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Optimizing the conduct of haploidentical hematopoietic stem
cell transplants has the potential to expand access to allogeneic
transplants for patients in need. The use of a haploidentical
transplant is being increasingly utilized for transplant candidates
who lack an MHC-matched donor as it has the advantage of a
rapidly available donor who is usually highly committed to
supplying additional cell therapy products. Moreover, although
early studies of haploidentical transplants were associated with
high rates of graft failure and GvHD, more recent studies have
shown improved outcome with the application of strategies to
manipulate or engineer the infused cell products either ex vivo or
in vivo to eliminate the cells that are thought to mediate
alloreactivity.1–3

T-replete haploidentical transplants have successfully been
performed using post-transplant cyclophosphamide (Cy) to
eliminate alloreactive T cells in vivo4 or using very high doses of
immune suppression and anti thymocyte globulin5,6 as means to
reduce GVHD. These procedures are easy to perform and have
been successfully exported to many centers but the rates of
relapse with the use of post-transplant Cy7 and the rates of GvHD
with high dose post-transplant immune suppression remain
relatively high.5,6 Another strategy is to use extensive T-cell
depletion either by CD34+ cell selection of G-CSF-mobilized, large-
volume apheresis or via αβ T-cell deletion, which allows transfer of
natural killer (NK) cells and other CD3-negative cells present in the
infused product.8

As infections are a cause of significant morbidity and mortality
after T-cell-depleted grafts, and relapse also remains a major cause
of treatment failure after these regimens, there is much interest in
approaches to augment antitumor and antiviral immunity after
haploidentical transplant. Consequently, efforts have been made
to selectively deplete alloreactive T cells9,10 or to administer
regulatory T cells with conventional T cells to suppress
alloreactivity while preserving the function of T cells directed to
pathogens or malignant cells.11 Antigen-specific T cells have also
been infused to treat viral infections without inducing alloreactiv-
ity after haploidentical transplant and several groups are exploring
strategies to expand thymic precursors.12 There is also evidence to
suggest that ‘alloreactive’ KIR-mismatched NK cells can mediate
GvL activity in patients with relapsed leukemia13 and can help
eradicate the leukemia cells that might remain after the
conditioning regimen.14 In addition, as NK cells attack primarily
hematopoietic cells, they are considered to have a low potential
for directly causing GvHD themselves.15 Adoptive transfer of NK
cells after transplant has been evaluated in a few trials,16–19 and
although demonstrated to be safe with some clinical activity
observed the benefit of this procedure remains to be proven.20

With improved understanding of T-cell development and
biology, it is now known that specific subsets of T cells may
contribute to the development of GvHD, whereas other T-cell
subsets might have a greater role in modulating a GvL effect.21,22

For example, murine studies suggest that the majority of cells
capable of recognizing allo-Ags and therefore responsible for
causing GvHD reside in the naive CD45RA+ subset of T cells,
whereas CD45 RO+ memory T cells do not induce GVHD.21,23

These observations led to the hypothesis that the use of

CD45RA-depleted grafts might be associated with low rates of
GVHD while preserving memory T cells with specificity for viral
and leukemia Ags and procedures to engineer such a graft were
devised.24

In this issue, Triplett et al. report on the initial clinical outcomes
in pediatric patients with advanced hematological malignancies
who received grafts from haploidentical donors depleted of naive
CD45RA+ T cells. The regimen used was complex with G-CSF
mobilized PBSCs collected from donors on 2 consecutive days to
produce a CD34+-selected product that was infused on day 0
followed by a CD45RA-depleted graft on day +1. There was a
median of 43log depletion of CD45RA+ cells in the graft and
patients received a high total CD34+ cell dose from the
combination of both products (median 17.8 × 106 cells per kg).
By depletion of CD45RA+ cells, there was also a significant
depletion of B cells thereby minimizing the risk of post-transplant
EBV lymphoproliferative disease. To further maximize the GVL
potential of the graft, Triplett et al also infused donor NK cells on
day +7 collected from an additional pheresis from the donor
without GCSF mobilization. Patients received 13.1 (range 1.65
to 56.1) × 106 NK cells per kg that were tolerated without
complications.
The short-term outcomes described in this small cohort of 17

pediatric patients are impressive. Of note, all patients had very
high-risk hematological malignancies with poor prognosis and 10
patients had active disease at time of transplant. All patients
engrafted and remarkably despite receiving a median CD3+ cell
dose of 121.8 × 106 per kg, no acute GvHD was reported. Six
patients developed limited chronic GvHD, which was controlled
without systemic therapy in all but one. Although there were a
few viral reactivations, there were no deaths related to infectious
complications. Thirteen of the 17 patients are alive in remission
with 2 patients dying of non-infectious transplant-related
mortality and 2 patients experiencing a relapse.
One of the greatest challenges with T-cell-depleted haplo-

identical transplants is the prolonged period of lymphopenia in
the first 100 days post transplant that places patients at increased
risk of infections and relapse.25 Long-term T-cell recovery is largely
dependent on de novo T-cell production mediated by thymo-
poeisis and more closely resembles that of age-matched controls
rather than donor graft.26 In this report, patients had robust and
rapid immune reconstitution with nearly normal number of CD8+
and CD4+ central and effector memory T cells that were able to
mount highly effective proliferative responses to PHA, tetanus,
CMV and HSV as early as day +30 providing critical protection
against infections, while the presence of large number of Tregs
along with negligible numbers of naive CD45RA+ T cells may have
contributed to the very low observed rate of GvHD. In the first
100 days post transplant, the phenotype of the reconstituting cells
recapitulated the CD45RA-depleted graft content. Interestingly,
although the frequency of TRECS was low, there was a wide Vβ
repertoire suggesting that a broad TCR repertoire could be
achieved by the adoptively transferred memory cells before native
thymic output was initiated. This pattern of immune reconstitution
may well provide the most optimal immune recovery in the
context of T-depleted transplants, bridging the critical period
before de novo T-cell production is initiated providing immunity
against infections with minimal risk of GVHD.
Although these results are encouraging, the number of patients

is small and longer-term follow-up with larger patient numbers is
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required to confirm that this benefit is consistent and sustainable,
and to validate the low acute and chronic GvHD incidence. In
addition, the cost and complexity of the procedure in its current
form will preclude this approach being evaluated in many other
centers. Modifications to simplify the process with perhaps one
infusion of a CD45RA-depleted product, as described by Bleakley
et al.27 instead of two infusions will make this procedure more
accessible. In addition, the NK cell infusion may not be required,
given the large numbers of T cells infused. With more advanced
graft engineering techniques and the development of ‘designer
grafts’ that can enhance immune reconstitution and separate the
GVL effect from GVHD,28 there is potential for much broader use
of haploidentical donor transplantion.
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