Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acute Leukemia

Impact of MRD and TKI on allogeneic hematopoietic cell transplantation for Ph+ALL: a study from the adult ALL WG of the JSHCT

Abstract

To assess the impact of minimal residual disease (MRD) and tyrosine kinase inhibitor (TKI) administration on allogeneic hematopoietic cell transplantation (allo-HCT) for Ph-positive ALL (Ph+ALL), we retrospectively analyzed data from a registry database for 432 adult Ph+ALL patients in first CR (CR1) who received pre-transplant TKI administration. Negative MRD (MRD(−)) at allo-HCT was achieved in 277 patients. OS in patients transplanted in MRD(−) was significantly better than that in patients transplanted in MRD(+) (MRD(−): 67% vs MRD(+): 55% at 4 years; P=0.001). MRD(−) at allo-HCT was a significant risk factor for survival along with age at allo-HCT in multivariate analyses. Incidence of relapse in patients transplanted in MRD(−) was significantly lower than that in patients transplanted in MRD(+) (MRD(−): 19% vs MRD(+): 29% at 4 years; P=0.006). In multivariate analyses, MRD(+) at allo-HCT was a significant risk factor for relapse. A post-transplant TKI was administered to 103 patients. In subanalyses regarding the effect of post-transplant TKI administration, post-transplant TKI administration was a significant risk factor for relapse in multivariate analyses (P<0.0001). MRD status at allo-HCT is one of the most important predictive factors for Ph+ALL patients transplanted in CR1.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1

References

  1. Fielding AK . Current treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematol ASH Educ Program 2011; 2011: 231–237.

    Article  Google Scholar 

  2. Mizuta S, Matsuo K, Nishiwaki S, Imai K, Kanamori H, Ohashi K et al. Pre-transplant administration of imatinib for allogeneic hematopoietic stem cell transplantation in patients with BCR-ABL-positive acute lymphoblastic leukemia. Blood 2014; 123: 2325–2332.

    CAS  Article  PubMed  Google Scholar 

  3. Zhang FH, Ling YW, Zhai X, Zhang Y, Huang F, Fan ZP et al. The effect of imatinib therapy on the outcome of allogeneic stem cell transplantation in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematology 2013; 18: 151–157.

    CAS  Article  PubMed  Google Scholar 

  4. Tanguy Schmidt A, Rousselot P, Chalandon Y, Cayuela JM, Hayette S, Vekemans MC et al. Long-term follow-up of the imatinib GRAAPH-2003 study in newly diagnosed patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: a GRAALL study. Biol Blood Marrow Transplant 2013; 19: 150–155.

    CAS  Article  PubMed  Google Scholar 

  5. Biondi A, Schrappe M, De Lorenzo P, Castor A, Lucchini G, Gandemer V et al. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol 2012; 13: 936–945.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Yanada M, Takeuchi J, Sugiura I, Akiyama H, Usui N, Yagasaki F et al. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia: a phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol 2006; 24: 460–466.

    CAS  Article  PubMed  Google Scholar 

  7. Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children's oncology group study. J Clin Oncol 2009; 27: 5175–5181.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Yanada M, Sugiura I, Takeuchi J, Akiyama H, Maruta A, Ueda Y et al. Prospective monitoring of BCR-ABL1 transcript levels in patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia undergoing imatinib-combined chemotherapy. Br J Haematol 2008; 143: 503–510.

    PubMed  Google Scholar 

  9. Ravandi F, Jorgensen JL, Thomas DA, O'Brien S, Garris R, Faderl S et al. Detection of MRD may predict the outcome of patients with Philadelphia chromosome-positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood 2013; 122: 1214–1221.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Hoelzer D . Monitoring and managing minimal residual disease in acute lymphoblastic leukemia. Am Soc Clin Oncol Educ Book 2013, 290–293.

    Article  Google Scholar 

  11. Jeha S, Coustan Smith E, Pei D, Sandlund JT, Rubnitz JE, Howard SC et al. Impact of tyrosine kinase inhibitors on minimal residual disease and outcome in childhood Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer 2014; 120: 1514–1519.

    CAS  Article  PubMed  Google Scholar 

  12. Lee S, Kim DW, Cho BS, Yoon JH, Shin SH, Yahng SA et al. Impact of minimal residual disease kinetics during imatinib-based treatment on transplantation outcome in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia 2012; 26: 2367–2374.

    CAS  Article  PubMed  Google Scholar 

  13. Nishiwaki S, Miyamura K, Kato C, Terakura S, Ohashi K, Sakamaki H et al. Impact of post-transplant imatinib administration on Philadelphia chromosome-positive acute lymphoblastic leukaemia. Anticancer Res 2010; 30: 2415–2418.

    CAS  PubMed  Google Scholar 

  14. Bachanova V, Marks DI, Zhang MJ, Wang H, de Lima M, Aljurf MD et al. Ph+ ALL patients in first complete remission have similar survival after reduced intensity and myeloablative allogeneic transplantation: impact of tyrosine kinase inhibitor and minimal residual disease. Leukemia 2014; 28: 658–665.

    CAS  Article  PubMed  Google Scholar 

  15. Ribera JM, Oriol A, Gonzalez M, Vidriales B, Brunet S, Esteve J et al. Concurrent intensive chemotherapy and imatinib before and after stem cell transplantation in newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Final results of the CSTIBES02 trial. Haematologica 2010; 95: 87–95.

    CAS  Article  PubMed  Google Scholar 

  16. Burke MJ, Trotz B, Luo X, Baker KS, Weisdorf DJ, Wagner JE et al. Allo-hematopoietic cell transplantation for Ph chromosome-positive ALL: impact of imatinib on relapse and survival. Bone Marrow Transplant 2009; 43: 107–113.

    CAS  Article  PubMed  Google Scholar 

  17. Caocci G, Vacca A, Ledda A, Murgia F, Piras E, Greco M et al. Prophylactic and preemptive therapy with dasatinib after hematopoietic stem cell transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia. Biol Blood Marrow Transplant 2012; 18: 652–654.

    Article  PubMed  Google Scholar 

  18. Watanabe A, Chansu S, Ogawa A, Asami K, Imamura M . Prophylactic post-transplant dasatinib administration in a pediatric patient with Philadelphia chromosome-positive acute lymphoblastic leukemia. Pediatr Int 2013; 55: e56–e58.

    Article  PubMed  Google Scholar 

  19. Pfeifer H, Wassmann B, Bethge W, Dengler J, Bornhauser M, Stadler M et al. Randomized comparison of prophylactic and minimal residual disease-triggered imatinib after allogeneic stem cell transplantation for BCR-ABL1-positive acute lymphoblastic leukemia. Leukemia 2013; 27: 1254–1262.

    CAS  Article  PubMed  Google Scholar 

  20. Mizuta S, Matsuo K, Maeda T, Yujiri T, Hatta Y, Kimura Y et al. Prognostic factors influencing clinical outcome of allogeneic hematopoietic stem cell transplantation following imatinib-based therapy in BCR-ABL-positive ALL. Blood Cancer J 2012; 2: e72.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Fujisawa S, Matsuo K, Mizuta S, Akiyama H, Ueda Y, Aoyama Y et al. Imatinib-based chemotherapy for newly diagnosed BCR–ABL positive acute lymphoblastic leukemia: Japan Adult Leukemia Study Group (JALSG) Ph+ALL208 Study. Blood 2014; 124: 932.

    Google Scholar 

  22. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J et al. 1994 Consensus conference on acute GVHD grading. Bone Marrow Transplant 1995; 15: 825–828.

    CAS  PubMed  Google Scholar 

  23. Sullivan KM, Shulman HM, Storb R, Weiden PL, Witherspoon RP, McDonald GB et al. Chronic graft-versus-host disease in 52 patients: adverse natural course and successful treatment with combination immunosuppression. Blood 1981; 57: 267–276.

    CAS  PubMed  Google Scholar 

  24. Giralt S, Ballen K, Rizzo D, Bacigalupo A, Horowitz M, Pasquini M et al. Reduced-intensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the center for international blood and marrow transplant research. Biol Blood Marrow Transplant 2009; 15: 367–369.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sasazuki T, Juji T, Morishima Y, Kinukawa N, Kashiwabara H, Inoko H et al. Effect of matching of class I HLA alleles on clinical outcome after transplantation of hematopoietic stem cells from an unrelated donor. Japan Marrow Donor Program. N Engl J Med 1998; 339: 1177–1185.

    CAS  Article  PubMed  Google Scholar 

  26. Morishima Y, Sasazuki T, Inoko H, Juji T, Akaza T, Yamamoto K et al. The clinical significance of human leukocyte antigen (HLA) allele compatibility in patients receiving a marrow transplant from serologically HLA-A, HLA-B, and HLA-DR matched unrelated donors. Blood 2002; 99: 4200–4206.

    CAS  Article  PubMed  Google Scholar 

  27. Atsuta Y, Morishima Y, Suzuki R, Nagamura Inoue T, Taniguchi S, Takahashi S et al. Comparison of unrelated cord blood transplantation and HLA-mismatched unrelated bone marrow transplantation for adults with leukemia. Biol Blood Marrow Transplant 2012; 18: 780–787.

    Article  PubMed  Google Scholar 

  28. Matsuno N, Wake A, Uchida N, Ishiwata K, Araoka H, Takagi S et al. Impact of HLA disparity in the graft-versus-host direction on engraftment in adult patients receiving reduced-intensity cord blood transplantation. Blood 2009; 114: 1689–1695.

    CAS  Article  PubMed  Google Scholar 

  29. Ooi J, Takahashi S, Tomonari A, Tsukada N, Konuma T, Kato S et al. Unrelated cord blood transplantation after myeloablative conditioning in adults with acute myelogenous leukemia. Biol Blood Marrow Transplant 2008; 14: 1341–1347.

    CAS  Article  PubMed  Google Scholar 

  30. Nishiwaki S, Miyamura K, Ohashi K, Kurokawa M, Taniguchi S, Fukuda T et al. Impact of a donor source on adult Philadelphia chromosome-negative acute lymphoblastic leukemia: a retrospective analysis from the Adult Acute Lymphoblastic Leukemia Working Group of the Japan Society for Hematopoietic Cell Transplantation. Ann Oncol 2013; 24: 1594–1602.

    CAS  Article  PubMed  Google Scholar 

  31. Kaplan EL, Meier P . Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457–481.

    Article  Google Scholar 

  32. Peto R, Peto J . Asymptotically efficient rank invariant test procedures. J R Stat Soc A 1972; 135: 185–207.

    Article  Google Scholar 

  33. Gooley TA, Leisenring W, Crowley J, Storer BE . Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med 1999; 18: 695–706.

    CAS  Article  PubMed  Google Scholar 

  34. Scrucca L, Santucci A, Aversa F . Competing risk analysis using R: an easy guide for clinicians. Bone Marrow Transplant 2007; 40: 381–387.

    CAS  Article  PubMed  Google Scholar 

  35. Cox DR . Regression models and life tables. J R Stat Soc B 1972; 34: 187–220.

    Google Scholar 

  36. Fine J, Gray R . A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 1999; 94: 496–509.

    Article  Google Scholar 

  37. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006; 354: 2531–2541.

    CAS  Article  PubMed  Google Scholar 

  38. Soverini S, De Benedittis C, Papayannidis C, Paolini S, Venturi C, Iacobucci I et al. Drug resistance and BCR-ABL kinase domain mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia from the imatinib to the second-generation tyrosine kinase inhibitor era: the main changes are in the type of mutations, but not in the frequency of mutation involvement. Cancer 2014; 120: 1002–1009.

    CAS  Article  PubMed  Google Scholar 

  39. Kantarjian HM, Cortes JE, Kim DW, Khoury HJ, Brummendorf TH, Porkka K et al. Bosutinib safety and management of toxicity in leukemia patients with resistance or intolerance to imatinib and other tyrosine kinase inhibitors. Blood 2014; 123: 1309–1318.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Quintas Cardama A, Kantarjian H, Cortes J . Third-generation tyrosine kinase inhibitors and beyond. Semin Hematol 2010; 47: 371–380.

    CAS  Article  PubMed  Google Scholar 

  41. Cortes JE, Kim DW, Pinilla Ibarz J, le Coutre P, Paquette R, Chuah C et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 2013; 369: 1783–1796.

    CAS  Article  PubMed  Google Scholar 

  42. Kebriaei P, Saliba R, Rondon G, Chiattone A, Luthra R, Anderlini P et al. Long-term follow-up of allogeneic hematopoietic stem cell transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: impact of tyrosine kinase inhibitors on treatment outcomes. Biol Blood Marrow Transplant 2012; 18: 584–592.

    CAS  Article  PubMed  Google Scholar 

  43. Wassmann B, Pfeifer H, Stadler M, Bornhauser M, Bug G, Scheuring UJ et al. Early molecular response to posttransplantation imatinib determines outcome in MRD+ Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood 2005; 106: 458–463.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Japan Leukemia Research Fund grant to SN, by a Research Grand for Allergic Disease and Immunology from the Japanese Ministry of Health, Labor and Welfare to YA and by a Japanese Grant-in-Aid for Scientific Research to JT.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to S Nishiwaki.

Ethics declarations

Competing interests

YO has received honoraria from Novartis and Bristol-Myers Squibb. ST has received honoraria and research funding from Novartis. NU has received honoraria from Otsuka Pharmaceutical Co., Kyowa Hakko Kirin Co., Chugai Pharmaceutical Co., Sumitomo Dainippon Pharma, Bristol-Myers Squibb, Daiichi Sankyo Company and Yakult Honsha, and travel, accommodations, expenses from Yakult Honsha and Kyowa Hakko Kirin Co. HN has received honoraria, speaker’s bureau, research funding, and travel, accommodations, expenses from Novartis and Bristol-Myers Squibb. TN-I has research funding from Tsubakimoto Co. and Wanbishi Archives Co. and patent pending with Tsubakimoto Co. YA has received honoraria from Otsuka Pharmaceutical Co., MDS Co. Ltd, Meiji Seika Pharma and Chugai Pharmaceutical Co., and travel, accommodations, expenses from Kyowa Hakko Kirin Co. The remaining authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nishiwaki, S., Imai, K., Mizuta, S. et al. Impact of MRD and TKI on allogeneic hematopoietic cell transplantation for Ph+ALL: a study from the adult ALL WG of the JSHCT. Bone Marrow Transplant 51, 43–50 (2016). https://doi.org/10.1038/bmt.2015.217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2015.217

Further reading

Search

Quick links