Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transplant Toxicities

Low-dose irradiation prior to bone marrow transplantation results in ATM activation and increased lethality in Atm-deficient mice

A Corrigendum to this article was published on 06 April 2016

This article has been updated

Abstract

Ataxia telangiectasia is a genetic instability syndrome characterized by neurodegeneration, immunodeficiency, severe bronchial complications, hypersensitivity to radiotherapy and an elevated risk of malignancies. Repopulation with ATM-competent bone marrow-derived cells (BMDCs) significantly prolonged the lifespan and improved the phenotype of Atm-deficient mice. The aim of the present study was to promote BMDC engraftment after bone marrow transplantation using low-dose irradiation (IR) as a co-conditioning strategy. Atm-deficient mice were transplanted with green fluorescent protein-expressing, ATM-positive BMDCs using a clinically relevant non-myeloablative host-conditioning regimen together with TBI (0.2–2.0 Gy). IR significantly improved the engraftment of BMDCs into the bone marrow, blood, spleen and lung in a dose-dependent manner, but not into the cerebellum. However, with increasing doses, IR lethality increased even after low-dose IR. Analysis of the bronchoalveolar lavage fluid and lung histochemistry revealed a significant enhancement in the number of inflammatory cells and oxidative damage. A delay in the resolution of γ-H2AX-expression points to an insufficient double-strand break repair capacity following IR with 0.5 Gy in Atm-deficient splenocytes. Our results demonstrate that even low-dose IR results in ATM activation. In the absence of ATM, low-dose IR leads to increased inflammation, oxidative stress and lethality in the Atm-deficient mouse model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Change history

  • 06 April 2015

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  1. Gatti RA, Becker-Catania S, Chun HH, Sun X, Mitui M, Lai CH et al. The pathogenesis of ataxia-telangiectasia. Learning from a Rosetta Stone. Clin Rev Allergy Immunol 2001; 20: 87–108.

    Article  CAS  PubMed  Google Scholar 

  2. Reichenbach J, Schubert R, Schindler D, Muller K, Bohles H, Zielen S . Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid Redox Signal 2002; 4: 465–469.

    Article  CAS  PubMed  Google Scholar 

  3. Chun HH, Gatti RA . Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst) 2004; 3: 1187–1196.

    Article  CAS  Google Scholar 

  4. McGrath-Morrow SA, Gower WA, Rothblum-Oviatt C, Brody AS, Langston C, Fan LL et al. Evaluation and management of pulmonary disease in ataxia-telangiectasia. Pediatr Pulmonol 2010; 45: 847–859.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Micol R, Ben Slama L, Suarez F, Le Mignot L, Beaute J, Mahlaoui N et al. Morbidity and mortality from ataxia-telangiectasia are associated with ATM genotype. J Allergy Clin Immunol 2011; 128: 382–9.e1.

    Article  PubMed  Google Scholar 

  6. Lavin MF, Gueven N, Bottle S, Gatti RA . Current and potential therapeutic strategies for the treatment of ataxia-telangiectasia. Br Med Bull 2007; 81-82: 129–147.

    Article  PubMed  Google Scholar 

  7. Brazelton TR, Rossi FM, Keshet GI, Blau HM . From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000; 290: 1775–1779.

    Article  CAS  PubMed  Google Scholar 

  8. Kahler CM, Wechselberger J, Hilbe W, Gschwendtner A, Colleselli D, Niederegger H et al. Peripheral infusion of rat bone marrow derived endothelial progenitor cells leads to homing in acute lung injury. Respir Res 2007; 8: 50.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Priller J, Persons DA, Klett FF, Kempermann G, Kreutzberg GW, Dirnagl U . Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J Cell Biol 2001; 155: 733–738.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Pietzner J, Baer PC, Duecker RP, Merscher MB, Satzger-Prodinger C, Bechmann I et al. Bone marrow transplantation improves the outcome of Atm-deficient mice through the migration of ATM-competent cells. Hum Mol Genet 2013; 22: 493–507.

    Article  CAS  PubMed  Google Scholar 

  11. Bagley J, Cortes ML, Breakefield XO, Iacomini J . Bone marrow transplantation restores immune system function and prevents lymphoma in Atm-deficient mice. Blood 2004; 104: 572–578.

    Article  CAS  PubMed  Google Scholar 

  12. Buckley RH . Bone marrow and thymus transplantation in ataxia-telangiectasia. Birth Defects Orig Artic Ser 1975; 11: 421–424.

    CAS  PubMed  Google Scholar 

  13. Ghosh S, Schuster FR, Binder V, Niehues T, Baldus SE, Seiffert P et al. Fatal outcome despite full lympho-hematopoietic reconstitution after allogeneic stem cell transplantation in atypical ataxia telangiectasia. J Clin Immunol 2012; 32: 438–440.

    Article  PubMed  Google Scholar 

  14. Ussowicz M, Musial J, Duszenko E, Haus O, Kalwak K . Long-term survival after allogeneic-matched sibling PBSC transplantation with conditioning consisting of low-dose busilvex and fludarabine in a 3-year-old boy with ataxia-telangiectasia syndrome and ALL. Bone Marrow Transplant 2013; 48: 740–741.

    Article  CAS  PubMed  Google Scholar 

  15. Gluckman E, Devergie A, Schaison G, Bussel A, Berger R, Sohier J et al. Bone marrow transplantation in Fanconi anaemia. Br J Haematol 1980; 45: 557–564.

    Article  CAS  PubMed  Google Scholar 

  16. MacMillan ML, Hughes MR, Agarwal S, Daley GQ . Cellular therapy for fanconi anemia: the past, present, and future. Biol Blood Marrow Transplant 2011; 17: S109–S114.

    Article  PubMed  Google Scholar 

  17. Gruhn B, Seidel J, Zintl F, Varon R, Tonnies H, Neitzel H et al. Successful bone marrow transplantation in a patient with DNA ligase IV deficiency and bone marrow failure. Orphanet J Rare Dis 2007; 2: 5.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Albert MH, Gennery AR, Greil J, Cale CM, Kalwak K, Kondratenko I et al. Successful SCT for Nijmegen breakage syndrome. Bone Marrow Transplant 2010; 45: 622–626.

    Article  CAS  PubMed  Google Scholar 

  19. Bitan M, Or R, Shapira MY, Aker M, Resnick IB, Ackerstein A et al. Fludarabine-based reduced intensity conditioning for stem cell transplantation of Fanconi anemia patients from fully matched related and unrelated donors. Biol Blood Marrow Transplant 2006; 12: 712–718.

    Article  CAS  PubMed  Google Scholar 

  20. MacMillan ML, Wagner JE . Haematopoeitic cell transplantation for Fanconi anaemia - when and how? Br J Haematol 2010; 149: 14–21.

    Article  PubMed  Google Scholar 

  21. Medeiros C, Zanis-Neto J, Pasquini R . Bone marrow transplantation for patients with Fanconi anemia: reduced doses of cyclophosphamide without irradiation as conditioning. Bone Marrow Transplant 1999; 24: 849–852.

    Article  CAS  PubMed  Google Scholar 

  22. Yabe H, Inoue H, Matsumoto M, Hamanoue S, Koike T, Ishiguro H et al. Allogeneic haematopoietic cell transplantation from alternative donors with a conditioning regimen of low-dose irradiation, fludarabine and cyclophosphamide in Fanconi anaemia. Br J Haematol 2006; 134: 208–212.

    Article  CAS  PubMed  Google Scholar 

  23. Taylor AMR, Byrd PJ . Molecular pathology of ataxia telangiectasia. J Clin Pathol 2005; 58: 1009–1015.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 1996; 86: 159–171.

    Article  CAS  PubMed  Google Scholar 

  25. Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y . 'Green mice' as a source of ubiquitous green cells. FEBS Lett 1997; 407: 313–319.

    Article  CAS  PubMed  Google Scholar 

  26. Zierhut HA, Tryon R, Sanborn EM . Genetic counseling for Fanconi anemia: crosslinking disciplines. J Genet Couns 2014; 23: 910–921.

    Article  PubMed  Google Scholar 

  27. Undarmaa B, Kodama S, Suzuki K, Niwa O, Watanabe M . X-ray-induced telomeric instability in Atm-deficient mouse cells. Biochem Biophys Res Commun 2004; 315: 51–58.

    Article  CAS  PubMed  Google Scholar 

  28. Wolden SL, Rabinovitch RA, Bittner, Nathan HJ, Galvin JM, Giap HB et al. American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) practice guideline for the performance of total body irradiation (TBI). Am J Clin Oncol 2013; 36: 97–101.

    Article  PubMed  Google Scholar 

  29. Thakar MS, Kurre P, Storb R, Kletzel M, Frangoul H, Pulsipher MA et al. Treatment of Fanconi anemia patients using fludarabine and low-dose TBI, followed by unrelated donor hematopoietic cell transplantation. Bone Marrow Transplant 2011; 46: 539–544.

    Article  CAS  PubMed  Google Scholar 

  30. Pollard JM, Gatti RA . Clinical radiation sensitivity with DNA repair disorders: an overview. Int J Radiat Oncol Biol Phys 2009; 74: 1323–1331.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hada M, Huff JL, Patel ZS, Kawata T, Pluth JM, George KA et al. AT cells are not radiosensitive for simple chromosomal exchanges at low dose. Mutat Res 2011; 716: 76–83.

    Article  CAS  PubMed  Google Scholar 

  32. Kiuru A, Kamarainen M, Heinavaara S, Pylkas K, Chapman K, Koivistoinen A et al. Assessment of targeted and non-targeted responses in cells deficient in ATM function following exposure to low and high dose X-rays. PLoS ONE 2014; 9: e93211.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Rübe CE, Grudzenski S, Kühne M, Dong X, Rief N, Löbrich M et al. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing. Clin Cancer Res 2008; 14: 6546–6555.

    Article  PubMed  Google Scholar 

  34. Nakamura H, Yasui Y, Saito N, Tachibana A, Komatsu K, Ishizaki K . DNA repair defect in AT cells and their hypersensitivity to low-dose-rate radiation. Radiat Res 2006; 165: 277–282.

    Article  CAS  PubMed  Google Scholar 

  35. Short SC, Bourne S, Martindale C, Woodcock M, Jackson SP . DNA damage responses at low radiation doses. Radiat Res 2005; 164: 292–302.

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki K, Okada H, Yamauchi M, Oka Y, Kodama S, Watanabe M . Qualitative and quantitative analysis of phosphorylated ATM foci induced by low-dose ionizing radiation. Radiat Res 2006; 165: 499–504.

    Article  CAS  PubMed  Google Scholar 

  37. Ghafoori P, Marks LB, Vujaskovic Z, Kelsey CR . Radiation-induced lung injury. Assessment, management, and prevention. Oncology (Williston Park) 2008; 22: 37–47 discussion 52-3.

    Google Scholar 

  38. Kataoka T . Study of antioxidative effects and anti-inflammatory effects in mice due to low-dose X-irradiation or radon inhalation. J Radiat Res 2013; 54: 587–596.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Reichenbach J, Schubert R, Schwan C, Muller K, Bohles HJ, Zielen S . Antioxidative capacity in patients with common variable immunodeficiency. J Clin Immunol 2000; 20: 221–226.

    Article  CAS  PubMed  Google Scholar 

  40. Schubert R, Erker L, Barlow C, Yakushiji H, Larson D, Russo A et al. Cancer chemoprevention by the antioxidant tempol in Atm-deficient mice. Hum Mol Genet 2004; 13: 1793–1802.

    Article  CAS  PubMed  Google Scholar 

  41. Eickmeier O, Kim SY, Herrmann E, Doring C, Duecker R, Voss S et al. Altered mucosal immune response after acute lung injury in a murine model of Ataxia Telangiectasia. BMC Pulm Med 2014; 14: 93.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Boder E . Ataxia-telangiectasia: some historic, clinical and pathologic observations. Birth Defects Orig Artic Ser 1975; 11: 255–270.

    CAS  PubMed  Google Scholar 

  43. Herzog EL, Chai L, Krause DS . Plasticity of marrow-derived stem cells. Blood 2003; 102: 3483–3493.

    Article  CAS  PubMed  Google Scholar 

  44. Hess DC, Hill WD, Carroll JE, Borlongan CV . Do bone marrow cells generate neurons? Arch Neurol 2004; 61: 483–485.

    Article  PubMed  Google Scholar 

  45. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003; 425: 968–973.

    Article  CAS  PubMed  Google Scholar 

  46. Diaz D, Munoz-Castaneda R, Alonso JR, Weruaga E . Bone marrow-derived stem cells and strategies for treatment of nervous system disorders: many protocols, and many results. Neuroscientist 2014; 21: 637–652.

    Article  PubMed  Google Scholar 

  47. Perlman S, Becker-Catania S, Gatti RA . Ataxia-telangiectasia: diagnosis and treatment. Semin Pediatr Neurol 2003; 10: 173–182.

    Article  PubMed  Google Scholar 

  48. Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 2009; 6: e1000029.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S . Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 2010; 40: 415–423.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Katrin Krug and Heike Korff for her technical assistance. The authors would also like to acknowledge support from a Loewe grant (LOEWE Center for Cell and Gene Therapy Frankfurt funded by Hessisches Ministerium für Wissenschaft und Kunst (HMWK) oder ‘Hessian Ministry of Higher Education, Research and the Arts’ funding reference number: III L 4- 518/17.004 (2010)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Schubert.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pietzner, J., Merscher, B., Baer, P. et al. Low-dose irradiation prior to bone marrow transplantation results in ATM activation and increased lethality in Atm-deficient mice. Bone Marrow Transplant 51, 560–567 (2016). https://doi.org/10.1038/bmt.2015.334

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2015.334

Search

Quick links