npg)

Cell Death and Differentiation (2009) 16, 1030-1039
© 2009 Macmillan Publishers Limited Al rights reserved 1350-9047/09 $32.00

www.nature.com/cdd

Different forms of cell death induced by putative BCL2
inhibitors

M Vogler', K Weber', D Dinsdale', | Schmitz? K Schulze-Osthoff®, MJS Dyer' and GM Cohen*'

Several inhibitors of BCL2 proteins have been identified that induce apoptosis in a variety of tumor cells, indicating their
potential in cancer therapy. We investigated the specificity of six putative BCL2 inhibitors (obatoclax, gossypol, apogossypol,
EM20-25, chelerythrine and ABT-737). Using cells deficient either for Bax/Bak or caspase-9, we found that only ABT-737
specifically targeted BCL2 proteins and induced apoptosis by activation of caspase-9, as only ABT-737 induced apoptosis was
completely inhibited in cells deficient for Bax/Bak or caspase-9. Our data show that only ABT-737 is a specific BCL2 inhibitor and
all other compounds investigated were not specific for BCL2 proteins. Furthermore, investigations of the effects of these
compounds in primary chronic lymphocytic leukemic cells showed that all compounds induced certain biochemical hallmarks of
apoptosis, such as release of cytochrome c and caspase cleavage. However, they all caused strikingly different ultrastructural
changes. ABT-737 induced all the characteristic ultrastructural changes of apoptosis together with early rupture of the outer
mitochondrial membrane, whereas obatoclax, chlelerythrine and gossypol induced pronounced mitochondrial swelling with
formation of phospholipid inclusions. Therefore, we conclude that biochemical measurements used earlier to define apoptosis
like mitochondrial release of cytochrome ¢ and caspase cleavage, are insufficient to distinguish between classic apoptosis and

other forms of cell death.
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The evasion of cell death is one of the hallmarks of cancer and
contributes to tumor progression, resistance to chemotherapy
and treatment failure.” Generally, cells can die primarily by
apoptosis, a form of programmed cell death or after acute
injury by cell and organelle swelling, disruption of cellular
membranes and ultimately cell lysis/necrosis, which initiates
an inflammatory response.? In addition to these two major
forms of cell death, cells may also die by autophagic cell
death, cathepsin- or calpain-mediated cell death, anoikis, or
caspase-independent apoptosis.® Apoptosis can be triggered
either at the cell surface (the extrinsic pathway) or at the
mitochondria (the intrinsic pathway). In the intrinsic apoptotic
pathway, cytochrome c is released from the mitochondrial
intermembrane space into the cytosol and induces apopto-
some formation, with activation of caspase-9 as the apical
caspase.” Caspase-9 activates the effector caspases-3and -7,
which cleave several hundred cellular proteins, resulting in the
characteristic biochemical and morphological features asso-
ciated with apoptosis, including chromatin condensation,
nuclear fragmentation and externalization of phosphatidylser-
ine.® In vivo, apoptotic cells maintain their plasma membrane
integrity and are rapidly phagocytosed in the absence of an
inflammatory response.2 However, in vitro at late times of
incubation, apoptotic cells may undergo secondary necrosis,
when the plasma membrane loses its integrity and increases its

permeability. The release of cytochrome ¢ from mitochondria is
mediated by the multidomain B-cell lymphoma 2 (BCL2)
proteins, BAX and BAK, which are regulated by antiapoptotic
BCL2 proteins and BH3-only proteins. Antiapoptotic BCL2
proteins comprise BCL2 itself, BCL-X_, MCL1, BCLw, BCL-B,
and BCL2A1 and contain a hydrophobic groove, which is
formed by their BCL2 homology 1, 2 and 3 domains. Both BAX/
BAK and BH3-only proteins can bind into this hydrophobic
groove and can thus be inhibited by antiapoptotic BCL2
proteins.®”

Antiapoptotic BCL2 proteins are overexpressed in a variety
of tumors and their expression often correlates with drug
sensitivity.”® Owing to their important function in regulating
cell death, pharmacological inhibition of BCL2 proteins is a
promising strategy for apoptosis induction or sensitization to
chemotherapy. The first approach targeting BCL2 used
antisense nucleotides, and subsequently, several small
molecule inhibitors have been developed.®'® Most of these
compounds have been identified by screening for binding to
BCL-X., and the resulting compounds are pan-BCL2 inhibi-
tors that bind antiapoptotic BCL2 proteins with affinities
ranging from subnanomolar to micromolar concentrations. A
noteworthy exception is the development of ABT-737 and its
orally active analog ABT-263, which was the result of
NMR-based structural design. As a result, ABT-737 and
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ABT-263 bind selectively to BCL2, BCL-X_ and BCLw
but have low affinities for MCL1, BCL-B and BCL2A1.""-12
ABT-737 induces apoptosis by binding to BCL2 and BCL-X,
and releasing proapoptotic binding partners.'® In contrast,
resistance to ABT-737 has been linked to high expression of
MCL1."*'5 Other BCL2 antagonists also bind MCL1, and
obatoclax (GX15-070) disrupts BAK binding to MCL1.'®

In this study, we investigated the mechanism of cell death
induction by gossypol,’ apogossypol,’® chelerythrine,'®
obatoclax,'® EM20-25,2° and ABT-737."" Gossypol, isolated
from cotton seeds and used as a male contraceptive, was
recently recognized as binding and interacting with antiapop-
totic BCL2 family members and inducing apoptosis.'”
Removal of the two reactive aldehyde groups in gossypol
resulted in the synthesis of apogossypol, with similar binding
kinetics to BCL2 and BCL-X_ but with reduced toxicity
in vivo."”2" Initially described as a selective protein kinase
C inhibitor,2? chelerythrine, a naturally occurring benzophe-
nanthridine alkaloid, was subsequently identified by high
throughput screening as an inhibitor of BCL-X,.'® EM20-25,
which binds to the BH3 domain of BCL2, is a derivative of
HA14-1, but lacks its effects on mitochondrial respiration.2°
ABT-263, obatoclax and AT-101, the (—) enantiomer of
gossypol, are in early clinical trials for ymphoid malignancies
or solid tumors.23-2%

However, despite the use of these inhibitors in preclinical
mechanistic studies, proof for their specificity for BCL2
proteins is limited. Specific inhibitors of BCL2 proteins should
induce apoptosis in a BAX/BAK-dependent manner with
subsequent release of cytochrome c¢ and activation of
caspase-9. Although it has been shown that several BCL2
inhibitors might activate the intrinsic apoptotic pathway, there
is little evidence that activation of this pathway is required for
cell death induction. Our studies now show that only ABT-737,
of the six inhibitors studied, induces cell death by inhibition of
BCL2 and activation of the intrinsic pathway with caspase-9
as the apical caspase. All the other inhibitors seem to induce
cell death primarily by damaging mitochondria and have
additional cellular targets that may result in significant non-
mechanism based toxicities.

Results

Cell death induction in MEFs deficient in Bax and
Bak. To test the specificity of BCL2 inhibitors, we initially
used murine embryonic fibroblasts (MEFs), either wild type
(wt) or deficient in both Bax and Bak (double knock out -
DKO). If cell death induction is specifically mediated by BCL2
proteins, Bax or Bak are required for release of cytochrome ¢
and cell death execution. Therefore in cells deficient in Bax
and Bak, cell death arising from BCL2 inhibition should be
completely inhibited.®'® Amongst the BCL2 inhibitors tested,
the most effective compound in MEFs was obatoclax, which
was the only compound to induce cell death at
submicromolar concentrations (Figure 1a). Using PS
externalization as a measure of cell death, obatoclax was
almost equally effective in killing both wt and DKO MEFs,
showing that obatoclax is very effective in kiling MEFs
independently of Bax or Bak. To exclude any possible
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interference with this cell death assay owing to the strong
inherent fluorescence of obatoclax, we also assessed the
toxicity of obatoclax by two other methods, in which the
assessment of toxicity was completely independent of any
fluorescent signals. Firstly, viability was assessed using an
MTT assay, which predominantly measures the ability of
mitochondrial enzymes to reduce 3-4,5-dimethylthiazol-
2-yl)-2,5—diphenyltetrazolium bromide (MTT) to formazan.
Obatoclax induced a similar concentration-dependent
inhibition of viability or metabolic activity in both wt and DKO
MEFs, with the wt MEFs being slightly more susceptible
(Supplementary Figure 1a). Furthermore, obatoclax (0.1 uM)
inhibited colony formation of both wt and DKO MEFs to
approximately similar extents (Supplementary Figure 1b).
Taken together, these data show that obatoclax readily
induces cell death in a Bax/Bak independent manner in MEFs.

Chelerythrine induced an almost identical concentration-
dependent cell death in both wt and DKO MEFs (Figure 1b).
Gossypol and apogossypol induced a concentration-depen-
dent cell death in both wt and DKO MEFs but were clearly
more potent in wt MEFs, indicating that Bax and/or Bak are
involved in cell death induction (Figure 1c and d). However, at
higher concentrations of apogossypol (30 uM), cell death was
also induced in DKO MEFs, suggesting that at high
concentrations, these compounds have other targets in
addition to BCL2 family proteins. EM20-25 was a weak
inducer of cell death in wt MEFs (Figure 1e). It is to be noted
that, ABT-737 induced cell death in wt but not in DKO MEFs,
even at much higher concentrations of ABT-737 (30 uM)
(Figure 1f). These data show that only ABT-737, amongst the
BCL2 inhibitors tested, is a specific inhibitor of BCL2. Cell
death induced by obatoclax and chelerythrine seemed to be
completely independent of BCL2 proteins, whereas cell death
induction by gossypol and apogossypol seemed to be only
partially due to their BCL2 inhibitory function.

Cell death induction in cells deficient in caspase-9.

Next, we investigated whether cell death induced by BCL2
inhibitors occurs through activation of the intrinsic apoptotic
pathway. To extend our studies from a nonmalignant murine
cell line to human leukemic cells, we used Jurkat T-cells
deficient in caspase-9 and the same cells reconstituted with
caspase-9, as a control.?®?” Caspase-9 is the initiator
caspase in the intrinsic pathway and if apoptosis occurs
through this pathway, it cannot proceed in the absence of
caspase-9. Cell death was assessed by PS externalization
for all the compounds except obatoclax. To exclude possible
interference of the fluorescence of obatoclax, apoptosis was
assessed by changes in the scatter properties of the cells
(FSC/SSC). Both obatoclax (Figure 2a) and apogossypol
(Figure 2d) induced cell death irrespective of caspase-9
expression, indicating that cell death did not occur as a
consequence of activating the intrinsic apoptotic pathway.
Upon exposure to chelerythrine (Figure 2b) or gossypol
(Figure 2c), cell death was only slightly less in caspase-9
deficient cells as compared with caspase-9 expressing cells,
indicating that both chelerythrine and gossypol also induced
cell death mainly independently of caspase-9 and not
primarily through the intrinsic apoptotic pathway. EM20-25
(1-30uM) did not induce cell death in Jurkat cells
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Figure 1 Cell death induced by putative BCL2 inhibitors is mainly independent of Bax and Bak. Wild type (wt) MEFs (solid lines) or Bax/Bak double knockout (DKO) MEFs
(dotted lines) were exposed to the indicated concentrations of obatoclax (a), chelerythrine (b), gossypol (¢), apogossypol (d), EM20-25 (e), or ABT-737 (f) for 48 h. In (a and b)
cell death was assessed by phosphatidylserine (PS) externalization and binding of Annexin-APC. In (c—f) cell death was assessed by PS externalization, binding of Annexin-
FITC and PI staining. Data are mean + S.E.M. of 5-8 experiments (*P<0.05, **P<0.01)

(Figure 2e). ABT-737 induced a concentration-dependent
cell death in cells expressing caspase-9 (Figure 2f). In cells
deficient for caspase-9, ABT-737 induced cell death was
completely inhibited, showing that ABT-737 induces cell
death selectively through the intrinsic apoptotic pathway,
which is absolutely dependent on caspase-9. Taken
together, the experiments in Figure 1 and 2 show that all of
the putative BCL2 inhibitors tested, with the exception of
ABT-737, induce cell death mainly in a non-specific way that
requires neither Bax/Bak nor caspase-9.

ABT-737 is >100-fold more potent at inducing death of
CLL cells than other BCL2 inhibitors. Irrespective of their
additional cellular targets and their mode of killing, the BCL2
inhibitors investigated in this study, several of which are
already in clinical trials, might be valuable for cancer therapy.
To investigate which compound was most efficient in killing
primary leukemia cells, we exposed freshly isolated chronic
lymphocytic leukemia (CLL) cells from patients to the
different BCL2 inhibitors. We have shown earlier that
freshly isolated CLL cells express both BAX and BAK and
BCL2 and MCL1 but do not express detectable levels of
BCL-X..2® Only ABT-737 and chelerythrine induced PS
externalization of CLL cells after 4h exposure (Figure 3a),
whereas all the compounds induced PS externalization after
24h (Figure 3b). ABT-737 induced cell death at low
nanomolar concentrations after only 4h of exposure
(Figure 3a), whereas micromolar concentrations of
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chelerythrine were required to induce such rapid cell death.
Obatoclax, gossypol, apogossypol and EM20-25 all required
micromolar concentrations and longer incubation times for
cell death induction (Figure 3b). For comparison, at 24 h the
ECso of ABT-737 was 9.4 nM, whereas the ECsq of obatoclax
was ~2uM and of chelerythrine ~1.1 M. Owing to the
concentrations used, it was not possible to calculate an ECsq
for gossypol, apogossypol and EM20-25. In conclusion, we
found that ABT-737 was > 100-fold more potent at inducing
apoptosis in CLL cells than any of the other putative BCL2
inhibitors (Figure 3).

Next, we investigated which form of cell death was induced
by the BCL2 inhibitors in CLL cells. Owing to the higher
potency of ABT-737 compared with the other BCL2 inhibitors,
these experiments were carried out with 10nM ABT-737 and
10 uM of the other BCL2 inhibitors. The release of cytochrome
c from the mitochondrial intermembrane space to the cytosol
after mitochondrial outer membrane permeabilization
(MOMP) is considered to be an essential component of the
intrinsic apoptotic pathway* Release of cytochrome ¢ from
mitochondria to cytosol was induced by all BCL2 inhibitors
tested (Figure 4a). Itis to be noted that, chelerythrine induced
a very rapid and extensive cytochrome crelease within 30 min
of exposure, whereas ABT-737 induced cytochrome crelease
within 2 h of exposure. In line with their kinetics of apoptosis
induction, obatoclax, gossypol, apogossypol and EM20-25
required longer incubation times but release of cytochrome ¢
was evident after 8 h of exposure.
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Figure 2 Cell death induced by putative BCL2 inhibitors is independent of caspase-9. Jurkat T-cells deficient in caspase-9 (dotted lines) or with reconstituted caspase-9
(solid lines) were exposed to the indicated concentrations of obatoclax (a), chelerythrine (b), gossypol (c), apogossypol (d), EM20-25 (e), or ABT-737 (f) for 24 h. In (a) cell
death was assessed by FSC/SSC analysis, in (b) cell death was assessed by phosphatidylserine (PS)-exposure and binding of Annexin-APC, and in (c—f) cell death was
assessed by PS-exposure, binding of Annexin-FITC and PI staining. Data are mean + S.E.M. of 4 experiments (*P<0.05, **P<0.01)

% dead cells

100 1

80

60 1

40 1

—e+— ABT-737 b —+— ABT-737
—=— Obatoclax* 100 1 —=— Obatoclax*
—a&— Chelerythrine —a— Chelerythrine
—&— Gossypol &— Gossypol
—+— Apogossypol 80 { —=— Apogossypol
—e— EM20-25 —e— EM20-25
&
o 60 -
o
T
]
[
T 40 -
S
20
o
2 T T T T u T - ) 0 r T T T T T T T 1
0 00010003 001 003 01 0.3 1 10 0 0.001 0.003 0.01 003 01 03 1 3 10
(nM) (xM)

Figure 3 ABT-737 is most effective at killing primary CLL cells. CLL cells freshly isolated from the peripheral blood were exposed to the indicated concentrations of BCL2
inhibitors for 4 h (a) or 24 h (b). For ABT-737, gossypol, apogossypol and EM20-25, cell death was assessed by phosphatidylserine (PS)-exposure, binding of Annexin-FITC
and Pl staining. For chelerythrine, cell death was assessed by PS externalization and binding of Annexin-APC, and for obatoclax cell death was assessed by FSC/SSC

analysis. Data are mean + S.E.M. of cells from 15 individual patients

Besides release of cytochrome ¢, the cleavage and
activation of caspases is a hallmark of apoptosis. To this
end, we analyzed cleavage of caspases after exposure of CLL
cells to BCL2 inhibitors. All BCL2 inhibitors were able to
induce a certain extent of caspase cleavage. Chelerythrine
induced a rapid cleavage of caspase-3 and its canonical

substrate poly-(ADP-ribose) polymerase (PARP), whereas
caspase-9 cleavage was minor. ABT-737 induced cleavage of
caspase-3, caspase-9 and PARP within 2h of exposure,
whereas caspases and PARP were cleaved by obatoclax,
gossypol, apogossypol and EM20-25 only at later time points.
In conclusion, these data show that in CLL cells, all BCL2
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Figure 4 BCL2 inhibitors induce cytochrome c release and caspase cleavage. CLL cells freshly isolated from peripheral blood were exposed to 10 M obatoclax, 10 M
chelerythrine, 10 M gossypol, 10 M apogossypol, 10 xM EM20-25 or 10 nM ABT-737 for the indicated time. (a) Release of cytochrome c from mitochondria into cytosol was
assessed by fractional lysis with 0.05% digitonin and isolation of heavy membranes (HM) containing mitochondria and supernatant (SN)-containing cytosol. (b) Cleavage of
caspases and the caspase substrate, PARP, was assessed by western blotting. Results shown are from one experiment representative of three

inhibitors tested induce classic biochemical hallmarks of
apoptosis, such as mitochondrial cytochrome c release and
caspase cleavage, albeit with very different kinetics and
concentrations.

BCL2 inhibitors induce mitochondrial damage. In
addition to biochemical analyses, we investigated the
ultrastructure of CLL cells both untreated (Figure 5a) and
upon exposure to BCL2 antagonists. Strikingly diverse
ultrastructures were observed in CLL cells exposed to the
putative BCL2 inhibitors with mitochondrial alterations being
most prevalent (Figure 5). Obatoclax (10xM) induced
massive mitochondrial swelling and loss of cristae within
1h of exposure but both inner and outer mitochondrial
membranes remained intact and no detectable alterations in
nuclear structure were observed (Figure 5b). Many
mitochondria contained multilaminated phospholipid whorls,
which probably originated from cristae membranes. At later
times (8 h), some cells showed classical apoptotic nuclei with
condensed chromatin (Figure 5c¢). Similarly, exposure of CLL
cells to chelerythrine for only 1h resulted in massively
swollen mitochondria and inclusions showing concentric
layers of phospholipid (Figure 5d). The mitochondrial
changes were even more marked at 4h (Figure 5e), when
they were accompanied by outer mitochondrial membrane
discontinuities and striking nuclear changes. The nuclear
changes, which were particularly evident after exposure to
lower concentrations (3 uM) of chelerythrine (Figure 5f), were
characterized by the partial condensation of chromatin,
similar to those we have described earlier involving the
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cleavage of chromatin into large kilobase pair fragments of
50 and 250kbp in the absence of internucleosomal
cleavage.?® Signs of secondary necrosis, rare at 4h, were
common after exposure to chelerythrine for 8h (data not
shown). Gossypol required longer incubation times before
ultrastructural changes were detected. After exposure to
gossypol for 12h, although most nuclei were unaffected,
some apoptotic nuclei were clearly observed (Figure 6a).
Gossypol also induced some mitochondrial swelling and loss
of cristae accompanied by phospholipid inclusions, although
this was much less common than with obatoclax and
chelerythrine (Figure 6b). At this and later times, there was
an increase in cells undergoing apoptosis and secondary
necrosis. Taken together, these putative BCL2 antagonists
all induced severe mitochondrial damage before cell death
induction. Exposure to apogossypol for 12h induced no
significant mitochondrial swelling but interestingly caused a
proliferation of the endoplasmic reticulum in localized
clusters (Figure 6¢c and d). However some cells with
pyknotic nuclei, which were often undergoing secondary
necrosis, were also observed (Figure 6e). In line with our
earlier data,®® ABT-737 induced mitochondrial swelling and
discontinuities in the outer mitochondrial membrane in
addition to the characteristic ultrastructural changes of
lymphocyte apoptosis (Figure 6f). No mitochondrial
phospholipid inclusions were observed after exposure to
ABT-737. Interestingly, although four compounds in this
study induced swelling of mitochondria, only ABT-737
induced significant rupture of the outer mitochondrial
membrane, as one of the earliest detectable lesions.
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Figure 5 Obatoclax and chelerythrine induce mitochondrial damage. (a) Untreated CLL cells have mitochondria with well-defined transverse cristae. (b) Exposure to
obatoclax (10 M) induced massive mitochondrial swelling and loss of cristae after 1 h of exposure. The inner and outer mitochondrial membranes remained intact and no
detectable alterations in nuclear structure were observed. A multilaminated phospholipid whorl (black arrow) is evident in one of the swollen mitochondria. (¢) Exposure to
obatoclax (10 uM) for longer times (8 h) also resulted in several cells exhibiting chromatin condensation characteristic of apoptosis. (d) Mitochondrial swelling, with loss of
cristae but maintenance of mitochondrial membranes, occurred within 1 h of exposure of CLL cells to chelerythrine (10 «M). These changes were sometimes associated with
the development of whorls of phospholipid within the mitochondrial matrix. (Bar =100 nm). (e) After 4 h of exposure to chelerythrine (10 M), mitochondrial changes were
accompanied by outer mitochondrial membrane discontinuities (black arrowheads) together with partial chromatin condensation in the nucleus. (f) Exposure to lower
concentrations of chelerythrine (3 xM) also induced mitochondrial and nuclear changes. In this Figure the scale bar =1 um, unless stated otherwise
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Figure 6 Different ultrastructural changes induced by gossypol, apogossypol and ABT-737. (a and b) Exposure to gossypol (10 uM), for 12 h, resulted in both the induction
of characteristic apoptotic nuclei (a) and mitochondrial swelling and loss of cristae (b) in a small proportion of cells. (¢) Mitochondria in cells exposed to apogossypol (10 M),
for 12 h, were indistinguishable from controls but localized clusters of endoplasmic reticulum (white arrow) were observed in many of these cells. (d) A higher magnification
shows the proliferation of the endoplasmic reticulum in the apogossypol (10 M) exposed cells. () In addition apogossypol (10 M) resulted in some cells with pyknotic nuclei,
which were often undergoing secondary necrosis. (f) Exposure to ABT-737 (10 nM) induced mitochondrial swelling and discontinuities in the outer mitochondrial membrane
(black arrowheads) within 2 h. Apoptotic nuclear changes including chromatin condensation (white arrowheads) and nucleolar disintegration (asterisk) were also common but
no phospholipid inclusions were found in any mitochondria. In this Figure, the scale bar =1 um

Breakdown of this membrane after chelerythrine treatment at the putative BCL2 antagonists induce strikingly different
4h and much later after the other agents probably results morphological changes, implying significant differences in
from the rapid onset of secondary necrosis. In conclusion, all the biochemical pathways by which they induce cell death.
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Discussion

In this study, we investigated the specificity of BCL2
antagonists and their mechanisms of cell death induction.
Although ABT-737 selectively binds BCL2, BCL-X; and BCLw
but does not bind MCL1, BCL2A1 or BCL-B,'" all other
inhibitors investigated here bind to all antiapoptotic BCL2
proteins with comparable affinities.>'° It is to be noted that,
ABT-737 binds BCL2 and BCL-X, with higher affinity than any
of the other BCL2 inhibitors. The specificity of BCL2 inhibitors
for BCL2 proteins can be investigated using cells that are
deficient in Bax and Bak. Our data (Figure 1) strongly suggest
that, with the exception of ABT-737, Bax or Bak are not
necessary for cell death induction and most putative BCL2
inhibitors do not serve as BH3-mimetics or selective BCL2
inhibitors, which require Bak or Bax for cell death induction.®
Similar experiments with Bax/Bak DKO MEFs had been
carried out earlier for chelerythrine, gossypol and
several other putative BCL2 antagonists with comparable
results.'®%233 |n one study obatoclax induced cell death was
reported to be partially dependent on Bak expression.®?
Therefore it is possible that in some cell types there may be a
small contribution of Bax or Bak to the toxicity of these
compounds, as we observed a slightly lower sensitivity
particularly to gossypol, apogossypol and obatoclax of Bax/
Bak DKO compared with wt MEFs (Figure 1). Considering the
higher potency of ABT-737 in CLL cells compared with the
other inhibitors (Figure 3), it is possible that the development
of analogs of gossypol, apogossypol and obatoclax with
higher affinities for antiapoptotic BCL2 members will yield
more potent and selective compounds, whose activity will also
be more dependent on BAX/BAK. Furthermore, if BCL2 or
BCL-X_ exerts functions independently of BAX/BAK, such as
binding of the voltage-dependent anion channel (VDAC) or
inositol-3 phosphate receptor, then it is possible that these
various inhibitors might still target antiapoptotic BCL2 proteins
and inhibit some of these other functions.3*3® Therefore, we
conclude that only ABT-737 is a true BH3-mimetic exerting its
proapoptotic effect through BAX/BAK and most other BCL2
inhibitors must also target additional proteins outside the
BCL2 family.

Furthermore, if these putative BCL2 antagonists bind
specifically to antiapoptotic BCL2 proteins, they would be
expected to induce cell death by releasing mitochondrial
cytochrome ¢, formation of the Apaf-1 apoptosome and
activation of caspases. Using cells deficient in caspase-9, the
initiator caspase in the intrinsic apoptotic pathway, only
ABT-737 but none of the other BCL2 inhibitors induced
caspase-9-dependent cell death (Figure 2). These results
imply that cell death induced by some of the other putative
BCL2 antagonists may occur in a caspase-independent
manner, in agreement with recent findings showing that cell
death induced by gossypol and HA14-1 was not inhibited by
the caspase inhibitor z-VAD.fmk.2=3° In contrast, ABT-737-
induced cell death was found earlier to require caspase
activation.®® Taken together, our data (Figures 1 and 2)
indicate that of the inhibitors tested only ABT-737 is a true
inducer of apoptosis by activation of the intrinsic pathway,
requiring both Bax/Bak and caspase-9. We suggest that
despite the known ability of many of these putative BCL2
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antagonists to bind to BCL2 proteins, most of these inhibitors
are non-specific compounds and should not be used for
mechanistic studies related to the function of BCL2 proteins.
Dependent on their potency and toxicity, the agents investi-
gated in this study might be valuable for cancer therapy
irrespective of their mechanism of cell death induction.
Although their potency was comparable in Jurkat T-cells, in
CLL cells ABT-737 was 2-3 orders of magnitude more potent
than any of the other compounds tested, indicating that CLL
cells are exquisitely sensitive to the mechanism-based cell
death induced by ABT-737 (Figures 2 and 3). In line with our
results, sensitivity of CLL cells to obatoclax or gossypol was
reported earlier at 1.7 uM at 48h*° and ~30uM at 24 h of
exposure,® respectively, whereas sensitivity to ABT-737 was
observed at nanomolar concentrations.’”'® Among the
putative BCL2 inhibitors tested in this study, MEFs were most
sensitive to obatoclax, which induced cell death at 100 nM
(Figure 1a and Supplementary Figure 1). Thus it is evident
that the efficacy of BCL2 inhibitors, such as obatoclax, is
markedly dependent on cell type, possibly reflecting the
presence of additional targets outside the BCL2 family.

We have shown that the putative BCL2 inhibitors investi-
gated in this study, with the exception of ABT-737, induce cell
death independent of BCL2 proteins and activation of
caspase-9. However, somewhat surprisingly, all these BCL2
inhibitors induced release of cytochrome ¢ and caspase
cleavage (Figure 4), two commonly used biochemical
indicators of apoptosis. Therefore, although most of these
BCL2 inhibitors do not directly activate the intrinsic pathway of
apoptosis, they nevertheless induce certain features of
apoptosis, which could easily be mistaken as death by
apoptosis. In this regard it was interesting to also consider
the ultrastructural changes induced by these compounds
(Figures 5 and 6). Obatoclax and chelerythrine induced rapid
swelling of mitochondria with loss of cristae structure, which in
the case of obatoclax occurred before induction of cell death.
In line with these data, it has recently been shown that
chelerythrine induces rapid release of cytochrome ¢ and
mitochondrial swelling.®® With chelerythrine, obatoclax and
gossypol, the mitochondrial damage was accompanied by
phospholipid inclusions, which seemed to originate from the
cristae membranes, raising the possibility that instead of
specifically targeting BCL2 proteins, these compounds induce
cell death by causing severe mitochondrial damage. In the
present study, the appearance of these phospholipid inclu-
sions was most evident in CLL cells exposed to chelerythrine
for only 1h (Figure 5d), when the concentric layers of
phospholipid somewhat resembled the alterations in cristae
observed in Hela cells after loss of mitofilin.* Mitofilin is an
inner mitochondrial membrane protein, which has been
proposed to control cristae morphology. Thus it is possible
that some of the putative BCL2 antagonists, including
chelerythrine, obatoclax and gossypol, perturb mitochondria
by affecting proteins that control cristae morphology.

It is interesting that, all the putative BCL2 antagonists
induce strikingly different ultrastructural changes in CLL cells
(Figures 5 and 6), implying significant differences in the
biochemical pathways by which they induce cell death. Agents
like ABT-737 may cause relatively specific MOMP that results
in the release of cytochrome ¢, activation of caspases and
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induction of biochemical and morphological changes char-
acteristically associated with apoptosis. Other BCL2 antago-
nists, including obatoclax, chelerythrine and gossypol, may
have additional targets and cause mitochondrial damage,
which can be accompanied by release of cytochrome ¢ and
ultrastructural changes associated with either apoptosis or
necrosis. It is to be noted that, the extensive mitochondrial
damage and loss of cristae membranes induced by some of
these agents will also severely compromise the ability of the
cells to generate ATP by oxidative phosphorylation so also
impairing the ability of the cells to undergo apoptosis, which is
an ATP-requiring process.*? Thus these different ultrastruc-
tures may be because of differing kinetics and extents of
mitochondrial perturbation together with impaired ability to
generate ATP so modifying the biochemical subroutines used
by the dying cells. It is interesting that, our results highlight
important limitations of solely using biochemical assays,
including cytochrome crelease, caspase activation and PARP
cleavage, to define apoptosis or the mechanism of cell death.
As all the compounds induced both cytochrome c release and
caspase activation, in the absence of the ultrastructural
studies, we would have been blissfully ignorant of the major
cellular changes occurring including the phospholipid inclu-
sions and the proliferation of the endoplasmic reticulum
(Figures 5 and 6).

Besides their ability to induce cell death, it is also important
to consider the potential in vivo toxicities of the BCL2
antagonists. The major toxicity due to ABT-263 is mechanism
based and involves a dose-dependent induction of thrombo-
cytopenia because of inhibition of BCL-X,, which is critical for
determining platelet survival.*® For all other putative BCL2
inhibitors, non-mechanism based toxicity might occur in vivo.
Gossypol induces the generation of reactive oxygen species,
which may be responsible for the induction of cell death.** In
vivo gossypol is known to cause male infertility, whereas
obatoclax had been reported to induce both neurological
symptoms in early clinical trials of patients with CLL as well as
neuronal toxicity in mice,2>*® which might be because of
targets outside the BCL2 family. In this regard a recent study
showed that obatoclax exerted growth inhibitory effects at
lower concentrations than induction of apoptosis and sug-
gested that obatoclax targeted other proteins in addition to
BCL2 family members.®?

In summary, we suggest that many of the putative BCL2
antagonists, including some of those currently undergoing
clinical trials, are mitochondrial toxins that induce cell death
primarily by massive mitochondrial damage rather than
specific MOMP and activation of the intrinsic pathway of
apoptosis. Owing to their nonspecific effects, the use of these
putative BCL2 antagonists for mechanistic studies related to
the function of BCL2 proteins should be viewed with caution.
Of the inhibitors we have examined, only ABT-737 acts as a
BH3-mimetic, inducing Bax/Bak-dependent activation of the
intrinsic apoptotic pathway.

Materials and Methods

BCL2 inhibitors. Racemic gossypol (NSC# 19048) and racemic apogossypol
(NSC# 736630) were kindly provided by Dr. VL Narayanan (Drug Synthesis and
Chemistry Branch, Developmental Therapeutics Program, Division of Cancer
Treatment and Diagnosis, National Cancer Institute, Bethesda, MD). EM20-25
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(BCL2 inhibitor I11) was from Calbiochem (Nottingham, UK) and chelerythrine from
Sigma-Aldrich Ltd. (Dorset, UK). Obatoclax (GX15-070) and ABT-737 were kindly
provided by Dr. Gordon Shore (GeminX Pharmaceuticals, Montreal, Canada) and
Dr. Saul Rosenberg (Abbott Laboratories, IL, USA), respectively.

Cell culture. Wild type and Bax/Bak double knockout (DKO) MEFs were
provided by Drs. A Strasser and D. Huang (The Walter and Eliza Hall, Institute of
Medical Research, Melbourne, Australia), and cultured in DMEM medium
supplemented with 5mM L-glutamine and 10% fetal calf serum (FCS) (all from
Life Technologies, Inc, Paisley, UK). Jurkat T-cells deficient in caspase-9 were
cultured in RPMI 1640 medium supplemented with 10 % FCS and 5mM L-
glutamine (Life Technologies, Inc.).282" Unlike some Jurkat cells, these caspase-9
deficient cells express Bax.?” Peripheral blood samples from patients with CLL were
obtained with patient consent and local ethical committee approval. Lymphocytes
were purified and immediately cultured in RPMI 1640 medium supplemented with
10% FCS and 5mM L-glutamine (Life Technologies, Inc.) as described earlier.*°

Determination of cell death and cytochrome c release. Cell death
was assessed either by phosphatidylserine (PS) externalization and staining with
AnnexinV-FITC or AnnexinV-APC (Invitrogen, Paisley, UK) or by changes in scatter
properties and FSC/SSC analysis. To assess release of cytochrome ¢, 10 x 10°
CLL cells were washed in cold PBS and resuspended in 100 ul mitochondrial
isolation buffer (250 mM sucrose, 20 mM Hepes, pH 7.4, 5 mM MgCl, and 10 mM
KCI) containing 0.05% digitonin. Cells were left on ice for 10 min followed by
centrifugation at 13 000 rpm for 3 min. Subsequently, supernatant and pellets were
analyzed by western blotting.

Western blotting. Western blot analysis was carried out using mouse anti-
cytochrome ¢ Ab (BD Bioscience, San Diego, CA, USA), mouse anti-o.—tubulin Ab
(Calbiochem), mouse anti-PARP Ab (Alexis Biochemicals, Nottingham, UK). Rabbit
anti-caspase-9 and rabbit anti-caspase-3 Abs were kindly provided by Dr. Xiao-Ming
Sun.*® Enhanced chemiluminescence was used for detection (GE Healthcare,
Bucks, UK).

Electron microscopy. The ultrastructure of 4-11 samples of CLL cells from
at least 2 different patients was examined for all the inhibitors shown in Figures 5
and 6 except for ABT-737 where cells from 21 different patients have been
examined. Cells were fixed in 2% glutaraldehyde in 0.1 M sodium cacodylate buffer
(pH 7.4) at 4°C overnight and postfixed with 1% osmium tetroxide/1% potassium
ferrocyanide for 1h at room temperature. After fixation, cells were stained en bloc
with 5% aqueous uranyl acetate overnight at room temperature, dehydrated, and
embedded in Taab epoxy resin (Taab Laboratories Equipment Ltd., Aldermaston,
UK). Electron micrographs of ultrathin sections were recorded using a QICAM 12-bit
Mono Fast 1394 digital camera and QCapture-Pro software (MAG, Pleasanton, CA,
USA) in a Zeiss 902A electron microscope.

Statistics. To compare cell death in wt or DKO MEFS or caspase-9 deficient and
expressing Jurkat cells, an unpaired t-test was used. For ECsq values at 24 h of drug
exposure, the specific apoptosis was calculated as follows: (drug-induced
death—spontaneous death) x 100/(100—spontaneous death). For calculation of
the ECso values, a nonlinear equation was used. All statistics were carried out in
GraphPad prism.
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