Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transplant Toxicities

Thrombomodulin blocks calcineurin inhibitor-induced vascular permeability via inhibition of Src/VE-cadherin axis

Abstract

Recombinant human soluble thrombomodulin (rTM) counteracted capillary leakage and alleviated edema in individuals with sinusoidal obstruction syndrome and engraftment syndrome after hematopoietic stem cell transplantation. We previously showed that rTM increased levels of antiapoptotic protein Mcl-1 and protected endothelial cells from calcineurin inhibitor cyclosporine A (CsA)-induced apoptosis. However, the molecular mechanisms by which rTM enhances barrier function in vascular endothelial cells remain unknown. Here we show that exposure of vascular endothelial EA.hy926 cells to CsA induced phosphorylation of Src/vascular endothelial cadherin (VE-cadherin) and translocation of VE-cadherin from cell surface to cytoplasm, resulting in an increase in vascular permeability. In addition, CsA increased production of inflammatory cytokines, including interleukin (IL)-1β and IL-6, associated with an increase in nuclear levels of nuclear factor-κB (NF-κB) which also enhanced vascular permeability. Importantly, the fourth and fifth regions of epidermal growth factor-like domain of TM (TME45) attenuated CsA-induced p-Src/VE-cadherin and vascular permeability in parallel with a decrease in nuclear levels of NF-κB and cytokine production in EA.hy926 cells. In conclusion, TM, especially TME45, maintains vascular integrity, at least in part, via Src signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dejana E, Orsenigo F, Lampugnani MG . The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 2008; 121: 2115–2122.

    Article  CAS  PubMed  Google Scholar 

  2. Orsenigo F, Giampietro C, Ferrari A, Corada M, Galaup A, Sigismund S et al. Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat Commun 2012; 3: 1208.

    Article  PubMed  Google Scholar 

  3. Hayden MS, Ghosh S . Shared principles in NF-kappaB signaling. Cell 2008; 132: 344–362.

    Article  CAS  PubMed  Google Scholar 

  4. Vallabhapurapu S, Karin M . Regulation and function of NFkappaB transcription factors in the immune system. Annu Rev Immunol 2009; 27: 693–733.

    Article  CAS  PubMed  Google Scholar 

  5. Takahata M, Hashino S, Izumiyama K, Chiba K, Suzuki S, Asaka M . Cyclosporin A-induced encephalopathy after allogeneic bone marrow transplantation with prevention of graft-versus-host disease by tacrolimus. Bone Marrow Transplant 2001; 28: 713–715.

    Article  CAS  PubMed  Google Scholar 

  6. Sarkodee-Adoo C, Sotirescu D, Sensenbrenner L, Rapoport AP, Cottler-Fox M, Tricot G et al. Thrombotic microangiopathy in blood and marrow transplant patients receiving tacrolimus or cyclosporine A. Transfusion 2003; 43: 78–84.

    Article  CAS  PubMed  Google Scholar 

  7. Minn AY, Fisher PG, Barnes PD, Dahl GV . A syndrome of irreversible leukoencephalopathy following pediatric allogeneic bone marrow transplantation. Pediatr Blood Cancer 2007; 48: 213–217.

    Article  PubMed  Google Scholar 

  8. Furlong T, Storb R, Anasetti C, Appelbaum FR, Deeg HJ, Doney K et al. Clinical outcome after conversion to FK 506 (tacrolimus) therapy for acute graft-versus-host disease resistant to cyclosporine or for cyclosporine-associated toxicities. Bone Marrow Transplant 2000; 26: 985–991.

    Article  CAS  PubMed  Google Scholar 

  9. Ikezoe T . Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation. J Intensive Care 2015; 3: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Suzuki K, Kusumoto H, Deyashiki Y, Nishioka J, Maruyama I, Zushi M et al. Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J 1987; 6: 1891–1897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dittman WA, Majerus PW . Structure and function of thrombomodulin: a natural anticoagulant. Blood 1990; 75: 329–336.

    CAS  PubMed  Google Scholar 

  12. Dahlback B, Villoutreix BO . The anticoagulation protein C pathway. FEBS Lett 2005; 579: 3310–3316.

    Article  PubMed  Google Scholar 

  13. Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A et al. The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med 2002; 196: 565–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, Tanaka M et al. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest 2005; 115: 1267–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ikezoe T . Pathogenesis of disseminated intravascular coagulation in patients with acute promyelocytic leukemia, and its treatment using recombinant human soluble thrombomodulin. Int J Hematol 2014; 100: 27–37.

    Article  CAS  PubMed  Google Scholar 

  16. Sakai M, Ikezoe T, Bandobashi K, Togitani K, Yokoyama A . Successful treatment of transplantation-associated thrombotic microangiopathy with recombinant human soluble thrombomodulin. Bone Marrow Transplant 2010; 45: 803–805.

    Article  CAS  PubMed  Google Scholar 

  17. Ikezoe T, Togitani K, Komatsu N, Isaka M, Yokoyama A . Successful treatment of sinusoidal obstructive syndrome after hematopoietic stem cell transplantation with recombinant human soluble thrombomodulin. Bone Marrow Transplant 2010; 45: 783–785.

    Article  CAS  PubMed  Google Scholar 

  18. Ikezoe T, Takeuchi A, Taniguchi A, Togitani K, Yokoyama A . Recombinant human soluble thrombomodulin counteracts capillary leakage associated with engraftment syndrome. Bone Marrow Transplant 2011; 46: 616–618.

    Article  CAS  PubMed  Google Scholar 

  19. Ikezoe T, Takeuchi A, Chi S, Takaoka M, Anabuki K, Kim T et al. Effect of recombinant human soluble thrombomodulin on clinical outcomes of patients with coagulopathy after hematopoietic stem cell transplantation. Eur J Haematol 2013; 91: 442–447.

    Article  CAS  PubMed  Google Scholar 

  20. Ikezoe T, Yang J, Nishioka C, Honda G, Furihata M, Yokoyama A . Thrombomodulin protects endothelial cells from a calcineurin inhibitor-induced cytotoxicity by upregulation of extracellular signal-regulated kinase/myeloid leukemia cell-1 signaling. Arterioscler Thromb Vasc Biol 2012; 32: 2259–2270.

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki Y, Sugiyama C, Ohno O, Umezawa K . Preparation and biological activities of optically active dehydroxymethylepoxyquinomicin, a novel NF-κB inhibitor. Tetrahedron 2004; 60: 7061–7066.

    Article  CAS  Google Scholar 

  22. Ikezoe T, Tanosaki S, Krug U, Liu B, Cohen P, Taguchi H et al. Insulin-like growth factor binding protein-3 antagonizes the effects of retinoids in myeloid leukemia cells. Blood 2004; 104: 237–242.

    Article  CAS  PubMed  Google Scholar 

  23. Nishioka C, Ikezoe T, Jing Y, Umezawa K, Yokoyama A . DHMEQ, a novel nuclear factor-kappaB inhibitor, induces selective depletion of alloreactive or phytohaemagglutinin-stimulated peripheral blood mononuclear cells, decreases production of T helper type 1 cytokines, and blocks maturation of dendritic cells. Immunology 2008; 124: 198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ikezoe T, Yang Y, Heber D, Taguchi H, Koeffler HP . PC-SPES: potent inhibitor of nuclear factor-kappa B rescues mice from lipopolysaccharide-induced septic shock. Mol Pharmacol 2003; 64: 1521–1529.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Furumura M, Morita E . Distinct signaling pathways confer different vascular responses to VEGF 121 and VEGF 165. Growth Factors 2008; 26: 125–131.

    Article  PubMed  Google Scholar 

  26. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG . Animal research: reporting in vivo experiments: The ARRIVE guidelines. PLoS Biol 2010; 8: e1000412.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Côté M, Payet MD, Dufour MN, Guillon G, Gallo-Payet N . Association of the G protein alpha(q)/alpha11-subunit with cytoskeleton in adrenal glomerulosa cells: role in receptor-effector coupling. Endocrinology 1997; 138: 3299–3307.

    Article  PubMed  Google Scholar 

  28. Zhu W, London NR, Gibson CC, Davis CT, Tong Z, Sorensen LK et al. Interleukin receptor activates a MYD88-ARNO-ARF6 cascade to disrupt vascular stability. Nature 2012; 492: 252–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khanna P, Yunkunis T, Muddana HS, Peng HH, August A, Dong C . p38 MAP kinase is necessary for melanoma-mediated regulation of VE-cadherin disassembly. Am J Physiol Cell Physiol 2010; 298: C1140–C1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Buffoli B, Pechánová O, Kojsová S, Andriantsitohaina R, Giugno L, Bianchi R et al. Provinol prevents CsA-induced nephrotoxicity by reducing reactive oxygen species, iNOS, and NF-kB expression. J Histochem Cytochem 2005; 53: 1459–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Storogenko M, Pech-Amsellem MA, Kerdine S, Rousselet F, Pallardy M . Cyclosporin-A inhibits human endothelial cells proliferation through interleukin-6-dependent mechanisms. Life Sci 1997; 60: 1487–1496.

    Article  CAS  PubMed  Google Scholar 

  32. Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY et al. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem 2003; 278: 46750–46759.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Uehara Memorial Foundation, SENSHIN Medical Research Foundation and KAKENHI (23591421 and 26461406).

Author contributions

TI contributed to the concept and design, interpreted and analyzed the data, and wrote the article; JY performed the experiments and wrote the article; CN performed the experiments; KU synthesized DHMEQ and critical revision; and AY provided important intellectual content and gave final approval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Ikezoe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Bone Marrow Transplantation website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikezoe, T., Yang, J., Nishioka, C. et al. Thrombomodulin blocks calcineurin inhibitor-induced vascular permeability via inhibition of Src/VE-cadherin axis. Bone Marrow Transplant 52, 245–251 (2017). https://doi.org/10.1038/bmt.2016.241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2016.241

This article is cited by

Search

Quick links