Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transplant Toxicities

Transforming growth factor-β1 functional polymorphisms in myeloablative sibling hematopoietic stem cell transplantation

Abstract

Hematopoietic stem cell transplantation (HSCT) with sibling donors (s.d.) is a life-saving intervention for patients with hematological malignancies. Numerous genetic factors have a role in transplant outcome. Several functional polymorphisms have been identified in TGF-β1 gene, such as single-nucleotide polymorphism (SNP) at +29C>T within exon 1. Two hundred and forty five patient/donor pairs who underwent a s.d. HSCT in our centers were genotyped for this SNP. In the myeloablative cohort, +29CC donors were associated with an increase in severe chronic GvHD (32% vs 16%, hazard ratio (HR) 9.0, P=0.02). Regarding survival outcomes, +29CC patients developed higher non relapse mortality (NRM) (1–5 years CC 28–32% vs TC/TT 7–10%; HR 5.1, P=0.01). Recipients of +29TT donors experienced a higher relapse rate (1–5 years TT 37–51% vs TC 19–25% vs CC 13%–19%; HR 2.4, P=0.01) with a decreased overall survival (OS) (1–5 years TT 69–50% vs TC/CC 77–69%; HR 1.9, P=0.05). Similar to previous myeloablative unrelated donors HSCT results, we confirmed that +29CC patients had higher NRM. In addition we found that +29TT donors might be associated with a higher relapse rate and lower OS. These results should be confirmed in larger series. Identification of these SNPs will allow personalizing transplant conditioning and immunosuppressant regimens, as well as assisting in the choice of the most appropriate donor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gratwohl A . Risk assessment in haematopoietic stem cell transplantation. Best Pract Res Clin Haematol 2007; 20: 119–124.

    Article  Google Scholar 

  2. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Acute Lymphoblastic Leukemia, Acute Myeloid Leukemia, Myelodysplastic Syndromes. Fort Washington, PA, USA, 2015. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp.

  3. Aschan J . Risk assessment in haematopoietic stem cell transplantation: conditioning. Best Pract Res Clin Haematol 2007; 20: 295–310.

    Article  CAS  Google Scholar 

  4. Petersdorf EW . Risk assessment in haematopoietic stem cell transplantation: histocompatibility. Best Pract Res Clin Haematol 2007; 20: 155–170.

    Article  CAS  Google Scholar 

  5. Dickinson AM . Risk assessment in haematopoietic stem cell transplantation: pre-transplant patient and donor factors: non-HLA genetics. Best Pract Res Clin Haematol 2007; 20: 189–207.

    Article  CAS  Google Scholar 

  6. Rocha V, Franco R, Porcher R, Bittencourt H, Silva WA Jr, Latouche A et al. Host defense and inflammatory gene polymorphisms are associated with outcome after HLA-identical sibling bone marrow transplantation. Blood 2002; 100: 3908–3918.

    Article  CAS  Google Scholar 

  7. Chien J, Zhamg X, Fan W, Wang H, Zhao LP, Martin PJ et al. Evaluation of published single nucleotide polymorphism associated with acute GVHD. Blood 2012; 119: 5311–5319.

    Article  CAS  Google Scholar 

  8. Cavet J, Dickinson A, Norden J, Taylor P, Jackson G, Middleton P . Interferon-γ and interleukin-6 gene polymorphism associated with graft-versus-host disease in HLA-matched sibling bone marrow transplantation. Blood 2001; 98: 1594–1600.

    Article  CAS  Google Scholar 

  9. Blobe GC, Schiemann WP, Lodish HF . Role of transforming growth factor beta in human disease. N Engl J Med 2000; 342: 1350–1358.

    Article  CAS  Google Scholar 

  10. Anscher MS, Peters WP, Reisenbichler H, Petros WP, Jirtle RL . Transforming growth factor beta as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer. N Engl J Med 1993; 328: 1592–1598.

    Article  CAS  Google Scholar 

  11. Bommireddy R, Doetschman T . TGFbeta1 and Treg cells: alliance for tolerance. Trends Mol Med 2007; 13: 492–501.

    Article  CAS  Google Scholar 

  12. Li MO, Wan YY, Flavell RA . T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 2007; 26: 579–591.

    Article  CAS  Google Scholar 

  13. Li MO, Flavell RA . TGF-beta: a master of all T cell trades. Cell 2008; 134: 392–404.

    Article  CAS  Google Scholar 

  14. Zheng SG, Gray JD, Ohtsuka K, Yamagiwa S, Horwitz DA . Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J Immunol 2002; 169: 4183–4189.

    Article  CAS  Google Scholar 

  15. Letterio JJ . TGF-beta signaling in T cells: roles in lymphoid and epithelial neoplasia. Oncogene 2005; 24: 5701–5712.

    Article  CAS  Google Scholar 

  16. Nakamura K, Kitani A, Strober W . Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001; 194: 629–644.

    Article  CAS  Google Scholar 

  17. Savage ND, de Boer T, Walburg KV, Joosten SA, van Meijgaarden K, Geluk A et al. Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. J Immunol 2008; 181: 2220–2226.

    Article  CAS  Google Scholar 

  18. Perlman D, Halvorson HO . A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol 1983; 167: 391–409.

    Article  CAS  Google Scholar 

  19. Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK et al. Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature 1985; 316: 701–705.

    Article  CAS  Google Scholar 

  20. Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB . Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem 1983; 258: 7155–7160.

    CAS  PubMed  Google Scholar 

  21. Annes JP, Munger JS, Rifkin DB . Making sense of latent TGF beta activation. J Cell Sci 2003; 116 (Pt 2): 217–224.

    Article  CAS  Google Scholar 

  22. Suthanthiran M, Li B, Song J, Ding R, Sharma VK, Schwartz JE et al. Transforming growth factor-ß1 hyperexpression in African-American hypertensives: a novel mediator of hypertension and/or target organ damage. Proc Natl Acad Sci USA 2000; 97: 3479–3484.

    CAS  PubMed  Google Scholar 

  23. Awad MR, El-Gamel A, Hasleton P, Turner DM, Sinnott PJ, Hutchinson IV . Genotypic variation in the transforming growth factor-beta1 gene: association with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation 1998; 66: 1014–1020.

    Article  CAS  Google Scholar 

  24. Gewaltig J, Mangasser-Stephan K, Gartung C, Biesterfeld S, Gressner AM . Association of polymorphisms of the transforming growth factor-beta1 gene with the rate of progression of HCV-induced liver fibrosis. Clin Chim Acta 2002; 316: 83–94.

    Article  CAS  Google Scholar 

  25. Mak JC, Leung HC, Sham AS, Mok TY, Poon YN, Ling SO et al. Genetic polymorphisms and plasma levels of transforming growth factor-beta(1) in Chinese patients with tuberculosis in Hong Kong. Cytokine 2007; 40: 177–182.

    Article  CAS  Google Scholar 

  26. Ziv E, Cauley J, Morin PA, Saiz R, Browner WS . Association between the T29—>C polymorphism in the transforming growth factor beta1 gene and breast cancer among elderly white women: the Study of Osteoporotic Fractures. JAMA 2001; 285: 2859–2863.

    Article  CAS  Google Scholar 

  27. Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR et al. A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res 2003; 63: 2610–2615.

    CAS  PubMed  Google Scholar 

  28. Yamada Y, Miyauchi A, Goto J, Takagi Y, Okuizumi H, Kanematsu M et al. Association of a polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women. J Bone Miner Res 1998; 13: 1569–1576.

    Article  CAS  Google Scholar 

  29. Berndt SI, Huang WY, Chatterjee N, Yeager M, Welch R, Chanock SJ et al. Transforming growth factor beta 1 (TGFB1) gene polymorphisms and risk of advanced colorectal adenoma. Carcinogenesis 2007; 28: 1965–1970.

    Article  CAS  Google Scholar 

  30. Nikolova PN, Ivanova MI, Mihailova SM, Myhailova AP, Baltadjieva DN, Simeonov PL et al. Cytokine gene polymorphism in kidney transplantation—impact of TGF-beta 1, TNF-alpha and IL-6 on graft outcome. Transpl Immunol 2008; 18: 344–348.

    Article  CAS  Google Scholar 

  31. Berro M, Mayor N, Maldonado-Torres H, Cooke L, Kusminsky G, Marsh SG et al. Association of functional polymorphism of the transforming growth factor B1 gene with survival and graft-versus-host disease after unrelated donor hematopoietic stem cell transplantation. Haematologica 2010; 95: 276–283.

    Article  CAS  Google Scholar 

  32. Hattori H, Matsuzaki A, Suminoe A, Ihara K, Nagatoshi Y, Sakata N et al. Polymorphisms of transforming growth factor-beta1 and transforming growth factor-beta1 type II receptor genes are associated with acute graft-versus-host disease in children with HLA-matched sibling bone marrow transplantation. Bone Marrow Transplant 2002; 30: 665–671.

    Article  CAS  Google Scholar 

  33. Leffell MS, Vogelsang GB, Lucas DP, Delaney NL, Zachary AA . Association between TGF-beta expression and severe GVHD in allogeneic bone marrow transplantation. Transplant Proc 2001; 33: 485–486.

    Article  CAS  Google Scholar 

  34. Noori-Daloii M, Rashidi-Nezhad A, Izadi P, Hossein-Nezhad A, Sobhani M, Derakhshandeh-Peykar P et al. Transforming growth factor-ß1 codon 10 polymorphism is associated with acute GVHD after allogeneic BMT in Iranian population. Ann Transplant 2007; 12: 5–10.

    PubMed  Google Scholar 

  35. Perrey C, Turner SJ, Pravica V, Howell WM, Hutchinson IV . ARMS-PCR methodologies to determine IL-10, TNF-alpha, TNF-beta and TGF-beta 1 gene polymorphisms. Transpl Immunol 1999; 7: 127–128.

    Article  CAS  Google Scholar 

  36. Melenhorst JJ, Tian X, Xu D, Sandler NG, Scheinberg P, Biancotto A et al. Cytopenia and leukocyte recovery shape cytokine fluctuation after myeloablative allogeneic hematopoietic stem cell transplantation. Haematologica 2012; 97: 867–873.

    Article  CAS  Google Scholar 

  37. Chang L, Frame D, Braun T, Gatza E, Hanauer DA, Zhao S et al. Engraftment syndrome following allogeneic hematopoietic cell transplantation predicts poor outcomes. Biol Blood Marrow Transplant 2014; 20: 1407–1417.

    Article  Google Scholar 

  38. Robb R, Lineburg K, Kuns R, Wilson YA, Raffelt NC, Olver SD et al. Identification and expansion of highly suppressive CD8+FOXP3+ regulatory T cells after experimental allogeneic bone marrow transplantation. Blood 2012; 119: 5898–5908.

    Article  CAS  Google Scholar 

  39. Woolfrey A, Lee SJ, Gooley T, Malkki M, Martin PJ, Pagel JM et al. HLA-allele matched unrelated donors compared to HLA-matched sibling donors: role of cell source and disease risk category. Biol Blood Marrow Transplant 2010; 16: 1382–1387.

    Article  Google Scholar 

  40. Banovic T, MacDonald K, Morris E, Rowe V, Kuns R, Don A et al. TGF-ß in allogeneic stem cell transplantation: friend or foe. Blood 2005; 106: 2206–2214.

    Article  CAS  Google Scholar 

  41. Li Q, Zhai Z, Xu X, Shen Y, Zhang A, Sun Z et al. Decrease of CD4+CD25+ regulatory T cells and TGF-β at early immune reconstitution is associated to the onset and severity of graft-versus-host disease following allogeneic haematogenesis stem cell transplantation. Leuk Res 2010; 34: 1158–1168.

    Article  CAS  Google Scholar 

  42. Laguila Visenteiner J, Rocha Lieber S, Lopes Persoli L, Vigorito AC, Aranha FJ, de Brito Eid KA et al. Serum cytokine levels and acute graft-versus-host disease after HLA/identical hematopoietic stem cell transplantation. Exp Hematol 2003; 31: 1044–1050.

    Article  Google Scholar 

  43. Niu YY, Ma LM, Zhou Y, Ren R . Relationship between CD4(+)CD25(+) regulatory T cell, IL2, TGF-beta and acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010; 18: 735–739.

    CAS  PubMed  Google Scholar 

  44. Liem L, Fibbe W, van Houwelingen H, Goulmy E . Serum transforming growth factor-beta 1 levels in bone marrow transplant recipients correlate with blood cell counts and chronic graft-versus-host disease. Transplantation 1999; 67: 59–65.

    Article  CAS  Google Scholar 

  45. Kyrcz-Krzemien S, Helbig G, Zielinska P, Markiewicz M . The kinetics of mRNA transforming growth factor beta1 expression and its serum concentration in graft-versus-host disease after allogeneic hemopoietic stem cell transplantation for myeloid leukemias. Med Sci Monit 2011; 17: CR322–CR328.

    Article  CAS  Google Scholar 

  46. Ellison C, Lissitsyn Y, Gheorghiu L, Gartner J . Immunomodulatory effects of palifermin (recombinant human keratinocyte growth factor) in an SLE-like model of chronic graft-versus-host disease. Scand J Immunol 2012; 75: 69–76.

    Article  CAS  Google Scholar 

  47. Xiao H, Cao W, Lai X, Luo Y, Shi J, Tan Y et al. Immunosuppressive cytokine gene polymorphism and outcome after related and unrelated hematopoietic cell transplantation in Chinese population. Biol Blood Marrow Transplant 2011; 17: 542–549.

    Article  CAS  Google Scholar 

  48. Zhang L, Mao L, Xu J . Transforming growth factor-β1 polymorphisms and graft-versus-host disease risk: a meta-analysis. Oncotarget 2016; 7: 2455–2461.

    PubMed  Google Scholar 

  49. Arrieta-Bolaños E, Mayor N, Marsh SGE, Madrigal JA, Apperley JF, Kirkland K et al. Polymorphism in TGFB1 is associated with worse non-relapse mortality and overall survival after stem cell transplantation with unrelated donors. Haematologica 2016; 101: 382–390.

    Article  Google Scholar 

  50. Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 2005; 106: 2912–2919.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the transplant centers physicians who worked in the data collection. To Neema Mayor for her idea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Berro.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berro, M., Palau Nagore, M., Rivas, M. et al. Transforming growth factor-β1 functional polymorphisms in myeloablative sibling hematopoietic stem cell transplantation. Bone Marrow Transplant 52, 739–744 (2017). https://doi.org/10.1038/bmt.2016.355

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2016.355

This article is cited by

Search

Quick links