Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cellular engineering and therapy in combination with cord blood allografting in pediatric recipients

Subjects

Abstract

Cord blood (CB) transplantation is an alternate source of human hematopoietic progenitor cells for allogeneic stem cell transplantation in children and adolescents with both malignant and nonmalignant diseases. Current limitations included delay in hematopoietic reconstitution, increased incidence of primary graft failure and slow cellular immunoreconstitution. These limitations lead to a significant increase in primary graft failure, infectious complications and increased transplant-related mortality. There is a number of experimental approaches currently under investigation including cellular engineering to circumvent these limitations. In this review, we summarize the recent findings of utilizing ex vivo CB expansion with Notch1 ligand Delta 1, mesenchymal progenitor cells, the use of human placenta-derived stem cells and CB-derived natural killer cells. Early and preliminary results suggest some of these experimental cellular strategies may in part ameliorate the incidence of primary graft failure, delays in hematopoietic reconstitution and/or slowness in cellular immune reconstitution following unrelated CB transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bradley MB, Cairo MS . Cord blood immunology and stem cell transplantation. Hum Immunol 2005; 66: 431–446.

    Article  CAS  PubMed  Google Scholar 

  2. Cairo MS, Wagner JE . Placental and/or umbilical cord blood: an alternative source of hematopoietic stem cells for transplantation. Blood 1997; 90: 4665–4678.

    CAS  PubMed  Google Scholar 

  3. Eapen M, Rubinstein P, Zhang MJ, Stevens C, Kurtzberg J, Scaradavou A et al. Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet 2007; 369: 1947–1954.

    Article  PubMed  Google Scholar 

  4. Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, Halperin EC et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med 1996; 335: 157–166.

    CAS  PubMed  Google Scholar 

  5. Szabolcs P, Cairo MS . Unrelated umbilical cord blood transplantation and immune reconstitution. Semin Hematol 2010; 47: 22–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Talano JM, Pulsipher MA, Symons HJ, Militano O, Shereck EB, Giller RH et al. New frontiers in pediatric Allo-SCT. Bone Marrow Transplant 2014; 49: 1139–1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wagner JE, Rosenthal J, Sweetman R, Shu XO, Davies SM, Ramsay NK et al. Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood 1996; 88: 795–802.

    CAS  PubMed  Google Scholar 

  8. Rubinstein P, Carrier C, Scaradavou A, Kurtzberg J, Adamson J, Migliaccio AR et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 1998; 339: 1565–1577.

    Article  CAS  PubMed  Google Scholar 

  9. Cairo MS, Wagner EL, Fraser J, Cohen G, van de Ven C, Carter SL et al. Characterization of banked umbilical cord blood hematopoietic progenitor cells and lymphocyte subsets and correlation with ethnicity, birth weight, sex, and type of delivery: a Cord Blood Transplantation (COBLT) Study report. Transfusion 2005; 45: 856–866.

    Article  PubMed  Google Scholar 

  10. Styczynski J, Cheung YK, Garvin J, Savage DG, Billote GB, Harrison L et al. Outcomes of unrelated cord blood transplantation in pediatric recipients. Bone Marrow Transplant 2004; 34: 129–136.

    Article  CAS  PubMed  Google Scholar 

  11. Bradley MB, Satwani P, Baldinger L, Morris E, van de Ven C, Del Toro G et al. Reduced intensity allogeneic umbilical cord blood transplantation in children and adolescent recipients with malignant and non-malignant diseases. Bone Marrow Transplant 2007; 40: 621–631.

    Article  CAS  PubMed  Google Scholar 

  12. Geyer MB, Jacobson JS, Freedman J, George D, Moore V, van de Ven C et al. A comparison of immune reconstitution and graft-versus-host disease following myeloablative conditioning versus reduced toxicity conditioning and umbilical cord blood transplantation in paediatric recipients. Br J Haematol 2011; 155: 218–234.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Barker JN, Weisdorf DJ, DeFor TE, Blazar BR, McGlave PB, Miller JS et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood 2005; 105: 1343–1347.

    Article  CAS  PubMed  Google Scholar 

  14. Barker JN, Weisdorf DJ, Wagner JE . Creation of a double chimera after the transplantation of umbilical-cord blood from two partially matched unrelated donors. N Engl J Med 2001; 344: 1870–1871.

    Article  CAS  PubMed  Google Scholar 

  15. Wagner JE Jr, Eapen M, Carter S, Wang Y, Schultz KR, Wall DA et al. One-unit versus two-unit cord-blood transplantation for hematologic cancers. N Engl J Med 2014; 371: 1685–1694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID . Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med 2010; 16: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reimann C, Six E, Dal-Cortivo L, Schiavo A, Appourchaux K, Lagresle-Peyrou C et al. Human T-lymphoid progenitors generated in a feeder-cell-free Delta-like-4 culture system promote T-cell reconstitution in NOD/SCID/gammac(-/-) mice. Stem Cells 2012; 30: 1771–1780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Lima M, McNiece I, Robinson SN, Munsell M, Eapen M, Horowitz M et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med 2012; 367: 2305–2315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Delaney C, Milano F, Shelly H, Nicoud I, Bernstein ID . Infusion of non-HLA matched, off-the-shelf ex vivo expanded cord blood progenitor cells in patients undergoing myeloablative cord blood transplantation is safe and decreases the time to neutrophil recovery. Biol Blood Marrow Transplant 2012 (abstract) 18: S203.

    Article  Google Scholar 

  20. Elmacken M, Pulsipher M, Shi Q, Giller R, Szabolcs P, Shenoy S et al. A pilot trial of unrelated cord blood transplantation (UCBT) and unmatched human placental derived stem cells (HPDSC) in children and young adults with malignant and non-malignant disease. Biol Blood Marrow Transplant 2015 (abstract) 21: S220.

    Article  Google Scholar 

  21. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S . Functions of natural killer cells. Nat Immunol 2008; 9: 503–510.

    Article  CAS  PubMed  Google Scholar 

  22. Merindol N, Charrier E, Duval M, Soudeyns H . Complementary and contrasting roles of NK cells and T cells in pediatric umbilical cord blood transplantation. J Leukoc Biol 2011; 90: 49–60.

    Article  CAS  PubMed  Google Scholar 

  23. Komanduri KV, John LS St, de Lima M, McMannis J, Rosinski S, McNiece I et al. Delayed immune reconstitution after cord blood transplantation is characterized by impaired thymopoiesis and late memory T-cell skewing. Blood 2007; 110: 4543–4551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beziat V, Nguyen S, Lapusan S, Hervier B, Dhedin N, Bories D et al. Fully functional NK cells after unrelated cord blood transplantation. Leukemia 2009; 23: 721–728.

    Article  CAS  PubMed  Google Scholar 

  25. Della Chiesa M, Falco M, Podesta M, Locatelli F, Moretta L, Frassoni F et al. Phenotypic and functional heterogeneity of human NK cells developing after umbilical cord blood transplantation: a role for human cytomegalovirus? Blood 2012; 119: 399–410.

    Article  CAS  PubMed  Google Scholar 

  26. Han P, Hodge G, Story C, Xu X . Phenotypic analysis of functional T-lymphocyte subtypes and natural killer cells in human cord blood: relevance to umbilical cord blood transplantation. Br J Haematol 1995; 89: 733–740.

    Article  CAS  PubMed  Google Scholar 

  27. Woll PS, Martin CH, Miller JS, Kaufman DS . Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J Immunol 2005; 175: 5095–5103.

    Article  CAS  PubMed  Google Scholar 

  28. Gertow J, Berglund S, Okas M, Uzunel M, Berg L, Karre K et al. Characterization of long-term mixed donor-donor chimerism after double cord blood transplantation. Clin Exp Immunol 2010; 162: 146–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Willemze R, Rodrigues CA, Labopin M, Sanz G, Michel G, Socie G et al. KIR-ligand incompatibility in the graft-versus-host direction improves outcomes after umbilical cord blood transplantation for acute leukemia. Leukemia 2009; 23: 492–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tarek N, Gallagher MM, Chou JF, Lubin MN, Heller G, Barker JN et al. KIR and HLA genotypes have no identifiable role in single-unit dominance following double-unit umbilical cord blood transplantation. Bone Marrow Transplant 2015; 50: 150–152.

    Article  CAS  PubMed  Google Scholar 

  31. Murphy WJ, Keller JR, Harrison CL, Young HA, Longo DL . Interleukin-2-activated natural killer cells can support hematopoiesis in vitro and promote marrow engraftment in vivo. Blood 1992; 80: 670–677.

    CAS  PubMed  Google Scholar 

  32. Hirayama M, Genyea C, Brownell A, Kaplan J . IL-2-activated murine newborn liver NK cells enhance engraftment of hematopoietic stem cells in MHC-mismatched recipients. Bone Marrow Transplant 1998; 21: 1245–1252.

    Article  CAS  PubMed  Google Scholar 

  33. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    Article  CAS  PubMed  Google Scholar 

  34. Giebel S, Locatelli F, Lamparelli T, Velardi A, Davies S, Frumento G et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 2003; 102: 814–819.

    Article  CAS  PubMed  Google Scholar 

  35. Miller JS, Cooley S, Parham P, Farag SS, Verneris MR, McQueen KL et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood 2007; 109: 5058–5061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brunstein CG, Wagner JE, Weisdorf DJ, Cooley S, Noreen H, Barker JN et al. Negative effect of KIR alloreactivity in recipients of umbilical cord blood transplant depends on transplantation conditioning intensity. Blood 2009; 113: 5628–5634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamamoto W, Ogusa E, Matsumoto K, Maruta A, Ishigatsubo Y, Kanamori H . Recovery of natural killer cells and prognosis after cord blood transplantation. Leuk Res 2013; 37: 1522–1526.

    Article  CAS  PubMed  Google Scholar 

  38. Aljitawi OS, Coats A, Zhang D, Ganguly S, Abhyankar S, Lin T et al. Umbilical cord graft-versus-leukemia effect induces remission without the price of graft-versus-host disease: the possible role of NK cells. Clin Transplant 2012; 26: 663–664.

    Article  PubMed  Google Scholar 

  39. Ayello J, van de Ven C, Fortino W, Wade-Harris C, Satwani P, Baxi L et al. Characterization of cord blood natural killer and lymphokine activated killer lymphocytes following ex vivo cellular engineering. Biol Blood Marrow Transplant 2006; 12: 608–622.

    Article  CAS  PubMed  Google Scholar 

  40. Kang L, Voskinarian-Berse V, Law E, Reddin T, Bhatia M, Hariri A et al. Characterization and ex vivo expansion of human placenta-derived natural killer cells for cancer immunotherapy. Front Immunol 2013; 4: 101.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Satwani P, van de Ven C, Ayello J, Cairo D, Simpson LL, Baxi L et al. Interleukin (IL)-15 in combination with IL-2, fms-like tyrosine kinase-3 ligand and anti-CD3 significantly enhances umbilical cord blood natural killer (NK) cell and NK-cell subset expansion and NK function. Cytotherapy 2011; 13: 730–738.

    Article  CAS  PubMed  Google Scholar 

  42. Shah N, Martin-Antonio B, Yang H, Ku S, Lee DA, Cooper LJ et al. Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity. PLoS ONE 2013; 8: e76781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spanholtz J, Preijers F, Tordoir M, Trilsbeek C, Paardekooper J, de Witte T et al. Clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process. PLoS ONE 2011; 6: e20740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Spanholtz J, Tordoir M, Eissens D, Preijers F, van der Meer A, Joosten I et al. High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS ONE 2010; 5: e9221.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Beck RC . Production of cytotoxic, KIR-negative NK cells from CD34+ cord blood cells with the use of Notch signaling. Transfusion 2011; 51 (Suppl 4): 145S–152S.

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka J, Sugita J, Shiratori S, Shigematu A, Asanuma S, Fujimoto K et al. Expansion of NK cells from cord blood with antileukemic activity using GMP-compliant substances without feeder cells. Leukemia 2012; 26: 1149–1152.

    Article  CAS  PubMed  Google Scholar 

  47. Tanaka J, Sugita J, Shiratori S, Shigematsu A, Imamura M . Dasatinib enhances the expansion of CD56+CD3- NK cells from cord blood. Blood 2012; 119: 6175–6176.

    Article  CAS  PubMed  Google Scholar 

  48. Li Y, Schmidt-Wolf IG, Wu YF, Huang SL, Wei J, Fang J et al. Optimized protocols for generation of cord blood-derived cytokine-induced killer/natural killer cells. Anticancer Res 2010; 30: 3493–3499.

    CAS  PubMed  Google Scholar 

  49. Xing D, Ramsay AG, Gribben JG, Decker WK, Burks JK, Munsell M et al. Cord blood natural killer cells exhibit impaired lytic immunological synapse formation that is reversed with IL-2 ex vivo expansion. J Immunother 2010; 33: 684–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smyth MJ, Hayakawa Y, Takeda K, Yagita H . New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2002; 2: 850–861.

    Article  CAS  PubMed  Google Scholar 

  51. Broxmeyer HE, Hoggatt J, O'Leary HA, Mantel C, Chitteti BR, Cooper S et al. Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med 2012; 18: 1786–1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Farag SS, Srivastava S, Messina-Graham S, Schwartz J, Robertson MJ, Abonour R et al. In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological malignancies. Stem Cells Dev 2013; 22: 1007–1015.

    Article  CAS  PubMed  Google Scholar 

  53. Horwitz ME, Chao NJ, Rizzieri DA, Long GD, Sullivan KM, Gasparetto C et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest 2014; 124: 3121–3128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Micklethwaite KP, Savoldo B, Hanley PJ, Leen AM, Demmler-Harrison GJ, Cooper LJ et al. Derivation of human T lymphocytes from cord blood and peripheral blood with antiviral and antileukemic specificity from a single culture as protection against infection and relapse after stem cell transplantation. Blood 2010; 115: 2695–2703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Popat U, Mehta RS, Rezvani K, Fox P, Kondo K, Marin D et al. Enforced fucosylation of cord blood hematopoietic cells accelerates neutrophil and platelet engraftment after transplantation. Blood 2015; 125: 2885–2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wagner JE, Brunstein CG, McKenna D, Sumstad D, Maahs S, Boitano AE et al. Safety and exploratory efficacy of ex vivo expanded umbilical cord blood (ICB) hematopoietic stem and progenitor cells (HSPC) using cytokines and stem-gegenin 1 (SR1): Interim results of a phase 1/2 dose escalation clinical study. Blood (ASH Meet Abstr) 2013; 122: 698.

    Google Scholar 

Download references

Acknowledgements

We thank Erin Morris RN for her expert assistance in the preparation of this manuscript. This review represents an overview of the 7th Plenary session at the New Frontiers in Pediatric Allogeneic Stem Cell Transplantation presentation at the ASPHO/PBMTC meeting in Miami in May 2014. This research is supported by grants from the NCI (#1R13CA177155-01), NHLBI (#5U10HL069254-13), Pediatric Cancer Research Foundation, Children’s Cancer Fund, NMDP Foundation and St Baldrick’s Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Cairo.

Ethics declarations

Competing interests

DAL has financial or ownership interest relating to ex vivo expansion of NK cells in Intrexon Corporation, Ziopharm Oncology and Cyto-Sen Therapeutics. The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cairo, M., Tarek, N., Lee, D. et al. Cellular engineering and therapy in combination with cord blood allografting in pediatric recipients. Bone Marrow Transplant 51, 27–33 (2016). https://doi.org/10.1038/bmt.2015.196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2015.196

This article is cited by

Search

Quick links