Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Inhibition of FLT3 in AML: a focus on sorafenib

Abstract

FMS-like tyrosine kinase 3 (FLT3) is one of the most commonly mutated genes in AML. FLT3 is mutated in ~30% of patients with AML, either by internal tandem duplications (FLT3-ITD) of the juxta-membrane domain or by a point mutation, usually involving the tyrosine kinase domain. Several FLT3 tyrosine kinase inhibitors are being evaluated in multiple studies aiming at improving outcomes. The most widely used is sorafenib, a potent multikinase inhibitor approved for hepatocellular carcinoma and renal cell carcinoma. Sorafenib monotherapy or in combination with conventional chemotherapy, has been evaluated in various settings in AML, including front-line, relapsed or refractory disease including post-allograft failures and, more recently, as post-transplant maintenance therapy. Encouraging data have emerged with several other agents like lestaurtinib, midostaurin, crenolanib, gilteritinib and quizartinib. Although transient responses to FLT3 inhibitors are often observed in case of disease relapse, the most promising approach is the use of FLT3 inhibitors either in combination with induction chemotherapy or as consolidation/maintenance therapy after allogeneic hematopoietic cell transplantation. In this review, we summarize the clinical data on sorafenib and other FLT3 inhibitors in AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gilliland DG, Griffin JD . The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    Article  CAS  PubMed  Google Scholar 

  2. Levis M, Small D . FLT3: ITDoes matter in leukemia. Leukemia 2003; 17: 1738–1752.

    Article  CAS  PubMed  Google Scholar 

  3. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  4. Frohling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 2002; 100: 4372–4380.

    Article  CAS  PubMed  Google Scholar 

  5. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  6. Rombouts WJ, Blokland I, Lowenberg B, Ploemacher RE . Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene. Leukemia 2000; 14: 675–683.

    Article  CAS  PubMed  Google Scholar 

  7. Bornhauser M, Illmer T, Schaich M, Soucek S, Ehninger G, Thiede C et al. Improved outcome after stem-cell transplantation in FLT3/ITD-positive AML. Blood 2007; 109: 2264–2265.

    Article  PubMed  Google Scholar 

  8. Brunet S, Labopin M, Esteve J, Cornelissen J, Socie G, Iori AP et al. Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: a retrospective analysis. J Clin Oncol 2012; 30: 735–741.

    Article  PubMed  Google Scholar 

  9. DeZern AE, Sung A, Kim S, Smith BD, Karp JE, Gore SD et al. Role of allogeneic transplantation for FLT3/ITD acute myeloid leukemia: outcomes from 133 consecutive newly diagnosed patients from a single institution. Biol Blood Marrow Transplant 2011; 17: 1404–1409.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schmid C, Labopin M, Socie G, Daguindau E, Volin L, Huynh A et al. Outcome of patients with distinct molecular genotypes and cytogenetically normal AML after allogeneic transplantation. Blood 2015; 126: 2062–2069.

    Article  CAS  PubMed  Google Scholar 

  11. Galanis A, Ma H, Rajkhowa T, Ramachandran A, Small D, Cortes J et al. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood 2014; 123: 94–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Man CH, Fung TK, Ho C, Han HH, Chow HC, Ma AC et al. Sorafenib treatment of FLT3-ITD(+) acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. Blood 2012; 119: 5133–5143.

    Article  CAS  PubMed  Google Scholar 

  13. Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY et al. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol 2010; 28: 1856–1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004; 103: 3669–3676.

    Article  CAS  PubMed  Google Scholar 

  15. Stone RM, De Angelo J, Galinsky I, Estey E, Klimek V, Grandin W et al. PKC 412 FLT3 inhibitor therapy in AML: results of a phase II trial. Ann Hematol 2004; 83: S89–S90.

    PubMed  Google Scholar 

  16. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 2009; 114: 2984–2992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cortes JE, Kantarjian H, Foran JM, Ghirdaladze D, Zodelava M, Borthakur G et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J Clin Oncol 2013; 31: 3681–3687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen YB, Li S, Lane AA, Connolly C, Del Rio C, Valles B et al. Phase I trial of maintenance sorafenib after allogeneic hematopoietic stem cell transplantation for fms-like tyrosine kinase 3 internal tandem duplication acute myeloid leukemia. Biol Blood Marrow Transplant 2014; 20: 2042–2048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Metzelder SK, Schroeder T, Finck A, Scholl S, Fey M, Gotze K et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia 2012; 26: 2353–2359.

    Article  CAS  PubMed  Google Scholar 

  20. Antar A, Kharfan-Dabaja MA, Mahfouz R, Bazarbachi A . Sorafenib maintenance appears safe and improves clinical outcomes in FLT3-ITD acute myeloid leukemia after allogeneic hematopoietic cell transplantation. Clin Lymphoma Myeloma Leuk 2015; 15: 298–302.

    Article  PubMed  Google Scholar 

  21. Brunner A, Li S, Fathi A, Ho VT, Stone RM, Soiffer RJ et al Hematopoietic Cell Transplantation with or without Sorafenib Maintenance for Patients with FLT3-ITD Acute Myeloid Leukemia in CR1 Blood 2015; 126: 864.

  22. Pratz KW, Sato T, Murphy KM, Stine A, Rajkhowa T, Levis M . FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood 2010; 115: 1425–1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002; 100: 4325–4336.

    Article  CAS  PubMed  Google Scholar 

  24. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  PubMed  Google Scholar 

  25. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010; 116: 354–365.

    Article  CAS  PubMed  Google Scholar 

  26. Pastore F, Dufour A, Benthaus T, Metzeler KH, Maharry KS, Schneider S et al. Combined molecular and clinical prognostic index for relapse and survival in cytogenetically normal acute myeloid leukemia. J Clin Oncol 2014; 32: 1586–1594.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mrozek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD . Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 2007; 109: 431–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  29. Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1909–1918.

    Article  CAS  PubMed  Google Scholar 

  30. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012; 366: 1079–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kayser S, Levis MJ . FLT3 tyrosine kinase inhibitors in acute myeloid leukemia: clinical implications and limitations. Leuk Lymphoma 2014; 55: 243–255.

    Article  CAS  PubMed  Google Scholar 

  32. Lyman SD, Jacobsen SE . c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 1998; 91: 1101–1134.

    CAS  PubMed  Google Scholar 

  33. Stirewalt DL, Radich JP . The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 2003; 3: 650–665.

    Article  CAS  PubMed  Google Scholar 

  34. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  35. Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 2004; 13: 169–178.

    Article  CAS  PubMed  Google Scholar 

  36. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080.

    CAS  PubMed  Google Scholar 

  37. Wagner K, Damm F, Thol F, Gohring G, Gorlich K, Heuser M et al. FLT3-internal tandem duplication and age are the major prognostic factors in patients with relapsed acute myeloid leukemia with normal karyotype. Haematologica 2011; 96: 681–686.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ravandi F, Kantarjian H, Faderl S, Garcia-Manero G, O'Brien S, Koller C et al. Outcome of patients with FLT3-mutated acute myeloid leukemia in first relapse. Leuk Res 2010; 34: 752–756.

    Article  CAS  PubMed  Google Scholar 

  39. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66.

    Article  CAS  PubMed  Google Scholar 

  40. Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001; 97: 89–94.

    Article  CAS  PubMed  Google Scholar 

  41. Gale RE, Hills R, Kottaridis PD, Srirangan S, Wheatley K, Burnett AK et al. No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): an analysis of 1135 patients, excluding acute promyelocytic leukemia, from the UK MRC AML10 and 12 trials. Blood 2005; 106: 3658–3665.

    Article  CAS  PubMed  Google Scholar 

  42. Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 2008; 111: 2776–2784.

    Article  CAS  PubMed  Google Scholar 

  43. Meshinchi S . Allelic ratio: a marker of clonal dominance. Blood 2014; 124: 3341–3342.

    Article  CAS  PubMed  Google Scholar 

  44. Shih LY, Huang CF, Wu JH, Lin TL, Dunn P, Wang PN et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 2002; 100: 2387–2392.

    Article  CAS  PubMed  Google Scholar 

  45. Kindler T, Lipka DB, Fischer T . FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 2010; 116: 5089–5102.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang W, Konopleva M, Ruvolo VR, McQueen T, Evans RL, Bornmann WG et al. Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia 2008; 22: 808–818.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao W, Zhang T, Qu B, Wu X, Zhu X, Meng F et al. Sorafenib induces apoptosis in HL60 cells by inhibiting Src kinase-mediated STAT3 phosphorylation. Anticancer Drugs 2011; 22: 79–88.

    Article  CAS  PubMed  Google Scholar 

  48. Uy GL, Mandrekar S, Laumann K, Sanford B, Marcucci G, Zhao W et alAddition of sorafenib to chemotherapy improves the overall survival of older adults with FLT3-ITD mutated acute myeloid leukemia (AML) (Alliance C11001). Blood 2015; 126.

  49. Rollig C, Serve H, Huttmann A, Noppeney R, Muller-Tidow C, Krug U et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol 2015; 16: 1691–1699.

    Article  PubMed  Google Scholar 

  50. Serve H, Krug U, Wagner R, Sauerland MC, Heinecke A, Brunnberg U et al. Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: results from a randomized, placebo-controlled trial. J Clin Oncol 2013; 31: 3110–3118.

    Article  CAS  PubMed  Google Scholar 

  51. Rollig C, Thiede C, Gramatzki M, Aulitzky W, Bodenstein H, Bornhauser M et al. A novel prognostic model in elderly patients with acute myeloid leukemia: results of 909 patients entered into the prospective AML96 trial. Blood 2010; 116: 971–978.

    Article  PubMed  Google Scholar 

  52. Leith CP, Kopecky KJ, Chen IM, Eijdems L, Slovak ML, McConnell TS et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood 1999; 94: 1086–1099.

    CAS  PubMed  Google Scholar 

  53. Thol F, Damm F, Ludeking A, Winschel C, Wagner K, Morgan M et al. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol 2011; 29: 2889–2896.

    Article  CAS  PubMed  Google Scholar 

  54. Ravandi F, Arana Yi C, Cortes JE, Levis M, Faderl S, Garcia-Manero G et al. Final report of phase II study of sorafenib, cytarabine and idarubicin for initial therapy in younger patients with acute myeloid leukemia. Leukemia 2014; 28: 1543–1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Metzelder S, Wang Y, Wollmer E, Wanzel M, Teichler S, Chaturvedi A et al. Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood 2009; 113: 6567–6571.

    Article  CAS  PubMed  Google Scholar 

  56. Metzelder SK, Wollmer E, Neubauer A, Burchert A . [Sorafenib in relapsed and refractory FLT3-ITD positive acute myeloid leukemia: a novel treatment option]. Deutsche medizinische Wochenschrift 2010; 135: 1852–1856.

    Article  CAS  PubMed  Google Scholar 

  57. Safaian NN, Czibere A, Bruns I, Fenk R, Reinecke P, Dienst A et al. Sorafenib (Nexavar) induces molecular remission and regression of extramedullary disease in a patient with FLT3-ITD+ acute myeloid leukemia. Leuk Res 2009; 33: 348–350.

    Article  CAS  PubMed  Google Scholar 

  58. Lee SH, Paietta E, Racevskis J, Wiernik PH . Complete resolution of leukemia cutis with sorafenib in an acute myeloid leukemia patient with FLT3-ITD mutation. Am J Hematol 2009; 84: 701–702.

    Article  PubMed  Google Scholar 

  59. Schroeder T, Zohren F, Saure C, Bruns I, Czibere A, Safaian NN et al. Sorafenib treatment in 13 patients with acute myeloid leukemia and activating FLT3 mutations in combination with chemotherapy or as monotherapy. Acta Haematol 2010; 124: 153–159.

    Article  PubMed  Google Scholar 

  60. Mori M, Sprague J . The successful remission induction by sorafenib and long-term complete remission in a FLT3-ITD-positive patient with a refractory acute erythroid leukemia and abnormal cytogenetics. Leuk Res 2012; 36: e1–e3.

    Article  PubMed  Google Scholar 

  61. Mohan BP, How GF, Loh Y, Linn YC . Sorafenib monotherapy gives sustainable suppression of FLT3 clone in untreated patients with FLT3-internal tandem duplication positive acute myeloid Leukaemia. Br J Haematol 2012; 157: 131–132.

    Article  CAS  PubMed  Google Scholar 

  62. Borthakur G, Kantarjian H, Ravandi F, Zhang W, Konopleva M, Wright JJ et al. Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica 2011; 96: 62–68.

    Article  CAS  PubMed  Google Scholar 

  63. Sharma M, Ravandi F, Bayraktar UD, Chiattone A, Bashir Q, Giralt S et al. Treatment of FLT3-ITD-positive acute myeloid leukemia relapsing after allogeneic stem cell transplantation with sorafenib. Biol Blood Marrow Transplant 2011; 17: 1874–1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tarlock K, Chang B, Cooper T, Gross T, Gupta S, Neudorf S et al. Sorafenib treatment following hematopoietic stem cell transplant in pediatric FLT3/ITD acute myeloid leukemia. Pediatr Blood Cancer 2015; 62: 1048–1054.

    Article  CAS  PubMed  Google Scholar 

  65. De Freitas T, Marktel S, Piemontese S, Carrabba MG, Tresoldi C, Messina C et al. High rate of hematological responses to sorafenib in FLT3-ITD acute myeloid leukemia relapsed after allogeneic hematopoietic stem cell transplantation. Eur J Haematol 2016; 96: 629–636.

    Article  CAS  PubMed  Google Scholar 

  66. Tschan-Plessl A, Halter JP, Heim D, Medinger M, Passweg JR, Gerull S . Synergistic effect of sorafenib and cGvHD in patients with high-risk FLT3-ITD+AML allows long-term disease control after allogeneic transplantation. Ann Hematol 2015; 94: 1899–1905.

    Article  CAS  PubMed  Google Scholar 

  67. Ravandi F, Alattar ML, Grunwald MR, Rudek MA, Rajkhowa T, Richie MA et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood 2013; 121: 4655–4662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Muppidi MR, Portwood S, Griffiths EA, Thompson JE, Ford LA, Freyer CW et al. Decitabine and sorafenib therapy in FLT-3 ITD-mutant acute myeloid leukemia. Clin Lymphoma Myeloma Leuk 2015; 15: S73–S79.

    Article  PubMed  Google Scholar 

  69. El Cheikh J, Otrock ZK, Qannus AA, Kharfan-Dabaja MA, Bazarbachi A . Risk-adapted approach to hla-matched sibling hematopoietic cell allografting: impact of adjusting conditioning intensity and integrating post-transplant therapeutic interventions. Clin Lymphoma Myeloma Leuk 2016; 16: 304–310.

    Article  PubMed  Google Scholar 

  70. Hess G, Bunjes D, Siegert W, Schwerdtfeger R, Ledderose G, Wassmann B et al. Sustained complete molecular remissions after treatment with imatinib-mesylate in patients with failure after allogeneic stem cell transplantation for chronic myelogenous leukemia: results of a prospective phase II open-label multicenter study. J Clin Oncol 2005; 23: 7583–7593.

    CAS  PubMed  Google Scholar 

  71. Pfeifer H, Wassmann B, Bethge W, Dengler J, Bornhauser M, Stadler M et al. Randomized comparison of prophylactic and minimal residual disease-triggered imatinib after allogeneic stem cell transplantation for BCR-ABL1-positive acute lymphoblastic leukemia. Leukemia 2013; 27: 1254–1262.

    Article  CAS  PubMed  Google Scholar 

  72. Sato T, Yang X, Knapper S, White P, Smith BD, Galkin S et al. FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo. Blood 2011; 117: 3286–3293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pratz KW, Ivana G, Karp JE, Luznik L, Smith BD, Jones RJ et alProspective study of peri-transplant use of sorafenib as remission maintenance for FLT3-ITD patients undergoing allogeneic transplantation. Blood 2015; 126: 3164.

  74. Fischer T, Stone RM, Deangelo DJ, Galinsky I, Estey E, Lanza C et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol 2010; 28: 4339–4345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stone RM, Mandrekar S, Sanford BL, Geyer S, Bloomfield CD, Dohner K et alThe multi-kinase inhibitor midostaurin (M) prolongs survival compared with placebo (P) in combination with daunorubicin (D)/cytarabine (C) induction (ind), high-dose C consolidation (consol), and as maintenance (maint) therapy in newly diagnosed acute myeloid leukemia (AML) patients (pts) age 18-60 with FLT3 mutations (muts): an international prospective randomized (rand) P-controlled double-blind trial (CALGB 10603/RATIFY [Alliance]). Blood 2015; 126: 6.

  76. Levis MJ, Perl AE, Dombret H, Döhner H, Steffen B, Rousselot P et al Final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients with FLT3-ITD positive or negative relapsed/refractory acute myeloid leukemia after second-line chemotherapy or hematopoietic stem cell transplantation final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients with FLT3-ITD positive or negative relapsed/refractory acute myeloid leukemia after second-line chemotherapy or hematopoietic stem cell transplantation. Blood 2012; 120: 673.

  77. Knapper S, Burnett AK, Littlewood T, Kell WJ, Agrawal S, Chopra R et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 2006; 108: 3262–3270.

    Article  CAS  PubMed  Google Scholar 

  78. Levis M, Ravandi F, Wang ES, Baer MR, Perl A, Coutre S et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 2011; 117: 3294–3301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Randhawa JK, Kantarjian HM, Borthakur G, Thompson P, Konopleva M, Daver N et al Results of a phase II study of crenolanib in relapsed/refractory acute myeloid leukemia patients (Pts) with activating FLT3 mutations results of a phase II study of crenolanib in relapsed/refractory acute myeloid leukemia patients (Pts) with activating FLT3 mutations. Blood 2014; 124: 389.

  80. Levis M, Ravandi F, Altman JK, Cortes JE, Ritchie EK, Larson RA et al Results of a first-in-human, phase I/II trial of ASP2215, a selective, potent inhibitor of FLT3/Axl in patients with relapsed or refractory (R/R) acute myeloid leukemia (AML). J Clin Oncol 2015; 33 7003.

    Google Scholar 

  81. Gotlib J . Tyrosine kinase inhibitors and therapeutic antibodies in advanced eosinophilic disorders and systemic mastocytosis. Curr Hematol Malig Rep 2015; 10: 351–361.

    Article  PubMed  Google Scholar 

  82. Hexner EO, Serdikoff C, Jan M, Swider CR, Robinson C, Yang S et al. Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood 2008; 111: 5663–5671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Al-Jamal HA, Mat Jusoh SA, Hassan R, Johan MF . Enhancing SHP-1 expression with 5-azacytidine may inhibit STAT3 activation and confer sensitivity in lestaurtinib (CEP-701)-resistant FLT3-ITD positive acute myeloid leukemia. BMC Cancer 2015; 15: 869.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Bazarbachi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author Contributions

All authors participated in writing the paper, and they reviewed and approved the final manuscript. AB suggested the idea of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antar, A., Otrock, Z., El-Cheikh, J. et al. Inhibition of FLT3 in AML: a focus on sorafenib. Bone Marrow Transplant 52, 344–351 (2017). https://doi.org/10.1038/bmt.2016.251

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2016.251

This article is cited by

Search

Quick links