Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Plasma Cell Disorders

Efficacy of host-dendritic cell vaccinations with or without minor histocompatibility antigen loading, combined with donor lymphocyte infusion in multiple myeloma patients

Abstract

Donor lymphocyte infusions (DLI) can induce durable remissions in multiple myeloma (MM) patients, but this occurs rather infrequently. As the graft-versus-tumor (GvT) effect of DLI depends on the presence of host-dendritic cells (DCs), we tested in a phase I/II trial whether the efficacy of DLI could be improved by simultaneous vaccination with host-DCs. We also analyzed the possibility of further improving the GvT effect by loading the DCs with peptides of mismatched hematopoietic cell-specific minor histocompatibility antigens (mHags). Fifteen MM patients not responding to a first DLI were included. Eleven patients could be treated with a second equivalent dose DLI combined with DC vaccinations, generated from host monocytes (moDC). For four patients, the DC products did not meet the quality criteria. In four of the treated patients the DCs were loaded with host mHag peptides. Toxicity was limited and no acute GvHD occurred. Most patients developed objective anti-host T-cell responses and in one patient a distinct mHag-specific T-cell response accompanied a temporary clinical response. These findings confirm that DLI combined with host-DC vaccination, either unloaded or loaded with mHag peptides, is feasible, safe and capable of inducing host-specific T-cell responses. The limited clinical effects may be improved by developing more immunogenic DC products or by combining this therapy with immune potentiating modalities like checkpoint inhibitors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Palumbo A, Anderson K . Multiple myeloma. N Engl J Med 2011; 364: 1046–1060.

    Article  CAS  PubMed  Google Scholar 

  2. Verdonck LF, Lokhorst HM, Dekker AW, Nieuwenhuis HK, Petersen EJ . Graft-versus-myeloma effect in two cases. Lancet 1996; 347: 800–801.

    Article  CAS  PubMed  Google Scholar 

  3. Huff CA, Fuchs EJ, Noga SJ, O'Donnell PV, Ambinder RF, Diehl L et al. Long-term follow-up of T cell-depleted allogeneic bone marrow transplantation in refractory multiple myeloma: importance of allogeneic T cells. Biol Blood Marrow Transplant 2003; 9: 312–319.

    Article  PubMed  Google Scholar 

  4. Bruno B, Rotta M, Patriarca F, Mordini N, Allione B, Carnevale-Schianca F et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med 2007; 356: 1110–1120.

    Article  CAS  PubMed  Google Scholar 

  5. Goulmy E . Minor histocompatibility antigens: allo target molecules for tumor-specific immunotherapy. Cancer J 2004; 10: 1–7.

    Article  CAS  PubMed  Google Scholar 

  6. Hambach L, Vermeij M, Buser A, Aghai Z, van der Kwast T, Goulmy E . Targeting a single mismatched minor histocompatibility antigen with tumor-restricted expression eradicates human solid tumors. Blood 2008; 112: 1844–1852.

    Article  CAS  PubMed  Google Scholar 

  7. Marijt WA, Heemskerk MH, Kloosterboer FM, Goulmy E, Kester MG, van der Hoorn MA et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA 2003; 100: 2742–2747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spaapen RM, Groen RW, van den Oudenalder K, Guichelaar T, van Elk M, Aarts-Riemens T et al. Eradication of medullary multiple myeloma by CD4+ cytotoxic human T lymphocytes directed at a single minor histocompatibility antigen. Clin Cancer Res 2010; 16: 5481–5488.

    Article  CAS  PubMed  Google Scholar 

  9. Spaapen R, Mutis T . Targeting haematopoietic-specific minor histocompatibility antigens to distinguish graft-versus-tumour effects from graft-versus-host disease. Best Pract Res Clin Haematol 2008; 21: 543–557.

    Article  CAS  PubMed  Google Scholar 

  10. de Bueger M, Bakker A, Van Rood JJ, Van der Woude F, Goulmy E . Tissue distribution of human minor histocompatibility antigens. Ubiquitous versus restricted tissue distribution indicates heterogeneity among human cytotoxic T lymphocyte-defined non-MHC antigens. J Immunol 1992; 149: 1788–1794.

    CAS  PubMed  Google Scholar 

  11. McSweeney PA, Niederwieser D, Shizuru JA, Sandmaier BM, Molina AJ, Maloney DG et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 2001; 97: 3390–3400.

    Article  CAS  PubMed  Google Scholar 

  12. Lokhorst HM, Wu K, Verdonck LF, Laterveer LL, van de Donk NW, van Oers MH et al. The occurrence of graft-versus-host disease is the major predictive factor for response to donor lymphocyte infusions in multiple myeloma. Blood 2004; 103: 4362–4364.

    Article  CAS  PubMed  Google Scholar 

  13. El-Jurdi N, Reljic T, Kumar A, Pidala J, Bazarbachi A, Djulbegovic B et al. Efficacy of adoptive immunotherapy with donor lymphocyte infusion in relapsed lymphoid malignancies. Immunotherapy 2013; 5: 457–466.

    Article  CAS  PubMed  Google Scholar 

  14. Lokhorst HM, van der Holt B, Cornelissen JJ, Kersten MJ, van Oers M, Raymakers R et al. Donor versus no-donor comparison of newly diagnosed myeloma patients included in the HOVON-50 multiple myeloma study. Blood 2012; 119: 6219–6225.

    Article  CAS  PubMed  Google Scholar 

  15. Kharfan-Dabaja MA, Hamadani M, Reljic T, Nishihori T, Bensinger W, Djulbegovic B et al. Comparative efficacy of tandem autologous versus autologous followed by allogeneic hematopoietic cell transplantation in patients with newly diagnosed multiple myeloma: a systematic review and meta-analysis of randomized controlled trials. J Hematol Oncol 2013; 6: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xia G, Truitt RL, Johnson BD . Graft-versus-leukemia and graft-versus-host reactions after donor lymphocyte infusion are initiated by host-type antigen-presenting cells and regulated by regulatory T cells in early and long-term chimeras. Biol Blood Marrow Transplant 2006; 12: 397–407.

    Article  CAS  PubMed  Google Scholar 

  17. Mapara MY, Kim YM, Wang SP, Bronson R, Sachs DH, Sykes M . Donor lymphocyte infusions mediate superior graft-versus-leukemia effects in mixed compared to fully allogeneic chimeras: a critical role for host antigen-presenting cells. Blood 2002; 100: 1903–1909.

    Article  CAS  PubMed  Google Scholar 

  18. Sykes M, Sheard MA, Sachs DH . Graft-versus-host-related immunosuppression is induced in mixed chimeras by alloresponses against either host or donor lymphohematopoietic cells. J Exp Med 1988; 168: 2391–2396.

    Article  CAS  PubMed  Google Scholar 

  19. Shlomchik WD, Couzens MS, Tang CB, McNiff J, Robert ME, Liu J et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999; 285: 412–415.

    Article  CAS  PubMed  Google Scholar 

  20. Duffner UA, Maeda Y, Cooke KR, Reddy P, Ordemann R, Liu C et al. Host dendritic cells alone are sufficient to initiate acute graft-versus-host disease. J Immunol 2004; 172: 7393–7398.

    Article  CAS  PubMed  Google Scholar 

  21. Anderson BE, McNiff JM, Jain D, Blazar BR, Shlomchik WD, Shlomchik MJ . Distinct roles for donor- and host-derived antigen-presenting cells and costimulatory molecules in murine chronic graft-versus-host disease: requirements depend on target organ. Blood 2005; 105: 2227–2234.

    Article  CAS  PubMed  Google Scholar 

  22. Bethge WA, Hegenbart U, Stuart MJ, Storer BE, Maris MB, Flowers ME et al. Adoptive immunotherapy with donor lymphocyte infusions after allogeneic hematopoietic cell transplantation following nonmyeloablative conditioning. Blood 2004; 103: 790–795.

    Article  CAS  PubMed  Google Scholar 

  23. Auffermann-Gretzinger S, Lossos IS, Vayntrub TA, Leong W, Grumet FC, Blume KG et al. Rapid establishment of dendritic cell chimerism in allogeneic hematopoietic cell transplant recipients. Blood 2002; 99: 1442–1448.

    Article  CAS  PubMed  Google Scholar 

  24. Levenga H, Woestenenk R, Schattenberg AV, Maas F, Jansen JH, Raymakers R et al. Dynamics in chimerism of T cells and dendritic cells in relapsed CML patients and the influence on the induction of alloreactivity following donor lymphocyte infusion. Bone Marrow Transplant 2007; 40: 585–592.

    Article  CAS  PubMed  Google Scholar 

  25. Reichardt VL, Okada CY, Liso A, Benike CJ, Stockerl-Goldstein KE, Engleman EG et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood 1999; 93: 2411–2419.

    CAS  PubMed  Google Scholar 

  26. Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S, Benike CJ, Reichardt V, van Beckhoven A et al. Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 2000; 6: 621–627.

    Article  CAS  PubMed  Google Scholar 

  27. Titzer S, Christensen O, Manzke O, Tesch H, Wolf J, Emmerich B et al. Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: immunological and clinical aspects. Br J Haematol 2000; 108: 805–816.

    Article  CAS  PubMed  Google Scholar 

  28. Rollig C, Schmidt C, Bornhauser M, Ehninger G, Schmitz M, Auffermann-Gretzinger S . Induction of cellular immune responses in patients with stage-I multiple myeloma after vaccination with autologous idiotype-pulsed dendritic cells. J Immunother 2011; 34: 100–106.

    Article  PubMed  Google Scholar 

  29. Curti A, Tosi P, Comoli P, Terragna C, Ferri E, Cellini C et al. Phase I/II clinical trial of sequential subcutaneous and intravenous delivery of dendritic cell vaccination for refractory multiple myeloma using patient-specific tumour idiotype protein or idiotype (VDJ)-derived class I-restricted peptides. Br J Haematol 2007; 139: 415–424.

    Article  CAS  PubMed  Google Scholar 

  30. Yi Q, Szmania S, Freeman J, Qian J, Rosen NA, Viswamitra S et al. Optimizing dendritic cell-based immunotherapy in multiple myeloma: intranodal injections of idiotype-pulsed CD40 ligand-matured vaccines led to induction of type-1 and cytotoxic T-cell immune responses in patients. Br J Haematol 2010; 150: 554–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hong S, Li H, Qian J, Yang J, Lu Y, Yi Q . Optimizing dendritic cell vaccine for immunotherapy in multiple myeloma: tumour lysates are more potent tumour antigens than idiotype protein to promote anti-tumour immunity. Clin Exp Immunol 2012; 170: 167–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD et al. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother 2011; 34: 409–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oostvogels R, Minnema MC, van Elk M, Spaapen RM, te Raa GD, Giovannone B et al. Towards effective and safe immunotherapy after allogeneic stem cell transplantation: identification of hematopoietic-specific minor histocompatibility antigen UTA2-1. Leukemia 2013; 27: 642–649.

    Article  CAS  PubMed  Google Scholar 

  34. Spierings E . Molecular typing methods for minor histocompatibility antigens. Methods Mol Biol 2014; 1109: 115–138.

    Article  CAS  PubMed  Google Scholar 

  35. Rowlings PA, Przepiorka D, Klein JP, Gale RP, Passweg JR, Henslee-Downey PJ et al. IBMTR Severity Index for grading acute graft-versus-host disease: retrospective comparison with Glucksberg grade. Br J Haematol 1997; 97: 855–864.

    Article  CAS  PubMed  Google Scholar 

  36. Durie BG, Harousseau JL, Miguel JS, Blade J, Barlogie B, Anderson K et al. International uniform response criteria for multiple myeloma. Leukemia 2006; 20: 1467–1473.

    Article  CAS  PubMed  Google Scholar 

  37. Kyle RA, Rajkumar SV . Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia 2009; 23: 3–9.

    Article  CAS  PubMed  Google Scholar 

  38. Lioznov M, Badbaran A, Fehse B, Bacher U, Zander AR, Kroger NM . Monitoring of minimal residual disease in multiple myeloma after allo-SCT: flow cytometry vs PCR-based techniques. Bone Marrow Transplant 2008; 41: 913–916.

    Article  CAS  PubMed  Google Scholar 

  39. de Vries IJ, Lesterhuis WJ, Scharenborg NM, Engelen LP, Ruiter DJ, Gerritsen MJ et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 2003; 9: 5091–5100.

    CAS  PubMed  Google Scholar 

  40. Broen K, Greupink-Draaisma A, Fredrix H, Schaap N, Dolstra H . Induction of multiple myeloma-reactive T cells during post-transplantation immunotherapy with donor lymphocytes and recipient DCs. Bone Marrow Transplant 2012; 47: 1229–1234.

    Article  CAS  PubMed  Google Scholar 

  41. Levenga H, Schaap N, Maas F, Esendam B, Fredrix H, Greupink-Draaisma A et al. Partial T cell-depleted allogeneic stem cell transplantation following reduced-intensity conditioning creates a platform for immunotherapy with donor lymphocyte infusion and recipient dendritic cell vaccination in multiple myeloma. Biol Blood Marrow Transplant 2010; 16: 320–332.

    Article  CAS  PubMed  Google Scholar 

  42. Nguyen-Pham TN, Lee YK, Kim HJ, Lee JJ . Immunotherapy using dendritic cells against multiple myeloma: how to improve? Clin Dev Immunol 2012; 2012: 397648.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fujii S, Shimizu K, Fujimoto K, Kiyokawa T, Tsukamoto A, Sanada I et al. Treatment of post-transplanted, relapsed patients with hematological malignancies by infusion of HLA-matched, allogeneic-dendritic cells (DCs) pulsed with irradiated tumor cells and primed T cells. Leuk Lymphoma 2001; 42: 357–369.

    Article  CAS  PubMed  Google Scholar 

  44. Bendandi M, Rodriguez-Calvillo M, Inoges S, Lopez-Diaz de Cerio A, Perez-Simon JA, Rodriguez-Caballero A et al. Combined vaccination with idiotype-pulsed allogeneic dendritic cells and soluble protein idiotype for multiple myeloma patients relapsing after reduced-intensity conditioning allogeneic stem cell transplantation. Leuk Lymphoma 2006; 47: 29–37.

    Article  CAS  PubMed  Google Scholar 

  45. Kitawaki T, Kadowaki N, Kondo T, Ishikawa T, Ichinohe T, Teramukai S et al. Potential of dendritic-cell immunotherapy for relapse after allogeneic hematopoietic stem cell transplantation, shown by WT1 peptide- and keyhole-limpet-hemocyanin-pulsed, donor-derived dendritic-cell vaccine for acute myeloid leukemia. Am J Hematol 2008; 83: 315–317.

    Article  CAS  PubMed  Google Scholar 

  46. Ho VT, Kim HT, Kao G, Cutler C, Levine J, Rosenblatt J et al. Sequential infusion of donor-derived dendritic cells with donor lymphocyte infusion for relapsed hematologic cancers after allogeneic hematopoietic stem cell transplantation. Am J Hematol 2014; 89: 1092–1096.

    Article  CAS  PubMed  Google Scholar 

  47. Mutis T, Brand R, Gallardo D, van Biezen A, Niederwieser D, Goulmy E . Graft-versus-host driven graft-versus-leukemia effect of minor histocompatibility antigen HA-1 in chronic myeloid leukemia patients. Leukemia 2010; 24: 1388–1392.

    Article  CAS  PubMed  Google Scholar 

  48. Wimmers F, Schreibelt G, Skold AE, Figdor CG, De Vries IJ . Paradigm shift in dendritic cell-based immunotherapy: from in vitro generated monocyte-derived DCs to naturally circulating DC subsets. Front Immunol 2014; 5: 165.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Palucka K, Banchereau J . Human dendritic cell subsets in vaccination. Curr Opin Immunol 2013; 25: 396–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang S, Hong S, Yang J, Qian J, Zhang X, Shpall E et al. Optimizing immunotherapy in multiple myeloma: Restoring the function of patients' monocyte-derived dendritic cells by inhibiting p38 or activating MEK/ERK MAPK and neutralizing interleukin-6 in progenitor cells. Blood 2006; 108: 4071–4077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang S, Yang J, Qian J, Wezeman M, Kwak LW, Yi Q . Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood 2006; 107: 2432–2439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nefedova Y, Nagaraj S, Rosenbauer A, Muro-Cacho C, Sebti SM, Gabrilovich DI . Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res 2005; 65: 9525–9535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Holtl L, Ramoner R, Zelle-Rieser C, Gander H, Putz T, Papesh C et al. Allogeneic dendritic cell vaccination against metastatic renal cell carcinoma with or without cyclophosphamide. Cancer Immunol Immunother 2005; 54: 663–670.

    Article  PubMed  Google Scholar 

  54. Hobo W, Novobrantseva TI, Fredrix H, Wong J, Milstein S, Epstein-Barash H et al. Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation. Cancer Immunol Immunother 2013; 62: 285–297.

    Article  CAS  PubMed  Google Scholar 

  55. Oostvogels R, Lokhorst HM, Mutis T . Minor histocompatibility Ags: identification strategies, clinical results and translational perspectives. Bone Marrow Transplant 2016; 51: 163–171.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr R Raijmakers and Dr H Dolstra for stimulating discussions and sharing data concerning the rapid replacement of host APCs in MM patients after allo-SCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Mutis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Bone Marrow Transplantation website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oostvogels, R., Kneppers, E., Minnema, M. et al. Efficacy of host-dendritic cell vaccinations with or without minor histocompatibility antigen loading, combined with donor lymphocyte infusion in multiple myeloma patients. Bone Marrow Transplant 52, 228–237 (2017). https://doi.org/10.1038/bmt.2016.250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2016.250

This article is cited by

Search

Quick links