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Death through a tragedy: mitotic catastrophe

H Vakifahmetoglu1, M Olsson1 and B Zhivotovsky*,1

Mitotic catastrophe (MC) has long been considered as a mode of cell death that results from premature or inappropriate entry of
cells into mitosis and can be caused by chemical or physical stresses. Whereas it initially was depicted as the main form of cell
death induced by ionizing radiation, it is today known to be triggered also by treatment with agents influencing the stability of
microtubule, various anticancer drugs and mitotic failure caused by defective cell cycle checkpoints. Although various
descriptions explaining MC exist, there is still no general accepted definition of this phenomenon. Here, we present evidences
indicating that death-associated MC is not a separate mode of cell death, rather a process (‘prestage’) preceding cell death,
which can occur through necrosis or apoptosis. The final outcome of MC depends on the molecular profile of the cell.
Cell Death and Differentiation (2008) 15, 1153–1162; doi:10.1038/cdd.2008.47; published online 11 April 2008

Historical Remarks

During mitosis, proliferating cells undergo several structural
and molecular changes, characterized by chromatin conden-
sation, spindle formation, nuclear envelope fragmentation and
cytoskeleton reorganization.1 Chromosome segregation is
carried out by a complex machinery – the mitotic spindle – that
is based on a bipolar array of microtubules. Microtubules are
highly dynamic polymers that continuously grow and shrink,
and in the spindle, this behavior is regulated by proteins that
bind to the sides or ends of microtubules.2 The rate of
microtubule disassembly, from a state of polymerization to
depolymerization, is designated as the catastrophe rate.3,4

The process of microtubule disintegration was described in
1984 as a ‘microtubule catastrophe’.5 Thereby, the first link
between two words – catastrophe and mitosis – became
apparent. However, the expression ‘mitotic catastrophe’ (MC)
was not utilized until 1986, when it was used in an attempt to
illustrate the phenotype of a yeast strain raised from
combining an activated cdc2 allele (cdc2-3w) with a recessive
temperature-sensitive weel mutation (wee 1–50).6 These
cells were not arrested in the cell cycle; instead, they entered
mitosis prematurely without completing it effectively. The
lethal phenotype of this yeast strain was not due to premature
entry into mitosis, it rather seemed to be an aberrant execution
of mitosis, particularly with respect to chromosome segrega-
tion and septum formation.7 Nowadays, the term ‘mitotic
catastrophe’ is used to explain a mechanism of a delayed
mitotic-linked cell death, a sequence of events that results
from premature or inappropriate entry of cells into mitosis that
can be caused by chemical or physical stresses. It can be
triggered with agents influencing the stability of microtubule,
various anticancer drugs and mitotic failure caused by

defective cell cycle checkpoints.8 MC was also depicted as
the main form of cell death induced by ionizing radiation.

The first observations of MC were made in the late 1930s
and early 1940s when cells in exponential growth phase were
exposed to radiation.9,10 It was noticed that the fraction of cells
in the mitotic stage instantly declined in response to radiation
and did not reappear until several hours following treatment.
Microscopy examinations revealed that cells began to die at or
after the first post-irradiation mitotic peak (reappearance of
mitotic cells)11 and were shown to display abnormal config-
urations and spatial rearrangements of chromosomes.
Accordingly, this death was called mitotic or division death,
which emphasized the association with mitosis and cell
division, or delayed death, which highlighted the appearance
of dead cells several hours after irradiation.

The Current Concept of MC

Mitotic catastrophe has been described as an aberrant form of
mitosis associated with various morphological and biochem-
ical changes (see below). The final step of MC is almost
always characterized by the formation of nuclear envelopes
around individual clusters of missegregated chromosomes.
MC is also correlated with incomplete DNA synthesis and
premature chromosome condensation (PCC).12,13 Initially,
PCC was not linked to mitotic events, as the appearance of
multinucleated cells with ‘pulverized’ chromosomes was
observed when interphase and mitotic cells were fused using
Sendai virus. The interphase chromatin was in this case
forced to condense into discrete units known as prematurely
condensed chromosomes.14,15 Later, another type of PCC
that occurred in only a fraction of metaphase chromosomes
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was described. This metaphase-associated PCC, also called
spontaneous PCC, appeared in cells possessing micronuclei
as a result of radiation-induced incomplete DNA synth-
esis.16,17 Interestingly, the well-defined mode of cell death –
apoptosis – is also characterized by chromatin condensation;
however, the morphology of apoptosis is distinguished from
MC and illustrated by cytoplasm shrinkage and nuclear
fragmentation. In heated HeLa cells, the appearance of
spontaneous PCC is followed by asymmetric segregation of
chromatid clusters and premature reformation of the nuclear
membrane. Then, instead of nuclear fragmentation, cells are
characterized by an accumulation of multiple micronuclei that,
subsequently, exhibit features similar to necrotic cell death.18

Mitotic catastrophe has also been described as a delayed
form of reproductive death based on observations that the
multinucleated giant cells can be temporarily viable.19,20 The
term ‘reproductive death’ denotes the loss of the ability of a
cell to generate viable progeny that reproduced continu-
ously.21 As most of the cells undergoing MC eventually die,
cellular processes that lead to irreversible growth arrest and
those that are termed ‘reproductive death’ may better fit to
conditions known as senescence.22 Senescent cells are
generally characterized by a reduction in proliferative capa-
city, adoption of a flattened and enlarged cell shape and an
increase of b-galactosidase (SA-b-gal) activity.23 Although
senescence was associated with MC,24,25 it has been shown
that the polyploid giant cells expressing senescent marker
(SA-b-gal activity) may overcome the state of growth arrest
and even undergo de-polyploidization.26

Based on observations that abnormalities in the cell cycle
and mitosis eventually lead to cell death, MC has been defined
in morphological terms as a mechanism of cell death
occurring during or after aberrant mitosis.8 Alternatively, MC

has been classified not as a mode of cell death but as a special
example of apoptosis. This classification is based on the
observation that MC shares several biochemical hallmarks
with apoptosis, namely mitochondrial membrane permeabili-
zation and caspase activation.27,28 However, it is still unclear
whether MC results in death that requires caspase-dependent
or caspase-independent mechanisms.29 In fact, arguments
have raised the more general question of whether MC is a
mode of cell death or whether this is a process that leads to
apoptosis or necrosis.30–33 In addition, there are several
examples that permit to define MC as a cell survival
mechanism of tumors.34 Moreover, in some cases, MC may
represent a process through which cells switch from an
abnormal to mitotic cell cycle.35 Despite, or maybe owing to,
these various definitions at present, there is no generally
accepted classification of MC. Here, we present evidence
indicating that death-associated MC is a process (‘prestage’)
preceding necrosis or apoptosis (Figure 1).

DNA Damage-Induced MC

It is well known that tumors differ in their sensitivity to
treatment. Sensitive cells, in response to various chemother-
apeutic agents, are dying in interphase, before entering
mitosis. Even low doses of irradiation can induce interphase
death of some tumors, especially of hematopoietic origin. In
this case, morphology and biochemistry of dying cells
resemble apoptosis. Cells that do not undergo death in
interphase may become arrested in G1 and/or G2. If the
cellular machinery is not able to repair the injury during the
arrest, DNA damage can lead to different death-associated
consequences. Alternatively, when repair processes are
accomplished, cells reenter the cell cycle. Checkpoint
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Figure 1 The summary of current concepts of MC (for details see the text)
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regulations have evolved to coordinate the response to
different types of DNA damage36 and is mediated through
activation of two protein kinase pathways: the ATM (ataxia-
telangiectasia-mutated) and the ATR (ataxia-telangiectasia
and Rad3-related). The alert signal is modulated through the
action of the so-called checkpoint mediators (adaptors) and
further transduced through phosphorylation of effector
kinases Chk1 and Chk2.37 Delays in G1, S or G2 phases
are controlled by the ATM/ATR-Chk2/Chk1 genotoxic re-
sponse and each cell cycle segment requires different
downstream key substrates to cope with DNA replication
and mitosis. The p53/MDM2-p21 conduit is dominant in G1/S
arrest where the DNA damage is repaired before chromo-
some replication takes place. DNA synthesis is thereby
blocked by silencing of G1/S promoting cyclin E/Cdk2.
Independent of p53, a late G1 arrest may also occur by
downregulation of Cdc25A. A similar Cdc25A degradation
cascade controlled by ATM/ATR operates during S-phase to
hold back DNA replication. The G2/M checkpoint reversibly
halts the cell cycle progression before mitotic entry, prevent-
ing the segregation of damaged chromosomes.38 Mitotic
phase entry is directed by the cyclin B/Cdk1 kinase and
Cdc25C, which also is a critical target of checkpoint control.39

Induced expression of cell cycle inhibitors, such as the Cdk
inhibitor p21 and the 14-3-3s protein, by p53 and checkpoint
mediator BRCA1 probably affects duration of the G2/M arrest.
Cells with impaired or lost checkpoint functions are unable to

maintain this arrest and enter mitosis prematurely in the
presence of unrepaired DNA40–43 (Table 1). The fate of such
cells depends on multiple parameters and attempts to define
possible outcomes are ongoing (Figure 2). For example,
some tumor cells can die by apoptosis after one or even
repeated mitotic cycles. In other circumstances, the prema-
ture mitosis may lead to MC. However, depending on the
severity of DNA damage, cells can also exit mitosis to form 4N
G1 cells, and after second arrest at G1, they die or survive.
Importantly, the extent of cell death and loss of clonogenicity
are correlated with the duration of growth arrest.44 Dying cells
are characterized by multiple mitotic abnormalities, including
multipolar meta- or anaphase, lagging telophase, random
distribution of condensed chromosomes throughout the cells,
and so on. Biochemical mechanisms responsible for these
differences still require additional investigation. Crucially,
without prematurely entering mitosis, a cell cannot undergo
MC. Thus, the abrogation of G1 and/or G2 checkpoints is
essential for MC (Figure 2). In both scenarios, the damage in
the interphase is expanded within mitosis and activates the
mitotic checkpoints. It is important to note that cells that are
sensitive to apoptosis and die in interphase have very little or
no possibility to display features of MC. There are several
experimental models that have been utilized to clarify
biochemical changes associated with MC, but most observa-
tions were made using cell lines with induced disturbances in
key elements of checkpoint control. The inability of HCT116

Table 1 Inducers of MC and associated events

Inducers Mechanism of action Effects Outcome

DNA damaging agents Induce DSBs by:
Doxorubicin, cisplatin Interfering with DNA synthesis

Direct DNA damageIrradiation Premature segregation into
mitosis

Replication fork
Checkpoint inhibitors: DBH Defect in maintaining cell arrest
Checkpoint adaptation
Prolonged mitotic arrest and slippage

Spindle poisons/mitotic inhibitors Affect microtubule dynamics by: Aneuploidy
Taxanes (paclitaxel, docetaxel) Hyperpolymerization Failure or inhibition of mitosis:

Spindle assembly defects
Chromosome segregation defects
Abortive centrosome duplications
Multipolar mitosis
Uneven chromosomes separation
Premature segregation of
unaligned chromosome
Delayed mitosis
Microtubule attachment defects
Monopolar and monoastral
spindles

Tetraploidy
Eleutherobins Polyploidy
Epothilones Micronucleation
Laulimalide Multi/mono-

nucleationSarcodictyins
Discodermolide

Vinca alkaloids (vinblastin, vincristin) Depolymerization
Cryptophycins
Halichondrins
Estramustine
Colchicine

Mitotic spindle checkpoint defectsInhibition of mitotic proteins: Disturbing mitotic process
Thiazole compounds, Monastrol
(kinesin spindle protein (KSP))
Small-molecule Inhibitor Bl 2536
(Polo-like kinase 1 (PLK1))
Hesperadin, ZM447439 and VX-680
(Aurora kinases)

The outcome of all above-mentioned inducers requires the presence of various genetic defects, such as missed or insufficient DNA repair, p53 deficiency, checkpoint
protein deregulations (Chk1-2 kinases, ATR, 14-3-3s, p21, pRB, cyclin B, cyclin A1, Cdk1), loss of transcription factor FoxM1, inhibition of survivin, alterations in the
expression of MAPs, depletion of kinetochore proteins (hNuf2) and MAD2 or BubR1 depletion
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colon carcinoma cells to sequester cyclin B and Cdc2 in the
cytoplasm following doxorubicin-induced DNA damage is
already a well-established MC model.45 However, more
recent data indicate that Chk2 and not 14-3-3s may be the
main negative regulator of MC in this model.46,47 Abrogation
of the ATR-initiated checkpoint cascade mediated through
Chk1 also directs cells into MC and has been analyzed with
respect to specific Chk1 phosphorylations.48,49 Other cell-
cycle-regulating proteins whose normal function seems to
inhibit entering mitosis are the checkpoint mediators 53BP1,50

Brca1,51 p7352 and p53.32 In the absence of p53, cells have
the capability to activate alternative routes to halt the cell
cycle. One of the proteins that may be involved in this process
in addition to Chk1 is p38MAPK. Depletion of p38MAPK/MK2
only in p53-deficient cells leads to checkpoint deregulations
and MC irrespective of the type of DNA damage induced.53

This two-hit model suggests that MC is the outcome of DNA
damage only when multiple central checkpoint proteins are
suppressed and other options for cell death and survival are
minimized. This may also be true for heterogeneous and
genetically instable clinical tumor samples exposed to
radiation.54–56 Most experimental facts concerning the biology
of MC are based on observations obtained using cells growing

in monolayer, and even if these may serve well as models,
extrapolation to three-dimensional in vivo structures should be
done with great consideration.57 In fact, specific cell–cell and
cell–matrix interactions may be as important as the genomic
background for the MC response, although this point of view is
frequently neglected.

Defects in Mitosis Leading to MC

Mitotic catastrophe might be induced by drugs that directly
affect progression through mitosis by disturbing the mitotic
spindle formation and cell division. During mitosis, formation
of the mitotic spindle is an essential step for accurate
segregation of chromosomes. Before cytokinesis, chromo-
somes attain bipolar attachments from two opposing centro-
somes in the metaphase and are pulled toward opposite poles
at anaphase.58 Spindle poisons are mitotic inhibitors that
influence microtubule dynamics by binding to tubulin dimers
and prevent either their assembly (polymerization) or their
disassembly (depolymerization). Microtubule-hyperpolymer-
izing agents include taxanes (paclitaxel, docetaxel), whereas
vinca alkaloids (vinblastine, vincristin) act as depolymerizing
agents.59 Changes in the microtubule dynamics induced by
these agents lead to disturbances of the spindle formation.
An aberrant mitotic spindle activates the mitotic checkpoint
(spindle assembly checkpoint), where a ‘wait anaphase’
signal in the metaphase–anaphase transition is generated.
Numerous proteins are involved in the signaling cascade that
regulates mitotic cycle progression, and central in this process
is suppression of the ubiquitin ligase activity mediated by the
anaphase-promoting complex (APC).60 Defects in checkpoint
signaling in the presence of mitotic failure may cause abortive
centrosome duplication,61 and eventually multipolar mitosis
and/or premature segregation of unaligned chromosomes,
leading to an uneven delivery of genetic material into the cell
offspring (aneuploidy).62,63 Aneuploidy is a common char-
acteristic of tumors and likely an explanation for tumor cell
heterogeneity in vivo. However, MC, manifested in micro-
nucleation, may occur in cells where mitosis completely fails,
and may therefore precede formation of aneuploid cells
(Figure 2). There are several examples indicating that
deregulations in mitosis promote development of MC. Loss
of the transcription factor FoxM1 affects genes that are
essential for chromosome segregation and generates mitotic
spindle defects and delays in mitosis, and induces MC.64

Survivin is a member of the chromosomal passenger complex
implicated in kinetochore attachment, bipolar spindle forma-
tion and cytokinesis.65 Inhibition of survivin in glioma cells was
followed by increased spontaneous apoptosis, MC and cell
cycle arrest.66 In addition, it has been shown that, being the
target for oxaliplatin, survivin downregulation leads to MC or
apoptosis.67 Microtubule-associated proteins (MAPs), such
as Op18, XKCM1 and MCAK, are certainly essential for the
regulation of microtubule turnover, and alterations in the
expression levels of these proteins generate defects in the
mitotic spindle formation, including formation of monopolar,
monoastral and small prometaphase-like spindles with poorly
organized poles, as well as improperly attached chromo-
somes.68 MAP deregulations associate with mitotic arrest,
and examples of MC-like conditions in selected cell types
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Figure 2 Schematic illustration of the pathways leading from MC to cell death.
Premature entry into mitosis as a consequence of abrogated G2/M arrest or
adaptation in the presence of DNA damage or direct mitotic damage leads to arrest
at the metaphase–anaphase transition due to spindle checkpoint and to
catastrophic mitosis. During mitotic arrest, cells can die through caspase-dependent
or caspase-independent apoptosis. MC cells can undergo endocycle and become
polyploid. These cells can die by either necrosis or apoptosis. Cells being arrested at
the metaphase–anaphase transition can escape mitosis through mitotic slippage
and become tetraploid. Cells that cannot be arrested at the metaphase–anaphase
transition due to defects in the spindle checkpoint also become tetraploid. These
tetraploid cells either can arrest at G1 and die through p53-dependent apoptosis or
do not arrest at G1 and enter S-phase (endoreplication) and die through necrosis
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exist, both in vitro and in vivo.69 Yet, a general link between
MAP function and MC is still not established (Table 1).
Notably, MC in response to mitotic spindle perturbations or
during experimental conditions, where mitotic deregulations
have been introduced, depends on the genetic background of
the cell (Figure 2). It is, therefore, tempting to speculate that
cells that are prone to acquire an MC-like phenotype in
response to spindle poisons or MAP defects also are defective
with respect to mitotic checkpoint control.

Polo-like kinase 1 (PLK1) has been shown to play a critical
role in the establishment of a bipolar spindle.70 A dominant-
negative PLK1 selectively induced MC in HeLa cells.
However, this was contrasted by an observed proapoptotic
function of dominant-negative PLK1 in other tumor cells,
although in non-tumor cell lines deregulated PLK1 induced
mitotic arrest.71 Interestingly, depletion of hNuf2, a kineto-
chore protein involved in microtubule attachment, also arrests
HeLa cells followed by mitotic cell death.72 Thus, nonproper
assembly of mitotic spindle along with defects in the mitotic
arrest is associated with initiation of MC. Although many
biochemical details leading to MC remain to be clarified, the
so-called centrosome inactivation checkpoint provides an
interesting connection between DNA damage, MC and mitotic
cell cycle progression.73

Checkpoint Adaptation and Mitotic Slippage

Checkpoint adaptation, first described in budding yeast, is
the ability of cells to enter mitosis following a sustained
checkpoint-imposed cell cycle arrest despite the presence of
persistent DNA damage.74,75 A checkpoint-regulated protein,
claspin, mediates Chk1 activation when DNA replication is
inhibited. After a prolonged G2/M arrest, claspin can
dissociate from the chromatin and thereby inactivate Chk1,
permitting the entry into mitosis.76 Cells that enter mitosis
following adaptation are arrested in metaphase, which may
represent another mechanism for the development of MC
(Figure 2). Thus, adaptation might be served as an alternative
elimination process of cells with unrepairable damage.77

Similar to adaptation, checkpoint activity can also be lost as
a result of prolonged mitotic arrest. Through this mechanism,
also known as mitotic slippage, cells with dearranged
chromatin will exit mitosis and become tetraploid.78 Although
many molecular details remain to be clarified, a central event
in mitotic slippage seems to be proteosomal degradation of
cyclin B.79 This protein drives cells into mitosis through its
binding to Cdk1, where phosphorylation of lamins leads to
disassembly of the nuclear envelope.80 During normal
conditions, cells exit mitosis when cyclin B is degraded by
the APC/C.81 This degradation is prevented in an aberrant
mitosis and cyclin B remains stable. However, when the arrest
is prolonged, cyclin B cannot evade from a slow but
continuous proteosomal degradation and cells exit mitosis in
the presence of chromosome abnormalities.79 Once a cell
exits mitosis without cell division, nuclear envelope is then due
to dephosphorylation of lamins reformed around random
groups of chromosomes and cells become multinucleated.

Taking together, although pathways resulting in abnormal
mitosis differ depending on the nature of the inducers and the
status of cell cycle checkpoints, MC seems to be the main

response of some mammalian cells, deficient in regulators of
cell cycle control, to a variety of mitotic damages (Table 1).

Formation of Giant Cells During MC

One of the most prominent morphological characteristics of
MC is the formation of giant cells with abnormal nuclei
(Figure 3).20 The appearance of giant cells was first observed
in colonies of high-dose-irradiated cells.82 Following irradia-
tion, the volume of some cells continuously increased and
finally reached a size that was 200 times bigger than the size
of normal cells.83 The formation of giant cells was initially
explained by several mechanisms: either by fusion of
daughter cells after cell division or by abnormal cell division,
or by a combination of both. The former assumption was
based on time-lap studies demonstrating that the daughters of
irradiated HeLa cells could form a single binucleated cell.84

This mechanism would require repeated divisions and fusions
of the daughter cells that eventually become giant cells. As no
metaphase or telophase transitions were observed in the giant
cell population,82 it is unlikely that the appearance of these
cells was a result of successive fusion events. Recently, it was
shown that formation of giant cells is not a consequence of
daughter cell fusion, but rather a result of the fusion between
mitotic cells and cells in S- or G2 phase. Formation of these
cells was dependent on asymmetric distribution of chromo-
somes during the metaphase, leading to the generation of
three or more daughter cells, each with a different size of the
nucleus.85 The second assumption is based on the sugges-
tion that irradiated cells can go through a sequence of S-
phase repetitions (endoreplication) before they enter mitosis
in a polyploid state.86 If division then occurs, octaploid giant
daughter cells are formed. However, most cells that were
irradiated in these experiments became polyploid without
endoreplication. Although endopolyploidy may be the main
mechanism for the formation of giant cells, it seems that
uncoupling of DNA synthesis from cell division (endocycling)
is the primary cause,87 and not endoreplication, as previously
proposed.

As mentioned above, one of the early steps in MC is
premature mitosis following genotoxic insult. Such cells arrest
in mitosis by the spindle checkpoint with subsequent initiation
of endocycling, or alternatively, cells escape the checkpoint
after a prolonged arrest without completion of cell division and
become tetraploid (Figure 2).79 The consequences of the
former situation are failure of proper chromatin compaction as
well as errors in chromosome alignment and segregation.
Depending on the starting point of endocycling, either mono-
or multi-nucleated giant cells can be formed (Figure 2).34

Chromosomes during endocycling are highly varied, which
lead to the generation of endoploid cells.88,89 Endocycling has
been observed in tumor cells, and specifically in those lacking
p53.90,91

Formation of tetraploid cells is also a prerequisite for
initiation of endocycling that in turn can lead to the appearance
of polyploid giant cells with nuclear envelopes around clusters
of chromosomes or chromosome fragments.88,89 Although
some polyploid giant cells might escape death through
depolyploidization through efforts to repair their DNA by
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means of homologous recombination,34 the ultimate fate of
most of them is death.

Death of Giant Cells

Several possible scenarios for the death of giant cells have
been suggested. According to one of them, death is a direct
cause of MC and it is distinct from apoptosis.8 This conclusion
was based on dissimilarities in morphology between MC cells,
illustrated by the formation of nuclear envelopes around
individual clusters of missegregated, uncondensed chromo-
somes, as compared with apoptotic cells, which are recog-
nized by a reduced volume, condensed chromatin, nuclear
fragmentation, membrane blebbing and formation of apoptotic
bodies.92 Despite their distinct morphology, some authors
have suggested that both processes share several biochem-
ical hallmarks. For example, by inhibition of Chk2 in syncytia
generated by the fusion of asynchronous HeLa cells,
metaphase-associated MC was accompanied by sequential
caspase-2 activation, mitochondrial release of pro-apoptotic
proteins, activation of caspase-3, DNA fragmentation and
chromatin condensation.85 However, it has also been
reported that dying multinucleated giant cells are character-
ized by uncondensed chromatin and the absence of DNA
ladder formation.8,93 It seems that the presence or absence of

chromatin condensation during MC depends on different
events, including the stage when mitotic arrest takes place.
There is no consensus concerning the requirement of
caspases for MC,27,29,32 but it is likely that progression of
MC is caspase independent, as neither inhibition nor down-
regulation of caspases influence the appearance of giant cells
(Figure 3). However, caspases are essential for the termina-
tion of MC, suggesting that MC-related morphological
changes are followed by activation of the apoptotic machin-
ery.32,33 Thus, MC is not an ultimate manifestation of cell
death but rather a process leading to apoptosis. Indeed,
already in 1994, it was shown that irradiation of various tumors
of lymphoid origin induced mitotic arrest and accumulation of
giant cells, which seemed to die due to apoptosis.40,94 It
should also be noted that, apart from giant cells, other cell
populations might result from MC and, finally, die due to
apoptosis. Moreover, apoptosis may be the outcome of an
abnormal mitotic exit (mitotic slippage).95

Mitotic arrest is strongly associated with apoptosis, but the
exact molecular mechanism of this association remains to be
elucidated.72,96 Premature mitosis leading to an arrest during
the metaphase–anaphase transition is a p53-independent
event. Apoptosis in metaphase has also been suggested to
occur independently from p53 but as a consequence of
caspase-2 activation.85 However, as caspase-2 activation

a b

c

e f

d

25 µm

SKOV-3 cells

g h

Figure 3 Confocal microscopy image and FACS analysis of control and cisplatin-treated SKOV-3 cells. Cells were stained with mAbs against cytochrome c to illustrate
mitochondrial integrity and co-stained with Hoechst to visualize nuclei (b – untreated cells; d and f – 72 and 96 h following treatment, respectively). Changes in nuclear
morphology visualized only by Hoechst staining (a – untreated cells; c and e – 72 and 96 h following treatment, respectively). After 72 h, many multinucleated giant cells with
chromosome vesicles were observed, and at 96 h, most of the cells had started to collapse and detach from the plate, indicative of necrosis-like lysis. Accumulation of necrotic
cells was documented using FACS analysis (g – untreated cells; h – 96 h after treatment)
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itself is dependent on p53,97,98 it is unlikely that apoptosis
induced by mitotic arrest would be p53 independent.

In response to irradiation, additional DNA damage in
metaphase-arrested cells was shown to be a result of over-
accumulation of cyclin B1 during delay in late interphase-S
and interphase-G2.99 This additional DNA damage may also
trigger p53 activity. However, during mitotic arrest, activation
of p53 occurs in an ATM/ATR-independent fashion, suggest-
ing that several mechanisms for p53 activation exist.100,101

Interestingly, p53 can localize to centrosomes during mitosis
but is displaced upon spindle damage, indicating that p53 can
sense mitotic failure and initiate apoptosis.102 Thus, activation
of p53 during mitotic arrest is required for induction of cell
death. Notably, p73 have been demonstrated to induce mitotic-
linked cell death, which is caspase independent and character-
ized by the activation of endonuclease G with subsequent
DNA fragmentation.103 However, the molecular mechanism
that regulates p73 activity in this situation is unknown.

Decreased level of anti-apoptotic proteins, such as Bcl-2,
through inhibition of transcription and/or hyperphosphoryla-
tion upon prolonged mitotic arrest, represents another
possibility to trigger apoptosis through activation of mitochon-
dria-mediated pathway.104,105 As a response to the micro-
tubule-hyperpolymerizing agent paclitaxel, another Bcl-2
family protein, Bim, was shown to dissociate from micro-
tubules, an event that was linked to the inhibition of Bcl-2.106

Metaphase arrest-associated apoptosis has been reported
to involve survivin,65 an anti-apoptotic protein that is important
for regulation of cell division.107 Survivin modulates several
mitotic events, including spindle and interphase microtubule
organization, the spindle assemble checkpoint and cytokin-
esis.108–110 Reduction or loss of survivin is associated with
several mitotic defects, including hyperduplication of centro-
somes108 and aberrant spindle assembly.93 The anti-apopto-
tic function of survivin is inhibited when the interaction
between survivin and microtubules is disrupted by mitotic
inhibitors leading to caspase-9 and caspase-3 activation.108

Cells might have a mitotic self-elimination mechanism in
which some spindle checkpoint proteins could act as pro-
apoptotic. For example, downregulation of Mad2 inhibits
induction of apoptosis.111 Importantly, the two different
functionalities of this protein seem to be independent from
each other.

In addition to metaphase arrest-induced apoptosis, tetra-
ploid cells that are generated through catastrophic mitosis
followed by mitotic slippage also undergo apoptosis. An
immediate induction of p21 after mitotic slippage is an
indicator of a p53-dependent checkpoint response in G1,
which would act as a second ‘fail-system’ after an aberrant
mitosis.101,112 However, as there are some examples when
cells do not halt in response to G1 checkpoint even in the
presence of a functional p53, it is not clear whether activation
of this arrest has any role in cell death initiation.113,114 Despite
this knowledge, it is obvious that tetraploid cells require
activation of p53 and its target genes for induction of the
mitochondrial apoptotic pathway.115 In addition, p53 is also
responsible for initiating apoptosis after endomitosis and
endoreplication (Figure 2).116,117 Thus, besides its central role
in apoptosis induced by DNA damage, p53 appears to be an
important regulator of MC.25,118

Apoptosis, however, is not always required for MC lethality,
as some giant cells can undergo slow death in a necrosis-like
manner. This conclusion is based on some similarities
between morphological changes during MC and necrosis
(the loss of nuclear and plasma membrane integrities).25,119

Indeed, mitotic arrest in docetaxel-treated tumor cells was
followed by massive cell destruction by means of cell lysis.120

Appearance of multinucleated giant cells that were terminated
through a necrosis-like lysis was also observed in cisplatin-
treated ovarian carcinoma cell line, SKOV-3 (Figure 3).32

Necrosis following MC could be an effect of genetic instability
caused by aneuploidy and/or polyploidy.121 Taken together, it
is important to note that cells that are facing a mitotic-linked
cell death can in fact die by two separate mechanisms, by
either apoptosis or necrosis.

Concluding Remarks

The concept of programmed cell death was introduced in the
mid-1960s122 but attracted researchers only after apoptosis
was verified as ‘a basic biological phenomenon with wide-
ranging implication in tissue kinetics’.92 Since that time, many
different cell death pathways has been described. Recently,
the Nomenclature Committee on Cell Death suggested
definitions for eight mechanism-based types of cell death.123

Yet, some researchers depict up to 11 pathways of cell death
in mammals.124 However, an agreement whether all of these
pathways illustrate examples of programmed cell death is far
yet to be achieved. According to the seminal publications,
programmed cell death refers specifically to a cell autono-
mous genetic developmental death program. If we try to fully
pursue this definition, then many of the cell death pathways
described do not fulfill this criterion. This is particularly true for
the process of MC. Addressing the question of the actual
numbers of different modes of cell death, some authors did not
even consider MC as a separate mode.124 Is MC an example
of programmed cell death?

Firstly, as discussed above, there are examples when cells
that are morphologically related to MC can survive and
produce progeny that is potentially dangerous. On the other
hand, in most cases, MC leads to death, suggesting that both
survival and cell death pathways might be a result of MC. A
similar discussion relates to autophagy, another destiny of
cells. Let us try to separate survival from cell death function
and concentrate on the latter one.

Secondly, it is clear, to some extent, that various
morphological and biochemical hallmarks of each described
modes of cell death are overlapping. This makes the
distinction between different cell death modes more difficult.
All cells undergoing accidental death are using a part of a
machinery that is genetically regulated and encoded. If so,
then all mechanisms leading to cell death, including the very
poorly defined MC, are programmed. Notably, features
reminiscent of MC have been observed during normal
development. Similar sequence of polyploidization events
have been described during the development of tropho-
blast,125 and of heart myocytes during the first postnatal
week,126 and during reproduction of gland cells and
neurons.127 These observations suggest that MC cannot be
considered a simple dysregulation process activated in
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response to DNA damage but rather represents an example of
a programmed event. Importantly, by activation of any cell-
elimination mechanisms and depending on trigger and/or cell
specificity, an individual cell engages various pathways to die,
but it is still unclear whether all pathways can be classified as a
distinct mode of cell death. There is a consensus that MC is
the major pathway of tumor cell death activated after
treatment with ionizing radiation or certain chemotherapeutic
agents. There is also a consensus that MC is an outcome of
aberrant mitosis that results in the formation of cells with
abnormal nuclei. Nevertheless, then the opinion concerning
description of the MC phenomenon is differing. As mentioned
above, some groups are arguing that MC constitutes a special
case of apoptosis;27 others believe that MC is fundamentally
different from apoptosis8 (Figure 1). However, accumulating
evidences are indicating that cells in MC can die in various
ways (Figure 2). Indeed, recently, a new type of mitotic cell
death, termed ‘chromosome fragmentation’, has been de-
scribed, suggesting that the outcome of chromosomal
fragmentation can be apoptosis.128 Importantly, chromosome
fragmentation could also represent a form of autophagy, as it
has been shown that mitotic chromosomes can be enveloped
by autophagic vesicles upon cellular insult.129 In DNA-
damaged cells, the absence of p53 and downregulation of
Chk-2-related proteins following abrogation of caspase
activation drives cells from MC to necrosis. On the other
hand, downregulation of Chk-2-related proteins in the
presence of a functional p53 is not sufficient to result in
necrosis and cells die by apoptosis that can be initiated either
in the metaphase-arrested cells or after exit from the aberrant
mitosis. The increased p53 expression, followed by caspase
activation, occurs subsequent to the morphological changes
that characterize MC, indicating that drug-induced MC
precedes apoptosis, which is delayed owing to a primary
mitotic arrest.

Therefore, it is most likely that MC is a process resulting
from aberrant mitosis, characterized by the formation of
multinucleated cells and leading to cell death. Cell death might
occur either during or after dysregulated mitosis. Thus, MC
represents a prestage of apoptosis or necrosis (Figure 1). This
suggestion is based on studies indicating that apoptosis
might follow, rather than precede, MC.20,95,130 The outcome of
MC depends on the molecular profile of the cells, which
might have a potential relevance for tumor-type treatment.
Further studies are required for the identification of additional
proteins involved in the MC regulation and the detailed
understanding of the mechanisms of this process. The
obtained information will assist in improvement of the efficacy
of therapy, providing opportunities for the development of
new drugs.
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