Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cell Selection

Donor-derived CD4+/CCR7+ T-cell partial selective depletion does not alter acquired anti-infective immunity

Abstract

In previous studies, we observed that a high proportion of donor-derived CD4+ T cells expressing the chemokine receptor 7 (CCR7) was a major determinant of acute GVHD, without interfering with the incidence of other post-transplant outcomes, especially relapse and nonrelapse mortality rates. Here, we investigated in vitro the impact of partially selective CD4+/CCR7+ T lymphocytes on acquired anti-infective immune response in 10 donors who underwent G-CSF-primed PBSC collection. Similar quantitative and functional proliferative reactions were observed in lymphocyte cultures in the presence of adenovirus and pp65 Ags with unmanipulated and partially depleted donor samples. No responses were observed in the presence of human T-cell lymphotropic virus type 1 used as a negative control. These results complete the proof of concept needed to build a clinical trial investigating partially selective CD4+/CCR7+ T cell-depleted allo-SCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Yakoub-Agha I, de La Salmoniere P, Ribaud P, Sutton L, Wattel E, Kuentz M et al. Allogeneic bone marrow transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia: a long-term study of 70 patients-report of the French society of bone marrow transplantation. J Clin Oncol 2000; 18: 963–971.

    Article  CAS  PubMed  Google Scholar 

  2. Yakoub-Agha I, Fawaz A, Folliot O, Guillerm G, Quesnel B, Fenaux P et al. Allogeneic bone marrow transplantation in patients with follicular lymphoma: a single center study. Bone Marrow Transplant 2002; 30: 229–234.

    Article  CAS  PubMed  Google Scholar 

  3. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75: 555–562.

    CAS  PubMed  Google Scholar 

  4. Appelbaum FR . Graft versus leukemia (GVL) in the therapy of acute lymphoblastic leukemia (ALL). Leukemia 1997; 11 (Suppl 4): S15–S17.

    PubMed  Google Scholar 

  5. Johnson BD, Becker EE, Truitt RL . Graft-vs.-host and graft-vs.-leukemia reactions after delayed infusions of donor T-subsets. Biol Blood Marrow Transplant 1999; 5: 123–132.

    Article  CAS  PubMed  Google Scholar 

  6. Ruggeri L, Capanni M, Tosti A, Urbani E, Posati S, Aversa F et al. Innate immunity against hematological malignancies. Cytotherapy 2002; 4: 343–346.

    Article  CAS  PubMed  Google Scholar 

  7. Talmadge JE . Hematopoietic stem cell graft manipulation as a mechanism of immunotherapy. Int Immunopharmacol 2003; 3: 1121–1143.

    Article  CAS  PubMed  Google Scholar 

  8. Peters C, Matthes-Martin S, Fritsch G, Holter W, Lion T, Witt V et al. Transplantation of highly purified peripheral blood CD34+ cells from HLA-mismatched parental donors in 14 children: evaluation of early monitoring of engraftment. Leukemia 1999; 13: 2070–2078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gajewski J, Gjertson D, Cecka M, Tonai R, Przepiorka D, Hunt L et al. The impact of T-cell depletion on the effects of HLA DR beta 1 and DQ beta allele matching in HLA serologically identical unrelated donor bone marrow transplantation. Biol Blood Marrow Transplant 1997; 3: 76–82.

    CAS  PubMed  Google Scholar 

  10. Andre-Schmutz I, Le Deist F, Hacein-Bey S, Hamel Y, Vitetta E, Schindler J et al. Donor T lymphocyte infusion following ex vivo depletion of donor anti-host reactivity by a specific anti-interleukin-2 receptor P55 chain immunotoxin. Transplant Proc 2002; 34: 2927–2928.

    Article  CAS  PubMed  Google Scholar 

  11. Tiberghien P, Reynolds CW, Keller J, Spence S, Deschaseaux M, Certoux JM et al. Ganciclovir treatment of herpes simplex thymidine kinase-transduced primary T lymphocytes: an approach for specific in vivo donor T-cell depletion after bone marrow transplantation? Blood 1994; 84: 1333–1341.

    CAS  PubMed  Google Scholar 

  12. Barrett AJ, Rezvani K, Solomon S, Dickinson AM, Wang XN, Stark G et al. New developments in allotransplant immunology. Hematology (Am Soc Hematol Educ Program) 2003, 350–371.

    Article  Google Scholar 

  13. Tabilio A, Falzetti F, Zei T, De Ioanni M, Bonifacio E, Battelli F et al. Graft engineering for allogeneic haploidentical stem cell transplantation. Blood Cells Mol Dis 2004; 33: 274–280.

    Article  PubMed  Google Scholar 

  14. Mohty M, Labopin M, Balere ML, Socie G, Milpied N, Tabrizi R et al. Antithymocyte globulins and chronic graft-vs-host disease after myeloablative allogeneic stem cell transplantation from HLA-matched unrelated donors: a report from the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Leukemia 2010; 24: 1867–1874.

    Article  CAS  PubMed  Google Scholar 

  15. Bertz H, Spyridonidis A, Wasch R, Grullich C, Egger M, Finke J . A novel GVHD-prophylaxis with low-dose alemtuzumab in allogeneic sibling or unrelated donor hematopoetic cell transplantation: the feasibility of deescalation. Biol Blood Marrow Transplant 2009; 15: 1563–1570.

    Article  CAS  PubMed  Google Scholar 

  16. Yakoub-Agha I, Saule P, Depil S, Micol JB, Grutzmacher C, Boulanger-Villard F et al. A high proportion of donor CD4+ T cells expressing the lymph node-homing chemokine receptor CCR7 increases incidence and severity of acute graft-versus-host disease in patients undergoing allogeneic stem cell transplantation for hematological malignancy. Leukemia 2006; 20: 1557–1565.

    Article  CAS  PubMed  Google Scholar 

  17. Anderson BE, McNiff J, Yan J, Doyle H, Mamula M, Shlomchik MJ et al. Memory CD4+ T cells do not induce graft-versus-host disease. J Clin Invest 2003; 112: 101–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen BJ, Cui X, Sempowski GD, Liu C, Chao NJ . Transfer of allogeneic CD62L- memory T cells without graft-versus-host disease. Blood 2004; 103: 1534–1541.

    Article  CAS  PubMed  Google Scholar 

  19. Coghill JM, Carlson MJ, Panoskaltsis-Mortari A, West ML, Burgents JE, Blazar BR et al. Separation of graft-versus-host disease from graft-versus-leukemia responses by targeting CC-chemokine receptor 7 on donor T cells. Blood 2010; 115: 4914–4922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Foster AE, Marangolo M, Sartor MM, Alexander SI, Hu M, Bradstock KF et al. Human CD62L- memory T cells are less responsive to alloantigen stimulation than CD62L+ naive T cells: potential for adoptive immunotherapy and allodepletion. Blood 2004; 104: 2403–2409.

    Article  CAS  PubMed  Google Scholar 

  21. Xystrakis E, Bernard I, Dejean AS, Alsaati T, Druet P, Saoudi A . Alloreactive CD4 T lymphocytes responsible for acute and chronic graft-versus-host disease are contained within the CD45RC high but not the CD45RClow subset. Eur J Immunol 2004; 34: 408–417.

    Article  CAS  PubMed  Google Scholar 

  22. Ahmadzadeh M, Hussain SF, Farber DL . Heterogeneity of the memory CD4 T cell response: persisting effectors and resting memory T cells. J Immunol 2001; 166: 926–935.

    Article  CAS  PubMed  Google Scholar 

  23. Cooke KR, Hill GR, Gerbitz A, Kobzik L, Martin TR, Crawford JM et al. Tumor necrosis factor-alpha neutralization reduces lung injury after experimental allogeneic bone marrow transplantation. Transplantation 2000; 70: 272–279.

    Article  CAS  PubMed  Google Scholar 

  24. Wysocki CA, Panoskaltsis-Mortari A, Blazar BR, Serody JS . Leukocyte migration and graft-versus-host disease. Blood 2005; 105: 4191–4199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hopken UE, Droese J, Li JP, Joergensen J, Breitfeld D, Zerwes HG et al. The chemokine receptor CCR7 controls lymph node-dependent cytotoxic T cell priming in alloimmune responses. Eur J Immunol 2004; 34: 461–470.

    Article  PubMed  Google Scholar 

  26. Chang YJ, Zhao XY, Huo MR, Huang XJ . Expression of CD62L on donor CD4(+) T cells in allografts: correlation with graft-versus-host disease after unmanipulated allogeneic blood and marrow transplantation. J Clin Immunol 2009; 29: 696–704.

    Article  CAS  PubMed  Google Scholar 

  27. Ermann J, Hoffmann P, Edinger M, Dutt S, Blankenberg FG, Higgins JP et al. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood 2005; 105: 2220–2226.

    Article  CAS  PubMed  Google Scholar 

  28. Winn R, Vedder N, Ramamoorthy C, Sharar S, Harlan J . Endothelial and leukocyte adhesion molecules in inflammation and disease. Blood Coagul Fibrinolysis 1998; 9 (Suppl 2): S17–S23.

    CAS  PubMed  Google Scholar 

  29. Sharar SR, Chapman NN, Flaherty LC, Harlan JM, Tedder TF, Winn RK . L-selectin (CD62L) blockade does not impair peritoneal neutrophil emigration or subcutaneous host defense to bacteria in rabbits. J Immunol 1996; 157: 2555–2563.

    CAS  PubMed  Google Scholar 

  30. van Leeuwen EM, van Buul JD, Remmerswaal EB, Hordijk PL, ten Berge IJ, van Lier RA . Functional re-expression of CCR7 on CMV-specific CD8+ T cells upon antigenic stimulation. Int Immunol 2005; 17: 713–719.

    Article  CAS  PubMed  Google Scholar 

  31. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 2002; 8: 379–385.

    Article  CAS  PubMed  Google Scholar 

  32. Romero P, Zippelius A, Kurth I, Pittet MJ, Touvrey C, Iancu EM et al. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J Immunol 2007; 178: 4112–4119.

    Article  CAS  PubMed  Google Scholar 

  33. Sourdive DJ, Murali-Krishna K, Altman JD, Zajac AJ, Whitmire JK, Pannetier C et al. Conserved T cell receptor repertoire in primary and memory CD8 T cell responses to an acute viral infection. J Exp Med 1998; 188: 71–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reichstetter S, Standifer NE, Geubtner KA, Liu AW, Agar SL, Kwok WW . Cytotoxic herpes simplex type 2-specific, DQ0602-restricted CD4 T+-cell clones show alloreactivity to DQ0601. Immunology 2006; 117: 350–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zorn E, Wang KS, Hochberg EP, Canning C, Alyea EP, Soiffer RJ et al. Infusion of CD4+ donor lymphocytes induces the expansion of CD8+ donor T cells with cytolytic activity directed against recipient hematopoietic cells. Clin Cancer Res 2002; 8: 2052–2060.

    CAS  PubMed  Google Scholar 

  36. Weinberg A, Zhang L, Hayward AR . Alloreactive cytotoxic CD4+ responses elicited by cytomegalovirus-infected endothelial cells: role of MHC class I antigens. Viral Immunol 2000; 13: 37–47.

    Article  CAS  PubMed  Google Scholar 

  37. Harari A, Rizzardi GP, Ellefsen K, Ciuffreda D, Champagne P, Bart PA et al. Analysis of HIV-1- and CMV-specific memory CD4 T-cell responses during primary and chronic infection. Blood 2002; 100: 1381–1387.

    Article  CAS  PubMed  Google Scholar 

  38. Chen JJ, Huang JC, Shirtliff M, Briscoe E, Ali S, Cesani F et al. CD4 lymphocytes in the blood of HIV(+) individuals migrate rapidly to lymph nodes and bone marrow: support for homing theory of CD4 cell depletion. J Leukoc Biol 2002; 72: 271–278.

    CAS  PubMed  Google Scholar 

  39. Amyes E, Hatton C, Montamat-Sicotte D, Gudgeon N, Rickinson AB, McMichael AJ et al. Characterization of the CD4+ T cell response to Epstein-Barr virus during primary and persistent infection. J Exp Med 2003; 198: 903–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sasson SC, Zaunders JJ, Kelleher AD . The IL-7/IL-7 receptor axis: understanding its central role in T-cell homeostasis and the challenges facing its utilization as a novel therapy. Curr Drug Targets 2006; 7: 1571–1582.

    Article  CAS  PubMed  Google Scholar 

  41. Crooks GM, Weinberg K, Mackall C . Immune reconstitution: from stem cells to lymphocytes. Biol Blood Marrow Transplant 2006; 12 (Suppl 1): 42–46.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the donors who accepted to participate in this research and the members of the association Capucine for their generous support to our clinical and basic research work. This study has been entirely conducted with a donation from the Association Capucine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Yakoub-Agha.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

BC, JT and ST contributed to analysis and wrote the manuscript; ML designed and supervised the study, analyzed data and wrote the manuscript. IY-A designed and supervised the study, enrolled the donors, analyzed data and wrote the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choufi, B., Trauet, J., Thiant, S. et al. Donor-derived CD4+/CCR7+ T-cell partial selective depletion does not alter acquired anti-infective immunity. Bone Marrow Transplant 49, 611–615 (2014). https://doi.org/10.1038/bmt.2014.6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2014.6

Keywords

This article is cited by

Search

Quick links