNA damage and
inefficient DNA repair. These defects translate into increased
genomic instability and sensitivity in response to DNA
damage.

DNA damage triggers a striking accumulation of Mcl-1 in the
nucleus and its association with the chromatin. The signal
regulating Bid function in DNA damage is provided by ATM
phosphorylation.25,27 The Mcl-1 protein sequence does not
present ATM/ATR phosphorylation sites. We show that Mcl-1
nuclear accumulation and function upon DNA damage occurs
in an ATM-dependent manner through a new mechanism
involving its association with IEX-1. Indeed, (1) IEX-1 binds to
Mcl-1 and triggers its nuclear accumulation; (2) Mcl-1 nuclear
accumulation and induction of IEX-1 by DNA-damaging
agents are concomitant and dependent on ATM activity;
(3) DNA damage-induced Mcl-1 nuclear accumulation is
blunted in IEX-1-deficient cells; and (4) IEX-1 and Mcl-1 are
functionally interdependent, as IEX-1 or Mcl-1 expression
cannot restore the DDR in a double IEX-1- and Mcl-1-deficient
background. IEX-1 loss can fully reproduce the defects in G2
arrest and DNA repair of Mcl-1-deficient cells. Bone marrows
and spleens of IEX-1�/� mice also presented signs of
genomic instability 1 month after whole-body irradiation,
showing that impeding Mcl-1 nuclear accumulation is
biologically significant. IEX-1 serves as a signal for Mcl-1
nuclear entry and as an anchor to maintain it in the nucleus
during the DDR. Indeed, Mcl-1 relocalization to the cytoplasm
is concomitant to IEX-1 disappearance and is prevented upon
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inhibition of IEX-1 degradation. Interestingly, IEX-1 degrada-
tion and Mcl-1 nuclear exit precede cell recovery from G2
arrest and re-entry into mitosis (Supplementary Figure S5-a).
Silencing of checkpoint signaling, by adding ATM inhibitors
after the cells were arrested in G2, accelerates IEX-1

degradation and Mcl-1 nuclear exit (Figure 3d), together with
re-entry in mitosis (Supplementary Figure S5-b). Thus, both
IEX-1 induction and degradation are DNA damage-sensed
and ATM-dependent events. They represent a sensitive
means to timely and specifically control the presence of
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Mcl-1 in the nucleus after DNA damage, allowing
maintenance of the G2 arrest and its subsequent switch-off,
authorizing the re-entry into the cell cycle.

Previous reports have shown that DNA damage can trigger
a rapid decrease in Mcl-1 protein and/or mRNA levels,
whereas others have reported the opposite results.5,20,29

These discrepancies may be linked to the types of detergent
used to prepare the lysates, as we show that Mcl-1 partially
associates with chromatin after DNA damage and/or with the
doses of DNA-damaging agents. We did not observe major
change in Mcl-1 levels, upon DNA damage, overexpression
or downregulation of IEX-1, indicating that IEX-1 alters
only Mcl-1 subcellular localization. IEX-1, as Mcl-1,
associates with mitochondria and endoplasmic reticulum

membranes.15,16 IEX-1/Mcl-1 interaction requires their trans-
membrane domains. Thus, IEX-1 could bind to Mcl-1 in the
mitochondrial membrane and then transport it to the nucleus.
Supporting this possibility, IEX-1-DNLS was unable to induce
Mcl-1 nuclear accumulation and the two proteins
co-precipitated from both nuclear and cytosolic fractions. On
the other hand, Mcl-1 is present at low levels in the nucleus in
the absence of genotoxic stress.8–10 Thus, although IEX-1
appears as a major mechanism controlling Mcl-1 nuclear
accumulation upon DNA damage, Mcl-1 may transit to the
nucleus independently of IEX-1 during the normal cell
cycle. This result fits with previous reports showing that
overexpression of Mcl-1 inhibits cell cycle progression in the
absence of DNA damage.9,10
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The slow decrease in the comet tail moments in IEX-1- or in
Mcl-1-depleted cells after irradiation suggests that these
cells accumulate DSBs because of defects in DNA repair.
However, their cell cycle arrest was not longer. In fact the
opposite is observed. This suggests that IEX-1/Mcl-1 com-
plexes have a major role in checkpoint signaling, at the level or
downstream of the activation of the checkpoint kinases.
Indeed, Chk1 activation was selectively impaired in the
absence of IEX-1 or Mcl-1. This defect can explain why these
cells accumulate DSBs;30 however, how IEX-1 and Mcl-1
cooperate to maintain Chk1 activation is unknown. After IR,
several proteins required for the DDR accumulate to
chromatin in discrete foci, which are needed for activation of
Chk1/Chk2.1 Although Mcl-1 and IEX-1 partially associate
with chromatin, they do not seem to participate to the
recruitment of DDR proteins to foci. Indeed, soon after IR,
g-H2AX was normally enriched in foci in Mcl-1 or IEX-1-
deficient cells. This is consistent with the fact that IEX-1
expression and Mcl-1 nuclear accumulation could be detected
only approximately 30 min after IR. Neither the phosphoryla-
tion of ATM and its substrates (NBS1, SMC1 and Chk2) nor
that of the ATR substrates (RPA and Rad17) required for
Chk1 activation30 was compromised in the absence of Mcl-1,
suggesting that IEX-1/Mcl-1 complexes affect signaling
downstream of ATM/ATR activation. Jamil et al.20 have
reported that etoposide induces a truncated form of Mcl-1
that associates with Chk1, but we were unable to reproduce
these results. This might be because of the different
antibodies or lysates conditions used. Claspin binds to Chk1

and ATR and is essential for Chk1 phosphorylation.31

However, we could not precipitate Mcl-1 or IEX-1 with claspin.
Claspin and Chk1 levels were not decreased in Mcl-1-deficient
cells, showing that their degradation was not affected.32–34 On
the other hand, IEX-1 mutants, which were impaired in their
ability to inhibit PP2A,23 could restore the DDR of IEX-1�/�

MEFs (data not shown), suggesting that IEX-1/Mcl-1 do not
maintain Chk1 activity by inhibiting its dephosphorylation by
these phosphatases.35

In contrast with the apoptosis ensuing Mcl-1 mitochondrial
degradation,5 the delocalization of Mcl-1 to the nucleus upon
DNA damage triggers DNA repair and checkpoint survival
signals. IEX-1 depletion increases cell radiosensitivity while
leaving intact the Mcl-1- mitochondrial pool. Thus, Mcl-1
function in the DDR requires its nuclear localization and is
separately controlled from its activity at the mitochondria.
Mcl-1 is overexpressed in many tumors and it is often
responsible for the resistance to treatment with the BH3-
mimetic ABT-737.36 Cancer therapies involving DNA-dama-
ging agents have the potential to induce IEX-1 expression and
Mcl-1 nuclear localization, in which they may act together to
foster checkpoint and improve the tumor resistance to DNA
damage. Deciphering the pathways involved in IEX-1 degra-
dation should lead to the discovery of new therapeutic targets
to increase tumor cells sensitivity to chemotherapy.

Materials and Methods
Chemicals and antibodies. Hydroxyurea, the proteasome inhibitor LLnL,
etoposide, caffeine, cytochalasin B and colcemid were purchased from Sigma
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Aldrich (Saint Louis, MO, USA). Ku-55933 was from Calbiochem (Darmstadt,
Germany). The antibodies used were as follows: rabbit serum anti-IEX-1 was
described previously;16 anti-phospho antibodies to Chk1 (Ser345, Ser317 and
Ser296), Chk2, ATM, NBS1, Rad17 and rabbit polyclonal anti-g-H2AX (Cell
Signaling Technology, Inc., Danvers, MA, USA); anti-pSer10-Histone H3, mouse
monoclonal anti-gH2AX and anti-GFP (Millipore, Billerica, MA, USA); anti-pRPA32
and anti-pSMC1 (Bethyl Labs, Montgomery, TX, USA); anti-Mcl-1 (S19), anti-ERK1
(K23), rabbit anti-Chk1 (Fl-476) and goat anti-IEX-1 (C20) (Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, USA); anti-HA (3F10 and 12CA5) and
anti-Myc (9E10) (Roche Applied Science, Meylan, France); anti-RAD51
(Calbiochem); anti-actin (C40), anti-Flag (M2) and monoclonal anti-Chk1

(DCS-310) (Sigma Aldrich). Fluorochrome-conjugated antibodies, anti-rabbit
AlexaFluor 594 and 647; anti-mouse AlexaFluor 405 (Invitrogen, Carlsbad, CA,
USA) and FITC anti-goat; FITC anti-mouse and Rhodamine anti-goat (Jackson
Immunoresearch, West Grove, PA, USA).

Cells and mice. IEX-1�/� and WT littermates mice on the mixed
129/Sv�C57BL/6 background37 were imported from the Mayo Clinic
(Rochester, MN, USA) and housed in a specific pathogen-free environment. The
experiments were conducted following standard ethical guidelines. Primary MEFs
were obtained from IEX-1�/� and IEX-1þ /þ embryos at day 12 p.c. and
resuspended in DMEM supplemented with 10% fetal calf serum (FCS), 1%
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non-essential amino acids (NEAA, Invitrogen), 1% L-glutamine and 1% penicillin/
streptomycin (PS). To obtain lineage-negative (Lin�) hematopoietic progenitors,
bone marrow cells from 1- to 3-month-old mice were harvested from tibiae and
femurs and depleted of lineage-positive cells using the Biotin-conjugated Mouse
Lineage Panel of antibodies and magnetic beads (BD Pharmingen, San Jose, CA,
USA). Immortalized WT and Mcl-1�/� MEFs2 were a generous gift from JT
Opferman (St. Jude Children’s Research Hospital, Memphis TN, USA). Cells were
cultured in DMEM supplemented with 10% FCS, 1% NEAA, 1% L-glutamine, 1% PS
and 0.1mM b-mercaptoethanol. Chinese hamster ovary (CHO) and HeLa cells were
cultured in Dulbecco’s MEM Mix F-12 and DMEM, respectively, supplemented with
10% FCS. ATM WT (HSC93) and ATM-null (AT GM3189) human lymphoblasts
were grown in RPMI medium with 12% FCS. All irradiation experiments were carried
out using a Biobeam 8000 irradiator (Gamma Service Medical GmbH, Leipzig,
Germany). All commercially available cell lines were from the American Type
Culture Collection (ATCC, Manassas, VA, USA).

Plasmids, infections and transfections. IEX-1 constructs were
described previously.16,23 pcDNA-HA-IEX-1 deleted of its transmembrane domain
(IEX-1-DTM) was generated by removing amino acids 86–101,21 using
QuickChange site-directed mutagenesis kit (Stratagene, La Jolla, CA, USA).
IEX-1 WT and DTM were subcloned in pTRIPDU3-EF1a-IRES-GFP38 or in
pRetro-x-IRES-DsRed (Clontech, Mountain View, CA, USA) lentiviral and retroviral
vectors, respectively. pTRIPDU3-EF1a-GFP encoding shRNAs against IEX-1
or controls (shScramble or shGFP) were previously described.38 The vector
encoding shRNA for murine IEX-1 was constructed as above using
50-CATTGCCAAGAGGGTCCTC-30 (nucleotides 243–261) as the target
sequence. pLL3.7 lentiviral constructs encoding three different shRNAs for Mcl-1
and GFP39 were gifts from A Nencioni (MIT, Cambridge, MA, USA). Myc-Mcl-1 was
provided by M-C Hung (University of Texas, MD Anderson Cancer Center, Houston,
TX, USA). Myc-Mcl-1-DCter was made by deletion of amino acids 330–350 by
adding a stop codon by PCR amplification. Myc-Mcl-1 WT and DCter cDNAs were
then subcloned into pRetro-x-IRES-DsRed. Transient transfection of CHO and
HeLa cells were performed with Lipofectamine (Invitrogen), as described.23

Production and titration of retroviral and lentiviral particles and infections were
performed as described.38 The infection efficiency was assayed by testing DsRed or
GFP expression using flow cytometry.

Immunoprecipitation and subcellular fractionation. Immuno-
precipitation procedures were described previously.23 For subcellular fraction-
ation, cells were lysed in 10 mM HEPES, pH 7.9, 10 mM KCl, 1.5 mM MgCl2, 0.34 M
sucrose, 10% glycerol, 1 mM DTT, 10 mM NaF, 1 mM Na2VO3, 0.1% Triton X-100
and Roche protease inhibitor cocktail for 5 min at 41C. After centrifugation (4 min,
1300� g, 4 1C), the nuclear pellet was resuspended in 50 mM Tris pH 7.5, 137 mM
NaCl, 0.5% NP-40, 10% glycerol, 1 mM EDTA, 1 mM Na2VO3, 20 mM NaF and
1 mM sodium pyrophosphate.

Immunofluorescence. Cells grown on glass coverslips were fixed with 3.7%
paraformaldehyde (15 min at room temperature (RT)), washed with PBS and
permeabilized with ice-cold methanol followed by incubation in blocking buffer (10%
horse serum, 1% BSA for g-H2AX and Mcl-1 or 0.3% BSA, 0.2% glycine for IEX-1)
for 1 h at RT and with primary antibodies (in PBS with 0.1% Triton X-100) overnight
in 41C. Fluorescent-conjugated secondary antibody was then added for 1 h at RT.
Nuclei were counterstained with DAPI. To detect chromatin-bound proteins, soluble
proteins were pre-extracted with detergent before fixation: the cells were washed
and incubated for 1 min at RT in 60 mM PIPES, 25 mM HEPES-KOH, pH 6.9,
10 mM EGTA, 2 mM MgCl2 and 0.5% Triton X-100 and then fixed with ice-cold
methanol for 5 min at �201C, before staining, as above. All slides were visualized
using Leica DMI 6000 microscope (Wetzlar, Germany) equipped with a 63� 1.6 oil-
immersion objective and a MicroMAX 1300Y camera (Princeton Instruments,
Trenton, NJ, USA). Pictures were analyzed using ImageJ software (developed at
the National Institute of Health, Bethesda, MD, USA).

Comet assay. Cells were mock-treated or irradiated at 10 Gy and were either
transferred directly on ice or allowed to recover at 371C for 1 h. Neutral comet assay
was performed using the CometAssay kit (Trevigen Inc., Gaithersburg, MD, USA).
After drying, slides were stained with Hoechst 33342 and comet tails were visualized
by a fluorescent microscope Leica DMI 6000 and analyzed using TriTek
CometScore software (Tritek Corp., Sumerduck, VA, USA).

Survival assay. For clonogenic survival assays, MEFs were irradiated with
various doses, transferred to 10 cm diameter dishes and allowed to grow for 6 days
(MEFs). The cells were then fixed with ice-cold methanol and stained with 0.5%
Giemsa solution. Colonies containing 450 cells were scored. Apoptosis of Lin�

progenitors was evaluated by measuring SubG1 DNA contents 16 h after IR, using
Cytomix TM FC500, Beckman Coulter flow cytometer (Beckman Coulter France,
Villepinte, France).

Genomic instability. Genomic instability in vitro was assessed by micronuclei
appearance. Cells were incubated with cytochalasin B (2 mg/ml) for 24 h. After
fixation and DNA staining with DAPI, binuclear cells were scored for micronuclei.
To evaluate chromosomal aberrations after whole-body irradiation, IEX-1�/� and
age-matched control mice were exposed to IR (7 Gy). After 1 month, the mice were
killed and bone marrow and spleen cell suspensions were prepared. Bone marrow
cells were cultured in DMEM supplemented with 10% FCS. Splenocytes were
resuspended in RPMI containing 12% FCS and concanavalin A (5 mg/ml). After
48 h, the cells were incubated in the presence of colcemid for 3 h, fixed, and
metaphase spreads were prepared, as described.40 At least 30 metaphases from
each sample were scored for the presence of deletions, fusions and triradial
chromatid chromosomal aberrations.

BrdU labeling and cell cycle analysis. 30 min before test time points, the
cells were pulsed labeled with 30mM BrdU (Invitrogen), washed and fixed in 70%
ethanol. Staining with anti-BrdU antibody and PI was described previously26

Samples were analyzed by flow cytometry using CellQuest software (BD
Biosciences, le Pont de Claix, France).

Statistical analysis. Results were statistically evaluated using two-way
ANOVA and Bonferroni comparison post-test or t-test using GraphPad PrismTM
version 4.0 software (GraphPad Software Inc., San Diego, CA, USA). Results are
shown as means±S.E.M. and the value of *Po0.05 was determined as
significant, and of **Po0.01 or ***Po0.001 as highly significant.
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