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Bone is a highly vascularized tissue, although this aspect of bone is often overlooked. In this article, the 
importance of blood flow in bone repair and regeneration will be reviewed. First, the skeletal vascular anato- 
my, with an emphasis on long bones, the distinct mechanisms for vascularizing bone tissue, and methods for 
remodeling existing vasculature are discussed. Next, techniques for quantifying bone blood flow are briefly 
summarized. Finally, the body of experimental work that demonstrates the role of bone blood flow in 
fracture healing, distraction osteogenesis, osteoporosis, disuse osteopenia, and bone grafting is examined. 
These results illustrate that adequate bone blood flow is an important clinical consideration, particularly 
during bone regeneration and in at-risk patient groups. 
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Introduction 
 

The rate at which blood vessels deliver oxygen, nutrients, 
growth factors, and circulating cells to boneis tightly re- 
gulated as a function of blood pressure and vasculariza- 

 
All biological tissues, including bone, require vascular 
support to survive. However, a frequently overlooked 
feature of bone is its extensive vascular network. Many 
studies have demonstrated that the blood vessels in 
bone are necessary for nearly all skeletal functions, 
including development, homeostasis, and repair (1). In 
addition, blood vessels lost due to trauma are regener- 
ated, and new bone tissue formed in response to injury is 
vascularized. As a consequence of this environment, the 
blood vessels in bone are highly active, not simply a 
passive source for the delivery of nutrients (2). Readers 
are referred to recent publications for more information 
about the active processes of the vasculature not 
covered in this review, including the vascular niche and 
hypoxia-driven signaling pathways (3-4). 
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tion. Given that blood pressure is generally maintained, 
the number and size of blood vessels determines the 
local blood flow rate. These two factors are regulated 
through the processes of angiogenesis and vasomotor 
function, respectively. Although a variety of skeletal dis- 
orders are associated with general vascular dysfunction 
(5-7), this review will focus on the regulation of bone 
blood flow, through the number and size of vessels, 
during bone repair and regeneration. To introduce this 
topic, the skeletal vascular anatomy and techniques for 
measuring bone blood flow are briefly discussed. 
 
Blood supply in bone 
 
A dense vascular network delivers oxygen and nutrients 
to all 206 bones in the human body. In general, this 
requires a substantial portion of the total cardiac output. 
Experimental work in various animal species has demons- 
trated that a significant portion of the resting cardiac 
output is directed to the skeleton, likely between 10% 
and 15% (8-12). 

For some time, the blood flow pattern in bones has 
been described as primarily centrifugal: blood is supplied 
to the cortical bone through the nutrient arteries in the 
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marrow cavity (Figure 1), and returned by the periosteal 
veins (13). Particularly in long bones, the vascular anato- 
my is well characterized, with specific arterial inlets (the 
main nutrient artery, periosteal arteries, metaphyseal 
arteries, and epiphyseal arteries) and veinous outlets 
(14). However, the structure of the vascular network can 
vary greatly depending on the skeletal site. For example, 
arteries in the greater trochanter enter from the medial, 
lateral, and superior surfaces to supply a vascular net- 
work within the trochanter that is functionally separated 
from the blood supply for the femoral neck and shaft 
(15). 

In addition, there is evidence that the blood flow 
direction can shift from centrifugal to centripetal, de- 
pending on the hemodynamic conditions in the bone 
(16). This hypothesis was tested experimentally in the 
ovine tibia by intramedullary reaming (17). After the des- 
truction of the main nutrient artery in the marrow cavity, 
blood flow at the periosteum was rapidly increased to 
compensate for the loss, generating local centripetal 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Femoral blood supply. The principal nutrient artery and its 
main medullary branches are shown in this angiograph of a rabbit 
femur (10). 

blood flow. More recently, stress fracture healing was 
associated with a disruption of the normal centrifugal 
flow in the ulna, particularly the lacunocanalicular flow 
(18). Although the skeletal vascular network is generally 
robust, some bones are poorly perfused. For example, 
stress fractures in the fifth metatarsal typically heal slowly 
due to the poor vascular support in this area (19-20). 
Additionally, bone blood flow, particularly in the long 
bones, is known to decrease with age (21-23). In summary, 
the blood flow conditions in bone are site-specific and 
dynamically change in response to trauma, metabolic 
demands, and aging. 
 
Mechanisms of vascularization 
 
The production of bone, whether during development 
or repair, entails the generation of new blood vessels to 
support the tissue. There are at least four distinct me- 
chanisms for producing new vessels. Vasculogenesis, or 
neovascularization, is the generation of de novo blood 
vessels (24), generally observed during development. In 
contrast, angiogenesis is a broad term used to describe 
the generation of new vessels from existing vasculature 
(25). Angiogenesis can be thought of both in terms of 
sprouting angiogenesis, the process by which a new 
vessel branches off from an existing vessel, as well as 
intussusceptive angiogenesis, the process in which vessels 
split into two or more vessels (26). Finally, arteriogenesis is 
a separate process by which functional collateral arteries 
are generated between existing arteriolar anastomoses 
(27). Whereas angiogenesis is triggered by hypoxia 
through HIF-1α mediated gene transcription, arterio- 
genesis appears to occur as a response to physical 
forces, independent of hypoxia (28). 

The structural morphology of blood vessels can be 
altered by a process known as vascular remodeling (29). 
In general, vascular remodeling is either outward (in- 
creased vessel diameter) or inward (reduced vessel dia- 
meter). Remodeling can be further characterized as 
hypertrophic (increased cross-sectional area), hypotro- 
phic (reduced cross-sectional area), or eutrophic (no 
change in cross-sectional area) (30). Vascular remodel- 
ing has been studied extensively in hypertensive rodents 
and humans (31-33), and this may be a mechanism by 
which blood flow is stably altered in bone (34-36). 

On the other hand, short-term, rapid expansion (vaso- 
dilation) or contraction (vasoconstriction) of blood vessels, 
known as vasomotor or vascular tone, has also been 
implicated as a mechanism for rapidly changing blood 
flow rate, mostly in response to injury (37-38). The regula- 
tion of this process is complex and multifactorial, with 
important contributions from the autonomic nervous sys- 
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tem and circulating hormones, as well as locally pro- 
duced factors that include nitric oxide (NO) and endo- 
statin (39-40). 
 
Techniques for measuring bone blood flow 
 
Like any fluid flow scenario, blood flow rate is quantified 
as volume per time and is determined as the product of 
the cross-sectional area of the vessel and the fluid velo- 
city, which depends on pressure. This relationship is ex- 
pressed in Poiseuille’s law, a simplification of the Navier- 
Stokes equations for laminar flow of incompressible, 
Newtonian fluids, as: 
 
 
 
where flow rate (Q) is given as a function of the radius of 
the vessel (r), the difference in pressure (ΔP), the viscosity 
of the fluid (μ) and the length of the vessel (L). Although 
this equation is not appropriate for calculating absolute 
flow rates of blood, a non-Newtonian fluid, the general 
relationship illustrates that blood flow rate is weakly 
regulated by systemic blood pressure and strongly regu- 
lated by the local size of the blood vessel. 

Vessel size and number can be robustly quantified ex 
vivo using histology or vascular casting (41). However, 
accurate quantification of in vivo blood flow, particular- 
ly in bone, is more difficult (42). Early attempts included 
the injection of red blood cells labeled using radioactive 
isotopes (43). As technology has improved, less onerous 
methods have been devised to provide more accurate 
results. The most important methods have been briefly 
summarized (Table 1). 

Administration of labeled microspheres into the circula- 
tion by arterial catheterization or cardiac injection has 
been used for some time to quantify blood flow (44). 
With a sufficiently small diameter (<50 μm), the labeled 
microsphere will get trapped in the microvasculature. 
While the quantification method depends on the method 
of labeling, the number of microspheres must be deter- 
mined in the tissue of interest as well as a reference 
tissue, making this technique relatively invasive. Early on, 

microspheres were labeled using radioactivity (45), but 
non-radioactive microspheres have also been used, 
including colored microspheres and fluorescent micro- 
spheres (46). With sufficient sampling, inherent error can 
be reduced to 20% or less (47). As a result, this technique 
has been used in a wide range of experimental models 
(48-50) and is generally accepted as the “gold standard” 
for blood flow measurements, even in bone (2). 

Laser Doppler flowmetry (LDF) is quantitative technique 
developed to utilize the Doppler effect for determining 
the velocity of blood flow in a vessel (51-52). Real time 
blood flow rate can be measured continuously and 
non-invasively, but measurements can usually only be 
made in the most superficial vessels, typically in the skin, 
unless the procedure permits placing a probe inside the 
subject. Additionally, this technique does not provide 
anatomical data, so the region of interest must be deter- 
mined externally and changes in vascular anatomy are 
not captured. Despite considerable limitations, this tech- 
nique has been used successfully clinically and experi- 
mentally to quantify bone blood flow (53-54). Importantly, 
experimental work using LDF as well as simultaneous 85Sr- 
labeled microspheres found no statistically significant 
correlation between the two techniques in the femoral 
head or condyles, and suggested that LDF may be a 
superior choice for quantifying bone blood flow (55). 
Recent validation and experimentation in the mouse 
tibia using LDF confirms this opinion (56). 

Positron emission tomography (PET) is another establish- 
ed in vivo technique for quantifying rates of flow and 
metabolism. The kinetics of an injected, short-lived radio- 
active tracer are quantified by detecting the positron 
ejected during radioactive decay. Although the tech- 
nology underpinning PET imaging was developed in the 
1960s and 1970s, the utility of this technique dramatically 
improved in the 1980s with the increased availability of 
radiopharmaceuticals, including 15O water typically used 
to evaluate blood flow (57). Since then, PET imaging has 
been used to evaluate blood flow in bone (58) as well as 
a variety of soft tissues (59-62). In addition to providing 
blood flow rates in absolute units (63), simultaneous PET/ 
CT imaging can be registered to provide anatomic land- 

 
Table 1 Comparison of blood flow measurement techniques 

Factors Microspheres Laser Doppler Flowmetry PET Imaging 
Measurement Type Static, relative to reference tissue Continuous, quantitative Continuous, absolute flow rates 
Invasive? Yes No No 
Anatomical Data Yes No Yes 
Other Factors Experimentally difficult, general gold 

standard 
Limited depth of scan 
may require invasive 
probe placement 

Limited by scan resolution and 
availability of radioisotopes 
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marks with high spatial resolution. A strong correlation 
between PET and microsphere injection was found when 
quantifying myocardial blood flow in rats (P<0.000 1) (64), 
but there has not been a similar study for bone blood 
flow comparison. The major limitation of PET imaging is 
resolution, though the most recent scanner technology 
is suitable for PET imaging in animals as small as rodents 
(65). 
 
Blood flow during fracture 
 
Skeletal fracture is typically associated with the disrup- 
tion of the surrounding soft tissue as well as the marrow 
compartment of long bones. As a result, the vascular 
network in and around bone is compromised. Decreased 
perfusion concurrent with the increased metabolic de- 
mands of repair leads to hypoxia near the fracture site 
(4). As a result, restoration of blood flow through angio- 
genic mechanisms is a key component of fracture heal- 
ing, a process of endochondral ossification that largely 
recapitulates skeletal development (66). 

The relative importance of the main nutrient artery 
and the periosteal arteries during fracture healing has 
been debated for some time (67). Fixation of a canine 
tibial fracture with an intramedullary rod was shown to 
increase blood flow at the fracture site as compared to 
compression-plate fixation, suggesting that periosteal 
arteries are particularly responsive during fracture heal- 
ing (68). This line of reasoning was bolstered by a careful 
histological examination of vasculature following fracture 
that nicely demonstrated the periosteal callus alone has 
extensive new vessel formation (69). Additionally, a body 
of experimental work has shown that the presence or 
absence of the periosteum significantly affects the heal- 
ing response (70). Finally, recent work has demonstrated 
that invading blood vessels in the periosteal fracture 
callus are intimately associated with osteoblast precur- 
sors (71). This finding confirms the importance of peri- 
osteal vascularity for the restoration of perfusion and the 
influx of cells providing osteogeniccues (Figure 2). 

Although new blood vessels are certainly required for 
vascularizing the fracture callus and reversing vascular 
damage from the injury (72), regulation of the preexisting 
vascular network also plays an important role in the early 
stages of repair (73). In a study of two patients using PET 
imaging, blood flow rate was 3 to 6 times greater in the 
fractured tibia than the contralateral tibia 24 hours after 
injury, suggesting significant vasodilation associated with 
the fracture (58). Using LDF to quantify blood flow rate, 
researchers demonstrated that the nitric oxide (NO) syn- 
thase inhibitor L-NAME only attenuated blood flow rate 

in the first day after tibial fracture (74). Thus, the initial 
vascular response following fracture is vasodilation of 
the intact vascular network through NO signaling, but 
the subsequent vascular response does not appear to 
be affected by decreased NO. This conclusion is consis- 
tent with work showing NOS expression and gene regu- 
lation is temporally modulated during fracture healing 
(75-76). Other experimental work has shown that endo- 
thelial vasodilation through NO signaling in bone is 
impaired with aging (77), suggesting vasomotor control 
may be a contributing factor for poor fracture healing in 
the elderly. Other inflammatory cytokines, including 
TNF-α, IL-1, and IL-6, are expressed at the site of fracture 
and have been shown to affect repair, although their 
primary contribution is likely the migration and differenti- 
ation of progenitor cells, rather than the regulation of 
blood flow (78-80). 

Many studies have highlighted the importance of 
pro-angiogenic factors, such as VEGF, HIF-1, and IGF, in 
fracture healing (81-84). However, the regulation of 
blood flow is complex, involving a balance of both pro- 
angiogenic and anti-angiogenic factors. An endogenous 
anti-angiogenic factor, endostatin, was recently exa- 
mined following fracture healing (85). Administration of 
exogeneous endostatin decreased vascularity and hard 
callus formation, but soft callus formation was increased. 
These results underscore that more study is required to 
understand how the angiogenic pathways affect the 
entire fracture repair process. 

Unlike the acute trauma of a complete fracture, repe- 
titive loading of a bone can generate fatigue damage, 
eventually resulting in an incomplete, non-displaced 
fracture or stress fracture (86-87). In rodent models, stress 
fracture healing has been shown to recapitulate the 
intramembranous portion of fracture repair (88), with the 
hallmark of stress fracture healing being the rapid for- 
mation of a hard periosteal callus of woven bone with- 
out a cartilaginous template (89). As shown in Figure 3, 
significant periosteal angiogenesis is associated with 
healing (90-91), and angiogenic inhibition attenuates 
the healing response (92). By quantifying gold micro- 
spheres, an immediate increase in blood flow rate was 
observed following the generation of a stress fracture in 
rats (18), consistent with reports that inflammatory 
markers, including IL-1, IL-6, and NOS2, are upregulated 
as early as 1 hour after the injury (93-94). Using in vivo PET 
imaging, recent work has demonstrated that an elevated 
blood flow rate is maintained at the site of a stress 
fracture by a two-step process of NOS-mediated vaso- 
dilation followed by angiogenesis, similar to a complete 
fracture (95). 
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Figure 2 The vascular role in fracture. Blood flow rate was quantified using PET imaging after tibial fracture (58). A) In an uninjured limb, blood flow 
is highest in the muscle (M) near the tibia (T). B) In contrast, blood flow rate in and around the tibia (T) is markedly increased following fracture. This 
increase in blood flow rate is due in part to angiogenesis. Recent work has shown that these new blood vessels coinvade the cartilaginous template 
along with osteoblast precursors during endochondral fracture repair (71). C) In the periosteal fracture callus, Osx-expressing osteoprogenitors (green) are 
intimately associated with new vasculature (red) seven days after fracture. Pockets of avascular cartilage are labeled with a *. Figures used with 
permission (License Number: 3266071128303). 
 
Blood flow during distraction osteogenesis 
 
Distraction osteogenesis (DO) is a regenerative proce- 
dure used to induce mostly non-endochrondral bone 
formation in long bones. This technique can be used 
clinically for leg lengthening (96) as well as the correction 
of pseudoarthroses (97), but has also been implemented 
in animal models to study the controlled formation of 
bone (98). The large increases in vascularity, associated 
with significant increases in pro-angiogenic gene trans- 
cription, were hypothesized to play an important role in 
bone formation during distraction (99). Treatment with 
the anti-angiogenic agent TNP-470 (100) as well as with 
antibodies against VEGF receptors (101) confirmed this 
theory–inhibition of angiogenesis blocks bone formation 
in the distraction gap. This result is in contrast to other 
osteogenic programs that are only impaired by angio- 

genic inhibition, a phenomenon due in part to the fact 
that the distraction gap is functionally avascular, having 
no preexisting vascular network. As a result, angiogenic 
inhibition completely blocks the migration of the osteo- 
progenitors that initiate bone formation. Consistent with 
this hypothesis, mice with overexpression of HIF-1α in the 
osteoblastic lineage had markedly increased bone 
regeneration following distraction due to significantly 
increased angiogenesis in the distraction gap (83). 

While most research has been limited to the vascular 
network that is generated in the distraction gap follow- 
ing DO, recent work has shown that these vessels are 
part of a larger vascular network that extends from the 
muscles near the surgical site (102). In particular, arterio- 
genesis in the muscle compartment precedes angio- 
genesis that occurs in conjunction with bone formation. 
Importantly, the large vessels expressing smooth muscle 
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Figure 3 Rapid angiogenesis after bone injury. Damaging mechanical 
loading that culminates in an ulnar stress fracture is associated with 
significant angiogenesis to increase blood flow rate following injury (91). 
Microfil vascular perfusion was used to visualize periosteal vascularity 
in control (A) and fractured ulnae (B). Figures used with permission 
(License Number: 3260231064494). 
 
α-actin were shown to be responsible for the expression 
of BMP2 (103), suggesting that larger vessels generated 
by arteriogenesis play an important role in driving osteo- 
genesis in this model. 
 
Blood flow for maintenance of bone 
 
Osteoporosis is not a bone injury as much as a metabolic 
disorder. Accordingly, bone blood flow has been hypo- 
thesized to play a role in its progression. In one study 
from 1986 to 1988, 2 401 women aged 65 or older were 
recruited to determine if reduced blood flow to the 
lower extremities was a contributing factor to decreased 
bone mineral density (BMD). The results from this study 
provided initial evidence that increased bone loss, 
particularly at the hip, may be a result of decreased 
vascular support (104). Because of the clinical correlation 
between vascular calcification and osteoporosis, some 
authors have suggested that preventive control of vas- 

cular risk factors, in addition to standard therapy, would 
reduce the risk of osteoporotic fracture (105). In a recent 
study of 103 postmenopausal women, patients with 
osteoporosis were found to have increased arterial stiff- 
ness compared to patients with normal BMD (106). In 
addition, a trend for decreased spine BMD with increased 
carotid stiffness was observed. However, the relationship 
between the multifactorial disease states of osteoporosis 
and vascular dysfunction remains elusive, with recent 
evidence to suggest that osteoporosis may actually be 
a risk factor for cardiovascular disease (107). 

Similarly, chronic unloading of the skeleton results in 
significant decreases in bone mass (21, 108). Importantly, 
even a short period of skeletal unloading has been asso- 
ciated with significant decreases in bone blood flow 
(109). In a recent study, rats were subjected to 7 or 14 
days of hindlimb unloading, then blood flow and vas- 
cular resistance were quantified following reloading (35). 
Decreased blood flow and increased vascular resistan- 
ce were associated with unloading, suggesting that 
skeletal loading is required to maintain vascular function 
in bone. This response appears to have been mediated 
through arterial remodeling, a powerful and largely 
unexplored mechanism in bone (Figure 4). 

The response to hindlimb unloading is similar to what 
has been observed in streptozotocin-diabetic rats (110). 
In this scenario, bone blood flow is significantly decreased 
while bone turnover is almost totally suppressed. In con- 
trast, the significant increase in bone turnover in ovari- 
ectomized rodents has been associated with significant 
decreases in bone blood flow in a variety of studies using 
multiple techniques (111-114). However, this vascular 
effect has been shown to strongly depend on genetic 
background (56), potentially explaining controversial 
reports of increased bone blood flow following rodent 
ovariectomy by quantifying microspheres (115-116). 
Finally, other rodent models of rapidly induced osteo- 
penia, such as paraplegia (117) and orchidectomy 
(118), have increased bone blood flow in the face of 
rapid bone loss. Determining the relationship between 
bone blood flow and formation/resorption is highly de- 
sirable, but the signaling that regulates these mechani- 
sms is not well understood (1). Additional work on the 
interaction and regulation of the bone and vascular 
compartments, particularly during acute and chronic 
bone loss, is necessary. 
 
Blood flow in bone grafts 
 
Sufficient bone blood flow must be maintained for the 
successful repair of large skeletal defects using bone 
grafts (119-120). Since the late 1970s, vascularized fibular 
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Figure 4 Vascular remodeling after unloading. Following cannulation 
with micropipettes, the diameter of the primary nutrient artery was 
measured in A) control and B) 14 day hindlimb unloaded animals (35). 
These results demonstrate that blood flow is decreased following chronic 
skeletal unloading by vascular remodeling. Figures used with permi- 
ssion (License Number: 3260231186916). 
 
bone (VFB) grafts have been used to treat osteonecrosis 
of the femoral head (121). In this procedure, a portion of 
the fibula is removed intact with the attached vas- 
culature and inserted into a cavity created in the osteo- 
necrotic femoral head (122). In a recent review, VFB 
grafts were found to be superior to other grafting tech- 
niques, with better clinical outcomes and fewer patients 
that progress to total joint replacement (123). However, 
VFB grafts are generated from the patient’s own fibula, 
resulting in additional morbidity associated with the pro- 
cedure. As a result, current tissue engineering efforts focus 
on developing synthetic bone grafts with preformed, 
functional vascular networks (124-125). Before implanta- 
tion, mineral deposition in these grafts is spatially asso- 

ciated with the vascular network, consistent with the 
hypothesis that vascularized bone grafts improve subse- 
quent bone formation (126). Improvements in this impor- 
tant area of regenerative medicine will rely on previous 
research of bone blood flow, as researchers hunt for the 
right combination of scaffold, cell source, and growth 
factors. 
 
Clinical relevance 
 
Because bone blood flow affects bone regeneration 
following injury, patient populations with poor vascular 
function may have a slower recovery of fracture resis- 
tance than expected. This extra recovery time creates 
an additional risk of reinjury following skeletal damage. 
This issue is particularly problematic in cancer patients, 
since fracture risk is already elevated (127-128) and 
anti-angiogenic therapy is a widespread therapy for 
many cancers (129-130). Additionally, patients with dia- 
betes (131-132), COPD (133), and sickle cell disease (134) 
as well as smokers (135) have vascular dysfunction that 
has been associated with skeletal defects. As a result, 
the maintenance of adequate vascular function during 
recovery from skeletal injury should receive additional 
consideration in these patient groups. Finally, patients 
should be advised that a healthy cardiovascular system is 
crucial for the long-term prevention of osteoporosis. 
 
Conclusion 
 
Although the knowledge of vascular anatomy in the 
skeleton has greatly increased since the microscopists of 
the 16th and 17th centuries first revealed blood vessels in 
calcified tissue (2), the role that blood flow plays to 
regulate important physiological processes of bone 
regeneration and maintenance is still being discovered. 
In general, bone blood flow is robust and centripetal. 
Following a skeletal injury, blood flow is increased by 
angiogenesis. If metabolic demand is decreased, blood 
flow is decreased by vascular remodeling (Figure 5). 
However, the processes that disrupt and reverse bone 
blood flow have not been well characterized, particular- 
ly in regards to skeletal healing. The importance of an 
intact vascular network following injury is beginning to 
be realized, with experimental results demonstrating that 
inflammation-mediated vasodilation provides a critical 
source of additional blood flow before revascularization 
begins. Similarly, the contribution of muscle to bone blood 
flow during healing may be important, since the blood 
vessel network that vascularizes bone during regenera- 
tion has been observed to be an extension of the blood 
vessel network in adjacent muscle. The reports of blood 



Skeletal blood flow in bone repair and maintenance 
 

Bone Research | Vol 1 No 4 | November 2013 

318 

flow regulation in osteoporotic patients, disuse osteo- 
penia, and models of rapid bone loss underscore the 
idea that bone blood flow is rapidly and dynamically 
regulated. In summary, more study is required to under- 
stand the important role of bone blood flow as research- 
ers generate new therapies for skeletal regeneration and 

maintenance. 
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Figure 5 Vascular responses in bone. In this schematic, normal bone blood flow is represented on the left. In response to bone injury, such as a fracture, 
robust angiogenesis occurs to relieve oxygen tension and transport osteoprogenitor cells for repair. In contrast, bone disuse can result in decreased 
blood flow by vascular remodeling. 
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