Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Hemolytic anemia with null PKLR mutations identified using whole exome sequencing and cured by hematopoietic stem cell transplantation combined with splenectomy

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Xue Y, Ankala A, Wilcox WR, Hegde MR . Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med 2015; 17: 444–451.

    Article  CAS  Google Scholar 

  2. Smedley D, Jacobsen JO, Jager M, Kohler S, Holtgrewe M, Schubach M et al. Next-generation diagnostics and disease-gene discovery with the Exomiser. Nat Protoc 2015; 10: 2004–2015.

    Article  CAS  Google Scholar 

  3. Iolascon A, Heimpel H, Wahlin A, Tamary H . Congenital dyserythropoietic anemias: molecular insights and diagnostic approach. Blood 2013; 122: 2162–2166.

    Article  CAS  Google Scholar 

  4. Beutler E, Gelbart T . Estimating the prevalence of pyruvate kinase deficiency from the gene frequency in the general white population. Blood 2000; 95: 3585–3588.

    CAS  PubMed  Google Scholar 

  5. Grace RF, Zanella A, Neufeld EJ, Morton DH, Eber S, Yaish H et al. Erythrocyte pyruvate kinase deficiency: 2015 status report. Am J Hematol 2015; 90: 825–830.

    Article  Google Scholar 

  6. Haija MA, Qian YW, Muthukumar A . Dyserythropoiesis in a child with pyruvate kinase deficiency and coexistent unilateral multicystic dysplastic kidney. Pediatr Blood Cancer 2014; 61: 1463–1465.

    Article  Google Scholar 

  7. Canu G, De Bonis M, Minucci A, Capoluongo E . Red blood cell PK deficiency: an update of PK-LR gene mutation database. Blood Cells Mol Dis 2016; 57: 100–109.

    Article  CAS  Google Scholar 

  8. Zanella A, Fermo E, Bianchi P, Chiarelli LR, Valentini G . Pyruvate kinase deficiency: the genotype-phenotype association. Blood Rev 2007; 21: 217–231.

    Article  CAS  Google Scholar 

  9. Diez A, Gilsanz F, Martinez J, Pérez-Benavente S, Meza NW, Bautista JM . Life-threatening nonspherocytic hemolytic anemia in a patient with a null mutation in the PKLR gene and no compensatory PKM gene expression. Blood 2005; 106: 1851–1856.

    Article  CAS  Google Scholar 

  10. Zanella A, Bianchi P . Red cell pyruvate kinase deficiency: from genetics to clinical manifestations. Baillieres Best Pract Res Clin Haematol 2000; 13: 57–81.

    Article  CAS  Google Scholar 

  11. Minucci A, Ruggiero A, Canu G, Maurizi P, De Bonis M, Concolino P et al. Co-inheritance of G6PD and PK deficiencies in a neonate carrying a Novel UGT1A1 genotype associated to Crigler-Najjar type II syndrome. Pediatr Blood Cancer 2015; 62: 1680–1681.

    Article  Google Scholar 

  12. Necheles TF, Finkel HE, Sheehan RG, Allen DM . Red cell pyruvate kinase deficiency. The effect of splenectomy. Arch Intern Med 1966; 118: 75–78.

    Article  CAS  Google Scholar 

  13. Zanella A, Berzuini A, Colombo MB, Guffanti A, Lecchi L, Poli F et al. Iron status in red cell pyruvate kinase deficiency: study of Italian cases. Br J Haematol 1993; 83: 485–490.

    Article  CAS  Google Scholar 

  14. Tanphaichitr VS, Suvatte V, Issaragrisil S, Mahasandana C, Veerakul G, Chongkolwatana V et al. Successful bone marrow transplantation in a child with red blood cell pyruvate kinase deficiency. Bone Marrow Transplant 2000; 26: 689–690.

    Article  CAS  Google Scholar 

  15. Hsieh MM, Fitzhugh CD, Weitzel RP, Link ME, Coles WA, Zhao X et al. Nonmyeloablative HLA-matched sibling allogeneic hematopoietic stem cell transplantation for severe sickle cell phenotype. JAMA 2014; 312: 48–56.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and their parents, and The Catholic Genetic Laboratory Center for assisting us in carrying out this study and compiling this report. This study was supported by a grant of the Korea Health technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A120175 and HI14C3417).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Kim or N-G Chung.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Park, J., Lee, J. et al. Hemolytic anemia with null PKLR mutations identified using whole exome sequencing and cured by hematopoietic stem cell transplantation combined with splenectomy. Bone Marrow Transplant 51, 1605–1608 (2016). https://doi.org/10.1038/bmt.2016.218

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2016.218

This article is cited by

Search

Quick links