
The intestinal epithelium compensates for p53-
mediated cell death and guarantees organismal
survival
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Mdm2 is the major inhibitor of the p53 tumor suppressor. Loss of Mdm2 in mice or in specific tissues of the mouse always yields
p53-dependent lethal phenotypes. However, the role of Mdm2 in tissues with high turnover capacity is unknown. We have
engineered mice lackingMdm2 in the intestinal epithelium using the Cre/LoxP system. Loss ofMdm2 (Mdm2intD) results in viable
animals, but neonates display multiple intestinal abnormalities such as hyperplasia, enterocyte vacuolization, and inflammation.
These defects correlate with a drastic increase in p53-dependent apoptosis in highly proliferative and differentiated cells.
Unexpectedly, the observed phenotypes disappear with age. The tissue selects against Mdm2-null cells and increases its
proliferative capacity. Additionally, the intestinal stem and progenitor cell populations are enriched leading to an increase in
crypt fission events. Enhanced proliferation is achieved by activation of the canonical Wnt and EGFR-mediated Ras/MAPK
pathways. While Mdm2 is a critical inhibitor of p53 in the intestinal epithelium, the tissue employs a series of processes that
compensate for cell death.
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The proliferative capacity of cancer cells is the result of
accumulation of many genetic changes. A key alteration is
mutation of the p53 tumor suppressor, which acts as a
transcription factor to activate genes involved in apoptosis,
cell-cycle arrest, and senescence.1 Disruption of p53 activity,
as occurs in human tumors, therefore promotes cell prolifera-
tion and increased tumorigenesis.

The strong antiproliferative activity of p53 not only prevents
outgrowth of malignant cells, but also has detrimental effects
in normal cells when activated inappropriately. Numerous
p53-negative regulators have been discovered that dampen
p53 activity in normal cells.2 Among these, Mdm2 plays a
central role in restricting p53 function.

Many tumors with high Mdm2 levels retain wild-type p53.3–6

Mdm2 is an E3 ubiquitin ligase that targets p53 for protea-
some-dependent degradation.7–10 In mice, loss of Mdm2
results in embryo lethality.11–13 p53 deletion completely
rescues this phenotype and demonstrates that Mdm2 is a
critical inhibitor of p53 in vivo. Studies to elucidate tissue-
specific functions of Mdm2 show that mice that express about
30% of the total Mdm2 protein levels display a decreased
body weight, show defects in hematopoiesis, and are more
radiosensitive than control animals due to increased p53-
mediated apoptosis.14 Loss of Mdm2 in cells of the central
nervous system or cardiomyocytes results in embryonic
lethality due to p53-dependent apoptosis.15–17 Also, deletion
of Mdm2 specifically in smooth muscle cells or in osteoblasts

show p53-mediated lethality.18,19 These studies confirm that
Mdm2 is a potent inhibitor of p53 in a variety of specialized
cells. Although the function of Mdm2 has been elucidated in
the aforementioned cell types, it remains unknown how Mdm2
modulates p53 activity in tissues with high cellular turnover.
We, therefore, examined the role of Mdm2 in the intestinal
epithelium as it is composed of both highly proliferative and
terminally differentiated cells.

The murine intestinal epithelium differentiates into a single-
layered epithelium around 14.5 days of gestation.20 Soon
after, this layer invaginates to form intervillus pockets that
contain stem and progenitor cells. Terminally differentiated
cells become restricted to finger-like protrusions known as
villi. Around postnatal day 7 (P7), rudimentary crypts of
Lieberkühn start to emerge from the intervillus pockets and
become the proliferative region.21 Cells in the crypt region
migrate upward toward the villus compartment and become
terminally differentiated. Finally, 2–7 days after leaving the
crypts, mature epithelial cells are sloughed into the intestinal
lumen.22 Thus, the intestinal epithelium represents the tissue
with the fastest cellular turnover.

p53 plays an important role in the homeostasis of the
intestinal epithelium during DNA damage. Undifferentiated
cells at the base of the crypts undergo p53-dependent
apoptosis in response to ionizing radiation,23–25 while
more differentiated cells undergo cell-cycle arrest.25 Thus,
undifferentiated epithelial cells appear more sensitive to
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p53-mediated apoptosis, while differentiating epithelial cells
are prone to p53-dependent cell-cycle arrest in response to
DNA damage. To understand the in vivo significance of Mdm2
in regulating p53 activity in highly proliferative tissues, we
implemented the Cre-LoxP strategy to delete Mdm2 in the
intestinal epithelium. We found that Mdm2 loss leads to
apoptosis in all compartments of the epithelium. With time,
however, the tissue implements a variety of mechanisms to
compensate for cell loss.

Results

Mice survive Mdm2 loss in the intestinal epithelium but
display severe intestinal abnormalities. Loss of Mdm2 in
mice causes embryo lethality.11–13 Therefore, conditional
deletion of Mdm2 is required to assess the role of Mdm2 in
more specialized cells. A loxP-flanked Mdm2 allele
(Mdm2 FM ) generated in our laboratory phenocopies the
original Mdm2-null allele upon Cre recombination.12,26 To
address the in vivo role of Mdm2 in regulating p53 activity in
tissues with high turnover capacity, we generated mice
lacking Mdm2 exclusively in the intestinal epithelium using
the Villin Cre (VilCre) transgene.27 We verified the specificity
and efficiency of VilCre in targeting intestinal epithelial cells
by mating mice carrying this transgene to the ROSA26R
reporter,28 and performing b-galactosidase assays. Strong
and specific b-galacotsidase activity was detected in almost
all intestinal epithelial cells at embryonic day 14.5 (E14.5)
and at 8 weeks (Supplementary Figure 1).

To ablate Mdm2 in intestinal epithelial cells, we generated
Mdm2FM/–VilCreþ and Mdm2FM/FM VilCreþ mice.
Importantly, Mdm2 mutants of both genotypes displayed
comparable phenotypes. Therefore, to simplify nomenclature,
we labeled Mdm2FM/FM VilCreþ or Mdm2FM/– VilCreþ mice
as Mdm2intD. Analysis of progeny at weaning indicated that
mice lacking Mdm2 in the intestinal epithelium survive at the
expected ratio (Supplementary Table 1). We observed the
recombination in cells from small intestines and colons, but
not in tails, of Mdm2intD mice at 3 days of age (Figure 1a). The
nonrecombined alleles detected are derived from either
nonrecombined epithelium or other cell types present in the
sample.

Characterization of Mdm2intD mice showed that by post-
natal day 3 (P3), these mice displayed a significant reduction
in body weight relative to control littermates (Figure 1b;
control, 2.3 g±0.035; Mdm2intD, 1.67 g±0.059; t-test;
Po0.001; nX23 per group). The presence of milk in the
stomachs of small Mdm2intD mice suggests that the loss of
body weight was not due to an inability to obtain milk (data not
shown). Sections through the intestinal tract at P3 revealed
that Mdm2intD pups exhibited abnormal morphology in
intervillus pockets as well as in villi (Figure 1c and d). Notably,
smaller Mdm2intD pups showed a more severe phenotype
than Mdm2intD pups of normal size and weight. The intervillus
pockets of P3 Mdm2intD mice displayed hypertrophy, hyper-
plasia, disorganization, and loss of polarity. Additionally, these
pockets were significantly wider in mutant pups relative to
controls (Figure 1e and f; control, 1±0.08; Mdm2intD,
1.79±0.22; t-test, P ¼ 0.004). On the other hand, the villus

region of P3 Mdm2intD pups showed atrophy and frequently
displayed abnormal structures that appear to be vacuoles
(Figure 1g). P3 Mdm2intD pups occasionally showed edema
and neutrophil infiltration into the mucosa, indicative of
inflammation (Figure 1d, and data not shown). Morphological
analysis during embryogenesis revealed the absence of
vacuoles in Mdm2intD intestines (Supplementary Figure 2),
suggesting that the vacuoles observed at P3 are caused by
inflammation. Staining using differentiation-specific markers
to distinguish enterocyte, goblet, and enteroendocrine cells
(Paneth cells are absent at this developmental stage)
revealed the presence of all cell types in Mdm2intD intestine
(Supplementary Figure 3a–d). Villin, alkaline phosphatase,
alcian blue, and synaptophysin staining was similar in
intestines of P3 Mdm2intD pups and controls (Supplementary
Figure 3). The aforementioned phenotypes were never
observed in mice that carried one wild-type Mdm2 allele with
or without VilCreþ .

Mdm2-modulated p53 activity in highly proliferative and
terminally differentiated cells of the intestinal
epithelium. As Mdm2 is an E3-ubiquitin ligase that targets
p53 for proteosome-mediated degradation,7–10 we tested
whether the loss of Mdm2 in cells results in p53
stabilization.15–18 As predicted, P3 Mdm2intD pups
displayed high levels of p53 protein in intestinal epithelial
cells, while control pups lacked p53 expression (Figure 2a).
High p53 levels were observed in highly proliferative cells of
the intervillus pockets and in terminally differentiated cells in
the villus region (Figure 2a). In general, smaller mice showed
more p53-positive cells. These data reaffirm the absence of
Mdm2 in the intestinal epithelium of Mdm2intD neonates.

Loss of Mdm2 in the mouse induces p53-mediated
apoptosis at E3.5.11–13 We, therefore, examined the intes-
tines of small (p1.5 g) P3 Mdm2intD pups for apoptosis. Loss
of Mdm2 triggered a large increase in the number of apoptotic
cells in the intervillus region (Figure 2b and c; control,
0.045±0.03; Mdm2intD, 2.50±0.20; t-test, P¼ 0.002). A
significant number of apoptotic cells were also present in
intestinal villi of P3 Mdm2intD mice (Figure 2b; control,
0.06±0.08; Mdm2intD, 0.90±0.01; t-test, P¼ 0.005). Finally,
P3 Mdm2intD pups displayed numerous apoptotic cells in the
large intestine, emphasizing the importance of Mdm2 in this
region as well (data not shown). Quantitative RNA analysis
indicated that the apoptotic p53-target genesPUMA andBAX,
but not PERP and NOXA, were significantly upregulated in
Mdm2intD pups compared to controls (Figure 2d; t-test,
Po0.02, n¼ 3–5 per group). Although cell-cycle arrest was
not observed in Mdm2intD mice (see below), the p53-target
genes, p21 and cyclin G1, were also upregulated in mutant
intestines (Figure 2d and Supplementary Figure 4). Lastly, the
increase in apoptosis and morphological defects observed in
Mdm2intD pups were completely rescued upon deletion of p53
(Figure 2c and e). Collectively, these data indicate that Mdm2
is a major regulator of p53 stability and activity in both
proliferative and terminally differentiated cells of the intestinal
epithelium.

Intestinal epithelium compensated for cellular loss in
the absence of Mdm2. To further explore the mechanisms
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by which Mdm2intD mice survive, we examined the
phenotypes of adult mice. Adult Mdm2intD mice showed a
normal intestinal morphology (Figure 3a). Adult Mdm2intD

intestines showed only a few p53-positive cells in all regions
of the small intestine and colon in contrast to the intestines of
P3 Mdm2intD pups (compare Figure 2a versus Figure 3b).
Moreover, adult Mdm2intD mice showed a drastic reduction in
the number of apoptotic cells in intestines relative to P3
Mdm2intD pups (Figure 3c; Mdm2intD at P3, 2.50±0.20;
Mdm2intD at 8 weeks (jejunum), 0.595±0.035; t-test,
P¼ 0.007). This phenomenon was observed in the
duodenum, jejunum, and ileum, and in the colon of adult
mutant animals (data not shown). Lastly, P3 Mdm2intD pups
with reduced body weight, gained weight as they aged. At 8
weeks of age, the body weight of these mutants showed no

significant difference as compared to controls (Figure 3d and
data not shown). These data demonstrate that the intestinal
epithelium is able to compensate for cell loss due to p53
activity.

The intestinal epithelium selected against cells with high
p53 activity. A possible mechanism for compensation is
that some intestinal cells in adult Mdm2intD mice retain
Mdm2. To test this possibility, Mdm2intD mice carrying the
ROSA26R reporter were first analyzed for recombination at
the ROSA26R locus. LacZ-stained sections showed uniform
expression of VilCre throughout the epithelium in R26R/þ
VilCreþ P3 pups, indicating high efficiency of recombination
(Figure 4a). In contrast, a chimeric pattern was observed in
intestinal epithelial cells of P3 Mdm2FM/FMR26R/þ VilCreþ
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Figure 1 Young Mdm2intD mice developed multiple intestinal abnormalities. (a) PCR analysis of P3 pups show the nonrecombined floxed Mdm2 (FM) and recombined
(intD) Mdm2 alleles. Red triangles, loxP sites; black triangles, primers; black lines indicate PCR products. E, exon; kb, kilobases, bp, base pairs. SI, small intestine; C, colon; T,
tail. (b) Body size and weight of P3 littermates of different genotypes. (c and d) H&E staining of small intestines of P3 mice at original magnification � 50 (c) or � 200 (d).
Black arrowhead marks an intestinal edema in an Mdm2intD pup. (e and f) Measurement of the intervillus width of P3 Mdm2intD and control mice. Yellow lines denote the width
of intervillus pockets. (g) Intestinal villi of P3 mice exhibiting vacuoles in enterocytes (black arrowhead)
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pups. Eight-week-old Mdm2intD mice showed a further
decrease in recombination events in the intestinal
epithelium; few patches were observed in the crypt
compartment suggesting that most crypts have already lost
the Cre recombinase (Figure 4a).

To investigate whether the loss of recombination also
occurred at the Mdm2 locus with age, we analyzed the
recombination using primer sets that distinguish the wild-type,
Mdm2 conditional (FM), and recombined (intD) alleles
(Figure 1a), and DNA isolated from scraped intestinal mucosa
of 8-week-old animals to enrich for an epithelial population.
Control 8-week-old Mdm2FM/– VilCre� mice did not have
the recombined allele, while Mdm2FM/þ VilCreþ mice

recombined the Mdm2 conditional allele with high efficiency
(Figure 4b). In 8-week-old Mdm2FM/– VilCreþ mutants, the
number of recombined cells was greatly reduced as compared
to 8-week-old Mdm2FM/þ VilCreþ mice. As the 3-day-old
Mdm2FM/– VilCreþ pups also show high efficiency of
recombination events (Figure 4b), loss of recombination at
the Mdm2 locus occurs with time. Together, these data
suggest that the intestinal epithelium selects against cells that
have high p53 activity.

A potential mechanism by which the intestinal epithelium
selects against cells with high p53 activity is by loss of the
VilCre transgene. To investigate this possibility, real-time
PCR was performed using DNA from scraped intestinal
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mucosa of 8-week-old mice. As control, we used Mdm2FM/þ

VilCreþ mice. The 8-week-old Mdm2FM/– VilCreþ mutants
showed greater than 100-fold reduction in the total amount of
the VilCre transgene in the small intestine relative to tail
(Table 1). These data suggest that the intestinal epithelial
cells from Mdm2intD mice spontaneously delete the VilCre
transgene and thus are able to expand.

Multiple mechanisms compensated for p53 activation in
the intestinal epithelium. To further elucidate the
mechanisms of cellular compensation upon p53 activation,
we investigated the proliferation capacity of the intestinal
epithelium in Mdm2intD mice. P3 Mdm2intD mice showed a
twofold increase in Ki-67-positive cells per intervillus unit as
compared to control animals, indicating that intestines of
these mutants have an accelerated proliferative capacity
(Figure 5a; control, 10.43±0.189; Mdm2intD, 18.98±2.85;
t-test, P¼ 0.007). Moreover, BrdU assays performed in adult
intestines showed that Mdm2intD mice retained an increased
capacity to proliferate relative to age-matched control
animals (Supplementary Figure 5; control, 26.2±0.22;
Mdm2intD, 36.9±2.6; t-test, P¼ 0.036). However, the
proliferation index of the intestine was relatively less in
adult mutants than in P3 mutants. Therefore, the intestinal
epithelium compensates for p53 activation by increasing cell
proliferation.

The postnatal growth of the small intestine occurs through
two major processes: crypt hyperplasia and crypt fission.29

Given that neonatal Mdm2intD mice recovered from the
detrimental effects of p53 activation, we counted the number
of crypt fissions. Indeed, P3 Mdm2intD pups showed a drastic
increase in the frequency of crypt fissions in the small intestine
(Figure 5b; control, 1.225±0.64; Mdm2intD, 4.972±1.28;
t-test, P¼ 0.0001). Thus, another mechanism by which
Mdm2intD mice survive is the ability to increase crypt fission
events.

The crypt fission process is thought to depend on the
multiplication of intestinal stem cells.30 We, therefore,
performed immunohistochemistry using the intestinal stem
and progenitor cell marker, Musashi-1 (Msi-1).31,32 Analysis of
expression of Msi-1 in P3 Mdm2intD mice revealed more Msi-
1-positive cells in the small intestine of Mdm2intD pups than in
control littermates (Figure 5c; control, 5.647±0.472;
Mdm2intD, 9.338±0.614; t-test, Po0.001). These results
suggest that the intestinal stem and progenitor cell popula-
tions are increased in Mdm2intD neonates.

The canonical Wnt and EGFR-mediated Ras/MAPK
signaling pathways were induced in the intestines of
Mdm2intD mice. The canonical Wnt pathway plays an
important role in maintaining the proliferation capacity and
stem-cell population of the intestinal epithelium.33 The
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central player of this signaling pathway is b-catenin. Because
Mdm2intD mice exhibited increased proliferative capacity and
an increase in stem cells, we next tested the hypothesis that

the canonical Wnt pathway is active in these mutants. P3
Mdm2intD pups had a larger number of cells in the intervillus
compartment that expressed intracellular b-catenin as
compared to controls (Figure 6a). To determine whether
b-catenin was active in the intestine of neonatal Mdm2intD

mice, we performed immunohistochemistry against CD44,
a downstream target of the b-catenin/TCF-4 complex.34

Small intestines of P3 Mdm2intD pups displayed drastic
accumulation of this membrane glycoprotein in intervillus
pockets as compared to controls (Figure 6b). Together, these
data imply that the b-catenin/TCF-4 complex is active in the
intestinal epithelium of P3 Mdm2intD pups.

To investigate other pathways that may be involved in
tissue compensation in the absence of Mdm2, we performed
gene expression profiles of RNA isolated from whole small
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Table 1 VilCre Tg DNA levels in small intestines of 8-week-old mice

Mouse number Genotype Fold decreasea

Control #1 Mdm2FM/+ VilCre+ 1.75
Control #2 Mdm2FM/+ VilCre+ 6.6
Mdm2intD #1 Mdm2FM/– VilCre+ 137
Mdm2intD #2 Mdm2FM/– VilCre+ 1385
Mdm2intD #3 Mdm2FM/– VilCre+ 9274

aSamples were normalized using GAPDH DNA as an internal control and
compared to tail DNA
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intestines of small Mdm2intD pups by genome-wide microarray
analyses. We identified 219 genes that showed at least a
twofold change and exhibited a P-value of less than 0.05 and
were either upregulated (139 genes) or downregulated (80
genes) in the intestine of Mdm2intD neonates as compared to
control mice (Supplementary Table 2). Many of these genes
are involved in immune response, xenobiotic and lipid
metabolism, and cellular trafficking, suggesting that these
processes are altered in the intestine of Mdm2intD mutants.
The fact that these mutants show the loss of body weight
supports this hypothesis. Notably, several well-known p53-
target genes were upregulated in the intestine of Mdm2intD

neonates, confirming that these mutants display high p53
activity (Supplementary Table 2). The activation of some of
these genes (i.e., p21, cyclin G1) was validated in these
mutants (Figure 2d). Lastly, we detected a cluster of
upregulated genes in the mutant intestines that have
important functions in signal transduction such as amphir-
egulin, epiregulin, calcyclin, and augmenter of liver regenera-
tion (ALR; Supplementary Table 2). Amphiregulin and
Epiregulin are members of the epidermal growth factor family
(known as EGF-like factors) that bind to EGF receptors
(EGFR) and initiate a signal transduction cascade that

activates pathways such as the Ras-activated, mitogen-
activated protein kinase (MAPK) pathway (Figure 6c).35

Therefore, we postulated that the EGFR-mediated Ras/
MAPK pathway might play an important role during the tissue
regeneration in response to p53 activation. To test this
hypothesis, we first performed reverse transcription real-time
PCR to analyze the mRNA expression of amphiregulin and
epiregulin in P3 Mdm2intD pups. We detected significantly
higher mRNA levels of both amphiregulin and epiregulin in the
intestines of Mdm2intD pups than in the intestines of control
mice (Figure 6d; amphiregulin, control¼ 1.107±0.3095,
Mdm2intD¼ 3.906±0.8370 (P¼ 0.0095, nX4 per group);
epiregulin, control¼ 1.009±0.09861,Mdm2intD¼ 5.716±0.9555
(P¼ 0.008, nX3 per group)). Immunohistochemistry revealed
that the intestines of P3 Mdm2intD pups show increased levels
of EGFR along the entire intervillus–villus axis, whereas
control animals did not stain for EGFR (Figure 6e). Moreover,
intestines of P3 Mdm2intD pups showed a dramatic increase in
the expression of phosphorylated-ERK1/2 in the intervillus
region as compared to controls (Figure 6f). Collectively,
these data indicate that, like the canonical Wnt pathway, the
EGFR-mediated Ras/MAPK pathway is active in the intestinal
epithelium of P3 Mdm2intD pups.
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intestines were taken at the same magnification, but the mutant intestines are larger due to the hyperplastic and hyperthrophic phenotype observed in these mutants
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Discussion

The data demonstrate that Mdm2 is a critical inhibitor of p53
activity in the intestinal epithelium. Absence of Mdm2 in this

tissue results in an accumulation of p53 protein and enhanced

p53-mediated apoptosis in both highly proliferative and

terminally differentiated cells. Thus, p53 activation results in

severe intestinal abnormalities early in life. The presence of

apoptotic cells in differentiated intestinal epithelia with loss of

Mdm2 was unexpected as earlier studies revealed that

p53-mediated apoptosis is a rare event in this cell type under

normal conditions or upon DNA damage.36 Therefore, these

early studies show that sufficient Mdm2 levels in terminally

differentiated intestinal epithelial cells keep p53 activity at bay
in wild-type mice. The inhibition of p53 activity by Mdm2 also
occurs in differentiated smooth muscle and brain cells.16,18

These data suggest that Mdm2 dampens p53 activity in
differentiated cells despite the fact that they will never divide.

Other studies also indicate that the partial loss of Mdm2
increases apoptosis in the gut,37 but failed to note the other
defects seen in our mice probably due to the presence of
some Mdm2. Our Mdm2intD mice also exhibit inflammation,
presence of vacuoles, and increase in intervillus width. Most
importantly, increased apoptosis was observed in both, highly
proliferative and terminally differentiated intestinal epithelial
cells, a phenotype not observed in mice retaining some
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Mdm2. In mice expressing a tamoxifen inducible p53 allele,
intestinal defects were also noted, although not characterized
in detail.38

Although Mdm2 mutants exhibit numerous intestinal de-
fects early in life, such defects disappear with age and these
mice have a normal lifespan. The intestinal epithelium
compensates for the detrimental effects of p53 activation
through multiple mechanisms. First, intestines lacking Mdm2
are able to select against cells that are undergoing recombi-
nation through the loss of VilCre. A similar phenomenon was
reported in mice with the deletion of c-Myc in intestinal
crypts.39 Second, the tissue increases proliferation in young
Mdm2intD mice to balance cell loss due to p53-dependent
apoptosis. Third, the intestinal epithelium increases the
number of crypt fission events upon Mdm2 deletion, which
promotes intestinal growth.40 Fourth, the intestinal epithelium
also compensates for p53 activation by increasing the
putative stem-cell population. Thus, the increase in prolifera-
tion and crypt fission events is likely the result of an expanded
stem-cell population. Thus, multiple mechanisms are coordi-
nated to compensate for cell loss due to p53 activation.

Finally, the tissue senses the cellular abnormalities in the
intestine and triggers the activation of the canonical Wnt, and
EGFR-Ras/MAPK pathways, thus, promoting survival. The
canonical Wnt/b-catenin pathway is linked to intestinal stem-
cell maintenance and epithelial homeostasis. For example,
loss of the b-catenin partner, TCF-4, in mice results in lethality
due to complete absence of the proliferative compartment of
the intestinal epithelium.41 On the other hand, the role of the
EGFR-mediated Ras/MAPK pathway in intestinal regenera-
tion is novel. In addition to their role in tissue homeostasis,
these two pathways contribute to tumorigenesis.33,42 Thus,
normal and neoplastic cells share similar molecular pathways
that allow cell proliferation. However, normal cells cease to
proliferate when the tissue reaches homeostasis, whereas
tumor cells continue proliferating indefinitely. Despite the
activation of the Wnt/b-catenin and EGFR-mediated Ras/
MAPK pathways, Mdm2intD mice do not develop tumors. It
would be of great interest to elucidate the molecular
mechanisms normal cells employ to halt proliferation when
the tissue reaches homeostasis.

Materials and Methods
Mice. All animal protocols were approved by the Institutional Animal Care and
Use Committee. All mice were 490% C57BL/6. VilCre mice were crossed with
Mdm2FM conditional mice.27,26 Recombination was assayed by PCR using primers
described previously.26 Intestines of P3 pups were washed in cold phosphate
buffered saline (PBS), rolled, incubated in 10% formalin for up to 48 h, and
embedded in paraffin. Intestines of 8-week-old mice were cut into sections
(duodenum, jejunum, ileum, and colon), and luminal contents flushed with cold PBS
before rolling.

b-galactosidase activity assays. b-galactosidase activity in embryos was
performed as described.15 Postnatal samples were fixed in 4% paraformaldehyde at
41C for 1 h. Samples were cryoprotected in a sucrose gradient (10% sucrose/HBSS
overnight; 15% sucrose/HBSS for 6 h, and 20% sucrose/HBSS for 6 h) at 4 1C,
embedded in optimum cutting temperature compound (Sakura), and 10 mm sections
cut at �201C. Sections were fixed in 0.2% glutaraldehyde for 2 min, washed in PBS
(pH 8.3), and stained (1 mg/ml X-Gal, 50 mM K3Fe(CN)6, 50 mM K4Fe(CN)6.3H2O,
2% NP-40, 1% sodium desoxycholate, 1 M MgCl2 in PBS (pH 8.3)) overnight
at 371C.

Immunohistochemistry and immunofluorescence. The antibodies
used for immunohistochemistry and immunofluorescence studies are listed in
Supplementary Table 3. Immunohistochemistry was performed as described.3 For
immunofluorescence, epitope retrieval was performed by steaming samples in
10 mM citric acid (pH 6.0) for 30 min. Samples were incubated in blocking serum
(10% goat serum in PBS-0.1% Tween-20) for 1 h at room temperature, then with
primary antibodies, followed by rinsing in PBS, and incubation with the
fluorochrome-conjugated secondary antibody.

Microarray and reverse transcriptase real-time analyses. RNA
was isolated from whole small intestines of P3 mice (RNAeasy kit, Qiagen). Five
mice per group were analyzed individually using the Affymetrix GeneChip Mouse
Genome 430 2.0 Array. Student’s t-test was used on log-base transformed data.
Samples were considered statistically significant if P-values were less than 0.05 and
showed at least twofold of change. For validation, RNA was reverse transcribed
using the First-Strand cDNA Synthesis kit from Amersham Biosciences. Real-time
was performed using the primer sets listed in Supplementary Table 4. Relative DNA
levels were normalized to the value of GAPDH for each reaction.
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