Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Post-autologous transplant maintenance therapies in lymphoid malignancies: are we there yet?

Abstract

Disease relapse after autologous hematopoietic transplant (auto-HCT) remains the number one cause of post-transplant therapy failure and mortality. The last decade has seen a proliferation of clinical studies looking at the prevention of post-auto-HCT therapy failure with various maintenance strategies. The benefit of such therapies is in turn dependent on disease histology and timing of transplantation. Although high dose therapy (HDT) provides durable responses in chemosensitive relapsed diffuse large B-cell lymphoma (DLBCL), a sizable subset experiences disease relapse. Unfortunately, the addition of rituximab as a post-auto-HCT maintenance strategy did not improve survival outcomes. The preliminary results with programmed death -1 (PD-1) Ab as post-auto maintenance in DLBCL is promising but requires randomized validation. In follicular lymphoma, the 5- and 10-year PFS rates are ~60% and 31%, respectively. Although the addition of rituximab improved PFS, there is no survival benefit, to date. Disease relapse after auto-HCT in mantle cell lymphoma (MCL) is not uncommon. Rituximab maintenance in this setting provides a PFS benefit. Given the poor prognosis of post-auto-HCT failures in MCL, maintenance can be considered on a case-by-case basis. In chemosensitive relapsed Hodgkin lymphoma, addition of brentuximab vedotin after auto-HCT improved 2-year PFS (65 vs 45%) and can be considered as an option for maintenance therapy post auto-HCT, in select higher risk patients. Ongoing trials evaluating the efficacy of post-auto-HCT maintenance with novel agents (for example, immunomodulators, proteasome inhibitors, PD-1 inhibitors, Bruton’s tyrosine kinase inhibitors and so on) will likely change the practice landscape for lymphoma patients following HDT and auto-HCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Pasquini MC, Zhu X . Current use and outcome of hematopoietic stem cell transplantation: CIBMTR Summary Slides, 2014. Available at http://www.cibmtr.org.

  2. Hamadani M . Reappraising the role of autologous transplantation for indolent B-cell lymphomas in the chemoimmunotherapy era: is it still relevant? Bone Marrow Transplant 2013; 48: 1013–1021.

    Article  CAS  PubMed  Google Scholar 

  3. Freedman AS, Neuberg D, Mauch P, Soiffer RJ, Anderson KC, Fisher DC et al. Long-term follow-up of autologous bone marrow transplantation in patients with relapsed follicular lymphoma. Blood 1999; 94: 3325–3333.

    CAS  PubMed  Google Scholar 

  4. Tarella C, Corradini P, Astolfi M, Bondesan P, Caracciolo D, Cherasco C et al. Negative immunomagnetic ex vivo purging combined with high-dose chemotherapy with peripheral blood progenitor cell autograft in follicular lymphoma patients: evidence for long-term clinical and molecular remissions. Leukemia 1999; 13: 1456–1462.

    Article  CAS  PubMed  Google Scholar 

  5. Tarella C, Zanni M, Magni M, Benedetti F, Patti C, Barbui T et al. Rituximab improves the efficacy of high-dose chemotherapy with autograft for high-risk follicular and diffuse large B-cell lymphoma: a multicenter Gruppo Italiano Terapie Innnovative nei linfomi survey. J Clin Oncol 2008; 26: 3166–3175.

    Article  CAS  PubMed  Google Scholar 

  6. Arcaini L, Montanari F, Alessandrino EP, Tucci A, Brusamolino E, Gargantini L et al. Immunochemotherapy with in vivo purging and autotransplant induces long clinical and molecular remission in advanced relapsed and refractory follicular lymphoma. Ann Oncol 2008; 19: 1331–1335.

    Article  CAS  PubMed  Google Scholar 

  7. Schouten HC, Qian W, Kvaloy S, Porcellini A, Hagberg H, Johnsen HE et al. High-dose therapy improves progression-free survival and survival in relapsed follicular non-Hodgkin's lymphoma: results from the randomized European CUP trial. J Clin Oncol 2003; 21: 3918–3927.

    Article  CAS  PubMed  Google Scholar 

  8. Vose JM, Carter S, Burns LJ, Ayala E, Press OW, Moskowitz CH et al. Phase III randomized study of rituximab/carmustine, etoposide, cytarabine, and melphalan (BEAM) compared with iodine-131 tositumomab/BEAM with autologous hematopoietic cell transplantation for relapsed diffuse large B-cell lymphoma: results from the BMT CTN 0401 trial. J Clin Oncol 2013; 31: 1662–1668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cohen S, Kiss T, Lachance S, Roy DC, Sauvageau G, Busque L et al. Tandem autologous-allogeneic nonmyeloablative sibling transplantation in relapsed follicular lymphoma leads to impressive progression-free survival with minimal toxicity. Biol Blood Marrow Transplant 2012; 18: 951–957.

    Article  PubMed  Google Scholar 

  10. Satwani P, Jin Z, Martin PL, Bhatia M, Garvin JH, George D et al. Sequential myeloablative autologous stem cell transplantation and reduced intensity allogeneic hematopoietic cell transplantation is safe and feasible in children, adolescents and young adults with poor-risk refractory or recurrent Hodgkin and non-Hodgkin lymphoma. Leukemia 2015; 29: 448–455.

    Article  CAS  PubMed  Google Scholar 

  11. Salles G, Seymour JF, Offner F, López-Guillermo A, Belada D, Xerri L et al. Rituximab maintenance for 2 years in patients with high tumor burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3 randomized controlled trial. Lancet 2011; 377: 42–51.

    Article  CAS  PubMed  Google Scholar 

  12. Kahl BS, Hong F, Williams ME, Gascoyne RD, Wagner LI, Krauss JC et al. Rituximab extended schedule or re-treatment trial for low-tumor burden follicular lymphoma: eastern cooperative oncology group protocol e4402. J Clin Oncol 2014; 32: 3096–3102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kluin-Nelemans HC, Hoster E, Hermine O, Walewski J, Trneny M, Giesler CH et al. Treatment of older patients with mantle-cell lymphoma. N Engl J Med 2012; 367: 520–531.

    Article  CAS  PubMed  Google Scholar 

  14. Hamadani M, Hari PN, Zhang Y, Carreras J, Akpek G, Aljurf MD et al. Early failure of frontline rituximab-containing chemo-immunotherapy in diffuse large B cell lymphoma does not predict futility of autologous hematopoietic cell transplantation. Biol Blood Marrow Transplant 2014; 20: 1729–1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lim SH, Esler WV, Zhang Y, Zhang J, Periman PO, Burris C et al. B-cell depletion for 2 years after autologous stem cell transplant for NHL induces prolonged hypogammaglobulinemia beyond the rituximab maintenance period. Leuk Lymphoma 2008; 49: 152–153.

    Article  PubMed  Google Scholar 

  16. Zhang W, Jiao L, Zhou DB, Shen T . Rituximab purging and maintenance therapy combined with autologous stem cell transplantation in patients with diffuse large B-cell lymphoma. Oncol Lett 2010; 1: 733–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsirigotis P, Dray L, Resnick IB, Ackerstein A, Gesundheit B, Elad S et al. Post-autologous stem cell transplantation administration of rituximab improves the outcome of patients with aggressive B cell non-Hodgkin's lymphoma. Ann Hematol 2010; 89: 263–272.

    Article  CAS  PubMed  Google Scholar 

  18. Haioun C, Mounier N, Emile JF, Ranta D, Coiffier B, Tilly H et al. Rituximab versus observation after high-dose consolidative first-line chemotherapy with autologous stem-cell transplantation in patients with poor-risk diffuse large B-cell lymphoma. Ann Oncol 2009; 20: 1985–1992.

    Article  CAS  PubMed  Google Scholar 

  19. Gisselbrecht C, Schmitz N, Mounier N, Singh Gill D, Linch DC, Trneny M et al. Rituximab maintenance therapy after autologous stem-cell transplantation in patients with relapsed CD20 (+) diffuse large B-cell lymphoma: final analysis of the collaborative trial in relapsed aggressive lymphoma. J Clin Oncol 2012; 30: 4462–4469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen YB et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol 2013; 31: 4199–4206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heutte N, Haioun C, Feugier P, Coiffier B, Tilly H, Ferme C et al. Groupe d'Etude des Lymphomes de l'Adulte. Quality of life in 269 patients with poor-risk diffuse large B-cell lymphoma treated with rituximab versus observation after autologous stem cell transplant. Leuk Lymphoma 2011; 52: 1239–1248.

    Article  PubMed  Google Scholar 

  22. Pfreundschuh M, Poeschel V, Zeynalova S, Hänel M, Held G, Schmitz N et al. Optimization of rituximab for the treatment of diffuse large B-cell lymphoma (II): extended rituximab exposure time in the SMARTE-R-CHOP-14 trial of the German high-grade non-Hodgkin lymphoma study group. J Clin Oncol 2014; 32: 4127–4133.

    Article  CAS  PubMed  Google Scholar 

  23. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    Article  CAS  PubMed  Google Scholar 

  24. Sehn LH, Gascoyne RD . Diffuse large B-cell lymphoma: optimizing outcome in the context of clinical and biologic heterogeneity. Blood 2015; 125: 22–32.

    Article  CAS  PubMed  Google Scholar 

  25. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 2010; 463: 88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 2008; 319: 1676–1679.

    Article  CAS  PubMed  Google Scholar 

  27. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011; 470: 115–119.

    Article  CAS  PubMed  Google Scholar 

  28. BĂ©guelin W, Teater MR, Hatzi K, Popovich R, Jiang Y, Bunting KL et al. EZH2 and BCL6 cooperate to create the germinal center B-cell phenotype and induce lymphomas through formation and repression of bivalent chromatin domains. Blood 2013; 122: 1.

    Article  Google Scholar 

  29. Pfeifer M, Grau M, Lenze D, Wenzel SS, Wolf A, Wollert-Wulf B et al. PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B-cell lymphoma. Proc Natl Acad Sci USA 2013; 110: 12420–12425.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol 2013; 31: 88–94.

    Article  CAS  PubMed  Google Scholar 

  31. Wilson WH, Gerecitano JF, Goy A, de Vos S, Kenkre VP, Barr PM et al. The Bruton’s tyrosine kinase (BTK) inhibitor, ibrutinib (PCI-32765), has preferential activity in the ABC subtype of relapsed/refractory de novo diffuse large B-cell lymphoma (DLBCL): interim results of a multicenter, open-label, phase 2 study. Blood 2012; 120: 686.

    Google Scholar 

  32. Dunleavy K, Pittaluga S, Czuczman MS, Dave SS, Wright G, Grant N et al. Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood 2009; 113: 6069–6076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leonard J, Reeves J, Ferhanoglu B, Doner KT, Eom H, Flinn IW et al. PYRAMID and LYM2034: Targeted randomized phase II studies of bortezomib with or without immunochemotherapy in newly diagnosed non-germinal center B-cell-like (GCB) diffuse large B-cell lymphoma (DLBCL), including rapid prospective non-GCB subtype identification. J Clin Oncol 2011; 29: e226–e229.

    Article  Google Scholar 

  34. Witzig TE, Vose JM, Zinzani PL, Reeder CB, Buckstein R, Polikoff JA et al. An international phase II trial of single-agent lenalidomide for relapsed or refractory aggressive B-cell non-Hodgkin's lymphoma. Ann Oncol 2011; 22: 1622–1627.

    Article  CAS  PubMed  Google Scholar 

  35. Hernandez-Ilizaliturri FJ, Deeb G, Zinzani PL, Pileri SA, Malik F, Macon WR et al. Higher response to lenalidomide in relapsed/refractory diffuse large B-cell lymphoma in non-germinal center B-cell-like than in germinal center B-cell-like phenotype. Cancer 2011; 117: 5058–5066.

    Article  CAS  PubMed  Google Scholar 

  36. Barnes JA, Jacobsen E, Feng Y, Freedman A, Hochberg EP, LaCasce AS et al. Everolimus in combination with rituximab induces complete responses in heavily pretreated diffuse large B-cell lymphoma. Haematologica 2013; 98: 615–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iqbal J, Meyer PN, Smith LM, Johnson NA, Vose JM, Greiner TC et al. BCL2 predicts survival in germinal center B-cell-like diffuse large B-cell lymphoma treated with CHOP-like therapy and rituximab. Clin Cancer Res 2011; 17: 7785–7795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu S, Xu-Monette ZY, Tzankov A, Green T, Wu L, Balasubramanyam A et al. MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program. Blood 2013; 121: 4021–4031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davids M, Seymour JF, Gerecitano JF, Kahl BS, Pagel JM, Wierda WG et al. The single-agent Bcl-2 inhibitor ABT-199 (GDC-0199) in patients with relapsed/refractory (R/R) non-Hodgkin lymphoma (NHL): responses observed in all mantle cell lymphoma (MCL) patients. Blood 2013; 122: 1789.

    Article  CAS  Google Scholar 

  40. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O et al. Selective inhibition of BET bromodomains. Nature 2010; 468: 1067–1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chapuy B, McKeown MR, Lin CY, Monti S, Roemer MG, Qi J et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 2013; 24: 777–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Trabucco SE, Gerstein RM, Evens AM, Bradner JE, Shultz LD, Greiner DL et al. Inhibition of bromodomain proteins for the treatment of human diffuse large B-cell lymphoma. Clin Cancer Res 2015; 21: 113–122.

    Article  CAS  PubMed  Google Scholar 

  43. Ansell SM, Stenson M, Habermann TM, Jelinek DF, Witzig TE . Cd4+ T-cell immune response to large B-cell non-Hodgkin's lymphoma predicts patient outcome. J Clin Oncol 2001; 19: 720–726.

    Article  CAS  PubMed  Google Scholar 

  44. Guillaume T, Rubinstein DB, Symann M . Immune reconstitution and immunotherapy after autologous hematopoietic stem cell transplantation. Blood 1998; 92: 1471–1490.

    CAS  PubMed  Google Scholar 

  45. Andorsky DJ, Yamada RE, Said J, Pinkus GS, Betting DJ, Timmerman JM et al. Programmed death ligand 1 is expressed by non-Hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res 2011; 17: 4232–4244.

    Article  CAS  PubMed  Google Scholar 

  46. Li Y, Wang J, Li C, Ke XY . Contribution of PD-L1 to oncogenesis of lymphoma and its RNAi-based targeting therapy. Leuk Lymphoma 2012; 53: 2015–2023.

    Article  CAS  PubMed  Google Scholar 

  47. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O'Donnell E et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 2010; 116: 3268–3277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 2003; 198: 851–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Warlick ED, Tomblyn M, Cao Q, Defor T, Blazar BR, Macmillan M et al. Reduced-intensity conditioning followed by related allografts in hematologic malignancies: Long-term outcomes most successful in indolent and aggressive non-Hodgkin lymphomas. Biol Blood Marrow Transplant 2011; 17: 1025–1032.

    Article  PubMed  Google Scholar 

  50. Porrata LF, Litzow MR, Markovic SN . Immune reconstitution after autologous hematopoietic stem cell transplantation. Mayo Clin Proc 2001; 76: 407–412.

    Article  CAS  PubMed  Google Scholar 

  51. Eshhar Z, Waks T, Gross G, Gross G, Schindler DG . Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993; 90: 720–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kochenderfer JN, Rosenberg SA . Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol 2013; 10: 267–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dotti G, Gottschalk S, Savoldo B, Brenner MK . Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 2014; 257: 107–126.

    Article  CAS  PubMed  Google Scholar 

  54. Kershaw MH, Westwood JA, Darcy PK . Gene-engineered T cells for cancer therapy. Nat Rev Cancer 2013; 13: 525–541.

    Article  CAS  PubMed  Google Scholar 

  55. Sadelain M, Brentjens R, Rivière I . The basic principles of chimeric antigen receptor design. Cancer Discov 2013; 3: 388–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brentjens RJ, Latouche JB, Santos E, Marti F, Gong MC, Lyddane C et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 2003; 9: 279–286.

    Article  CAS  PubMed  Google Scholar 

  57. Cooper LJ, Topp MS, Serrano LM, Gonzalez S, Chang WC, Naranjo A et al. T-cell clones can be rendered specific for CD19: Toward the selective augmentation of the graft-versus-B lineage leukemia effect. Blood 2003; 101: 1637–1644.

    Article  CAS  PubMed  Google Scholar 

  58. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009; 17: 1453–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang X, Naranjo A, Brown CE, Bautista C, Wong CW, Chang WC et al. Phenotypic and functional attributes of lentivirus-modified CD19-specific Human CD8 central memory T cells manufactured at clinical scale. J Immunother 2012; 35: 689–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 2011; 121: 1822–1826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kochenderfer JN, Yu Z, Frasheri D, Restifo NP, Rosenberg SA . Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 2010; 116: 3875–3886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kochenderfer JN, Feldman SA, Zhao Y, Xu H, Black MA, Morgan RA et al. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J Immunother 2009; 32: 689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M et al. Chemotherapy-refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 2015; 33: 540–549.

    Article  CAS  PubMed  Google Scholar 

  64. Montoto S, Canals C, Rohatiner AZ, Taghipour G, Sureda A, Schmitz N et al. Long-term follow-up of high-dose treatment with autologous hematopoietic progenitor cell support in 693 patients with follicular lymphoma: an EBMT registry study. Leukemia 2007; 21: 2324–2331.

    Article  CAS  PubMed  Google Scholar 

  65. van Besien K, Loberiza FR Jr, Bajorunaite R, Armitage JO, Bashey A, Burns LJ et al. Comparison of autologous and allogeneic hematopoietic stem cell transplantation for follicular lymphoma. Blood 2003; 102: 3521–3529.

    Article  CAS  PubMed  Google Scholar 

  66. van Oers MH, Klasa R, Marcus RE, Wolf M, Kimby E, Gascoyne RD et al. Rituximab maintenance improves clinical outcome of relapsed/resistant follicular non-Hodgkin lymphoma in patients both with and without rituximab during induction: results of a prospective randomized phase 3 intergroup trial. Blood 2006; 108: 3295.

    Article  CAS  PubMed  Google Scholar 

  67. van Oers MH, Van Glabbeke M, Giurgea L, Klasa R, Marcus RE, Wolf M et al. Rituximab maintenance treatment of relapsed/resistant follicular non-Hodgkin's lymphoma: long-term outcome of the EORTC 20981 phase III randomized intergroup study. J Clin Oncol 2010; 28: 2853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pettengell R, Schmitz N, Gisselbrecht C, Caballero D, Colombat P, Conde E et al. Randomized study of rituximab in patients with relapsed or resistant follicular lymphoma prior to high-dose therapy as in vivo purging and to maintain remission following high-dose therapy. J Clin Oncol 2010, 28 Abstract 8005.

  69. Vitolo U, Ladetto M, Boccomini C, Baldini L, De Angelis F, Tucci A et al. Rituximab maintenance compared with observation after brief first-line R-FND chemoimmunotherapy with rituximab consolidation in patients age older than 60 years with advanced follicular lymphoma: a phase III randomized study by the Fondazione Italiana Linfomi. J Clin Oncol 2013; 31: 3351–3359.

    Article  CAS  PubMed  Google Scholar 

  70. Catley L, Weisberg E, Kiziltepe T, Tai YT, Hideshima T, Neri P et al. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 2006; 108: 3441–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hideshima T, Bradner JE, Wong J, Chauhan D, Richardson P, Schreiber SL et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 2005; 102: 8567–8572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Simms-Waldrip T, Rodriguez-Gonzalez A, Lin T, Ikeda AK, Fu C, Sakamoto KM . The aggresome pathway as a target for therapy in hematologic malignancies. Mol Genet Metab 2008; 94: 283–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pei XY, Dai Y, Grant S . Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 2004; 10: 3839–3852.

    Article  CAS  PubMed  Google Scholar 

  74. Goy A, Younes A, McLaughlin P, Pro B, Romaguera JE, Hagemeister F et al. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol 2005; 23: 667–675.

    Article  CAS  PubMed  Google Scholar 

  75. O’Connor OA, Wright J, Moskowitz C, Muzzy J, MacGregor-Cortelli B, Stubblefield M et al. Phase II Clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol 2005; 23: 676–684.

    Article  CAS  PubMed  Google Scholar 

  76. Strauss SJ, Maharaj L, Hoare S, Johnson PW, Radford JA, Vinnecombe S et al. Bortezomib therapy in patients with relapsed or refractory lymphoma: potential correlation of in vitro sensitivity and tumor necrosis factor alpha response with clinical activity. J Clin Oncol 2006; 24: 2105–2112.

    Article  CAS  PubMed  Google Scholar 

  77. Di Bella N, Taetle R, Kolibaba K, Boyd T, Raju R, Barrera D et al. Results of a Phase 2 study of bortezomib in patients with relapsed or refractory indolent lymphoma. Blood 2010; 115: 475–480.

    Article  CAS  PubMed  Google Scholar 

  78. Coiffier B, Osmanov EA, Hong X, Scheliga A, Mayer J, Offner F et al. Bortezomib plus rituximab versus rituximab alone in patients with relapsed, rituximab-naive or rituximab-sensitive, follicular lymphoma: a randomised Phase 3 trial. Lancet Oncol 2011; 12: 773–784.

    Article  CAS  PubMed  Google Scholar 

  79. San-Miguel JF, Richardson PGG, Sezer O, Guenther A, Siegel DSD, Blade J et al. A phase lb study of oral panobinostat and IV bortezomib in relapsed or relapsed and refractory multiple myeloma. J Clin Oncol 2011; 29 Abstract 8075.

  80. Badros A, Burger AM, Philip S, Niesvizky R, Kolla SS, Goloubeva O et al. Phase I study of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin Cancer Res 2009; 15: 5250–5257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ et al. CAL-101, a p110 delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 2011; 117: 591–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ et al. PI3K delta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 2014; 370: 1008–1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dietrich S, Tielesch B, Rieger M, Nickelsen M, Pott C, Witzens-Harig M et al. Patterns and outcome of relapse after autologous stem cell transplantation for mantle cell lymphoma. Cancer 2011; 117: 1901–1910.

    Article  PubMed  Google Scholar 

  84. Lim SH, Esler WV, Periman PO, Beggs D, Zhang Y, Townsend M et al. R-CHOP followed by consolidative autologous stem cell transplant and low dose rituxan maintenance therapy for advanced mantle cell lymphoma. Br J Haematol 2008; 142: 482–484.

    Article  CAS  PubMed  Google Scholar 

  85. Graf SA, Stevenson PA, Holmberg LA, Till GD, Press OW, Chauncey TR et al. Rituximab maintenance therapy after autologous stem cell transplantation improves survival of patients with mantle cell lymphoma. 2014 ASH Annual Meeting 6-9 December 2014. San Francisco, CA, Abstract 3985.

    Google Scholar 

  86. Dietrich S, Weidle J, Rieger M, Meissner J, Radujkovic A, Ho AD et al. Rituximab maintenance therapy after autologous stem cell transplantation prolongs progression-free survival in patients with mantle cell lymphoma. Leukemia 2014; 28: 708–709.

    Article  CAS  PubMed  Google Scholar 

  87. Le Gouill S, Thieblemont C, Oberic L, Bouabdallah K, Gyan E, Damaj G et al. Rituximab maintenance versus wait and watch after four courses of R-DHAP followed by autologous stem cell transplantation in previously untreated young patients with mantle cell lymphoma: first interim analysis of the Phase III Prospective Lyma Trial, a Lysa Study. 2014 ASH Annual Meeting 6-9 December 2014. San Francisco, CA, Abstract 146.

    Google Scholar 

  88. Goy A, Sinha R, Williams ME, Kalayoglu Besisik S, Drach J, Ramchandren R et al. Single-agent lenalidomide in patients with mantle-cell lymphoma who relapsed or progressed after or were refractory to bortezomib: phase II MCL-001 (EMERGE) study. J Clin Oncol 2013; 31: 3688–3695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2013; 369: 507–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Goy A, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S et al. Bortezomib in patients with relapsed or refractory mantle cell lymphoma: updated time-to-event analyses of the multicenter phase 2 PINNACLE study. Ann Oncol 2009; 20: 520–525.

    Article  CAS  PubMed  Google Scholar 

  91. Robak T, Huang H, Jin J, Zhu J, Liu T, Samoilova O et al. Bortezomib-based therapy for newly diagnosed mantle-cell lymphoma. N Engl J Med 2015; 372: 944–953.

    Article  CAS  PubMed  Google Scholar 

  92. Andersen NS, Pedersen LB, Laurell A, Elonen E, Kolstad A, Boesen AM et al. Pre-emptive treatment with rituximab of molecular relapse after autologous stem cell transplantation in mantle cell lymphoma. J Clin Oncol 2009; 27: 4365–4370.

    Article  CAS  PubMed  Google Scholar 

  93. Sureda A, Constans M, Iriondo A, Arranz R, Caballero MD, Vidal MJ et al. Prognostic factors affecting long-term outcome after stem cell transplantation in Hodgkin's lymphoma autografted after a first relapse. Ann Oncol 2005; 16: 625–633.

    Article  CAS  PubMed  Google Scholar 

  94. Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 2003; 21: 778–784.

    Article  CAS  PubMed  Google Scholar 

  95. Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma. J Clin Oncol 2012; 30: 2183–2189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Moskowitz CH, Nadamanee A, Masszi T, Agura E, Holowiecki J, Abidi MH et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin's lymphoma at risk of relapse or progression (AETHERA): a randomised double-blind, placebo-controlled, phase 3 trial. Lancet 2015; 385: 1853–1862.

    Article  CAS  PubMed  Google Scholar 

  97. Xu WS, Parmigiani RB, Marks PA . Histone deacetylase inhibitors: Molecular mechanisms of action. Oncogene 2007; 26: 5541–5552.

    Article  CAS  PubMed  Google Scholar 

  98. Younes A . Beyond chemotherapy: New agents for targeted treatment of lymphoma. Nat Rev Clin Oncol 2011; 8: 85–96.

    Article  CAS  PubMed  Google Scholar 

  99. Lemoine M, Derenzini E, Buglio D, Medeiros LJ, Davis RE, Zhang J et al. The pan-deacetylase inhibitor panobinostat induces cell death and synergizes with everolimus in Hodgkin lymphoma cell lines. Blood 2012; 119: 4017–4025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dickinson M, Johnstone RW, Prince HM . Histone deacetylase inhibitors: Potential targets responsible for their anti-cancer effect. Invest New Drugs 2010; 28: S3–S20.

    Article  CAS  PubMed  Google Scholar 

  101. Prince HM, Bishton MJ, Johnstone RW . Panobinostat (LBH589): A potent pan-deacetylase inhibitor with promising activity against hematologic and solid tumors. Future Oncol 2009; 5: 601–612.

    Article  CAS  PubMed  Google Scholar 

  102. Dickinson M, Ritchie D, DeAngelo DJ, Spencer A, Ottmann OG, Fischer T et al. Preliminary evidence of disease response to the pan deacetylase inhibitor panobinostat (LBH589) in refractory Hodgkin lymphoma. Br J Haematol 2009; 147: 97–101.

    Article  CAS  PubMed  Google Scholar 

  103. Younes A, Sureda A, Ben-Yehuda B, Zinzani PL, Ong TC, Prince HM et al. Panobinostat in patients with relapsed/refractory Hodgkin’s lymphoma after autologous stem-cell transplantation: results of a Phase II study. J Clin Oncol 2012; 30: 2197–2203.

    Article  CAS  PubMed  Google Scholar 

  104. Von Tresckow B, Skotnicki A, Lisukov I, Srivastava S, Morgan DS, Morschhauser F et al. Phase III randomized, double blind, placebo controlled multi-center study of panobinostat for maintenance of response in patients with Hodgkin lymphoma who are at risk for relapse after high dose chemotherapy and autologous stem cell transplant: final results after early trial discontinuation. Blood 2013; 122: 4648.

    Google Scholar 

  105. Fehniger TA, Larson S, Trinkaus K, Cashen AF, Blum KA, Fenske TS et al. A phase 2 multicenter study of lenalidomide in relapsed or refractory classical Hodgkin lymphoma. Blood 2011; 118: 5119–5125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 2015; 372: 311–319.

    Article  CAS  PubMed  Google Scholar 

  107. Moskowitz CH, Ribrag V, Michot JM, Martinelli G, Zinzani PL, Gutierrez M et al. PD-1 blockade with the monoclonal antibody pembrolizumab (MK-3475) in patients with classical Hodgkin lymphoma after brentuximab vedotin failure: preliminary results from a phase 1b study. 56th American Society of Hematology Annual Meeting 6-9 December 2014. San Francisco, CA, Abstract 290.

    Google Scholar 

  108. Coiffier B, Pro B, Prince HM, Foss F, Sokol L, Greenwood M et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol 2012; 30: 631–636.

    Article  CAS  PubMed  Google Scholar 

  109. O'Connor OA, Masszi T, Savage KJ, Pinter-Brown LC, Foss FM, Popplewell L et al. Belinostat, a novel pan-histone deacetylase inhibitor (HDACi), in relapsed or refractory peripheral T-cell lymphoma (R/R PTCL): Results from the BELIEF trial. J Clin Oncol 2013; 31 Abstract 8507.

  110. Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol 2012; 30: 2190–2196.

    Article  CAS  PubMed  Google Scholar 

  111. Barr PM, Li H, Spier CM, Mahadevan D, Friedberg JW, LeBlanc ML et al. U.S. Intergroup phase II trial (SWOG 1108) of alisertib, an investigational aurora A kinase (AAK) inhibitor, in patients with peripheral T-cell lymphoma. J Clin Oncol 2014; 32 Abstract 8523.

  112. Luevano M, Daryouzeh M, Alnabhan R, Querol S, Khakoo S, Madrigal A et al. The unique profile of cord blood natural killer cells balances incomplete maturation and effective killing function upon activation. Hum Immunol 2012; 73: 248–257.

    Article  CAS  PubMed  Google Scholar 

  113. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105: 3051–3057.

    Article  CAS  PubMed  Google Scholar 

  114. Bachanova V, Burns LJ, McKenna DH, Curtsinger J, Panoskaltsis-Mortari A, Lindgren BR et al. Allogeneic natural killer cells for refractory lymphoma. Cancer Immunol Immunother 2010; 59: 1739–1744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Soiffer RJ, Alyea EP, Hochberg E, Wu C, Canning C, Parikh B et al. Randomized trial of CD8+ T-cell depletion in the prevention of graft-versus-host disease associated with donor lymphocyte infusion. Biol Blood Marrow Transplant 2002; 8: 625–632.

    Article  PubMed  Google Scholar 

  116. Skov S, Rieneck K, Bovin LF, Skak K, Tomra S, Michelsen BK et al. Histone deacetylase inhibitors: a new class of immunosuppressors targeting a novel signal pathway essential for CD154 expression. Blood 2003; 101: 1430–1438.

    Article  CAS  PubMed  Google Scholar 

  117. Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood 2008; 111: 1428–1436.

    Article  CAS  PubMed  Google Scholar 

  118. Fionda C, Soriani A, Malgarini G, Iannitto ML, Santoni A, Cippitelli M . Heat shock protein-90 inhibitors increase MHC class I-related chain A and B ligand expression on multiple myeloma cells and their ability to trigger NK cell degranulation. J Immunol 2009; 183: 4385–4394.

    Article  CAS  PubMed  Google Scholar 

  119. Roschewski M, Dunleavy K, Pittaluga S, Moorhead M, Pepin F, Kong K et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol 2015; 16: 541–549.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Galimberti S, Luminari S, Ciabatti E, Grassi S, Guerrini F, Dondi A et al. Minimal residual disease after conventional treatment significantly impacts on progression-free survival of patients with follicular lymphoma: the FIL FOLL05 trial. Clin Cancer Res 2014; 20: 6398–6405.

    Article  CAS  PubMed  Google Scholar 

  121. Brenner MK, Rill DR, Moen RC, Krance RA, Mirro J Jr, Anderson WF et al. Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 1993; 341: 85–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Hamadani.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epperla, N., Fenske, T., Lazarus, H. et al. Post-autologous transplant maintenance therapies in lymphoid malignancies: are we there yet?. Bone Marrow Transplant 50, 1393–1404 (2015). https://doi.org/10.1038/bmt.2015.184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2015.184

Search

Quick links