Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Autologous haematopoietic stem cell mobilisation in multiple myeloma and lymphoma patients: a position statement from the European Group for Blood and Marrow Transplantation

Abstract

Autologous haematopoietic SCT with PBSCs is regularly used to restore BM function in patients with multiple myeloma or lymphoma after myeloablative chemotherapy. Twenty-eight experts from the European Group for Blood and Marrow Transplantation developed a position statement on the best approaches to mobilising PBSCs and on possibilities of optimising graft yields in patients who mobilise poorly. Choosing the appropriate mobilisation regimen, based on patients’ disease stage and condition, and optimising the apheresis protocol can improve mobilisation outcomes. Several factors may influence mobilisation outcomes, including older age, a more advanced disease stage, the type of prior chemotherapy (e.g., fludarabine or melphalan), prior irradiation or a higher number of prior treatment lines. The most robust predictive factor for poor PBSC collection is the CD34+ cell count in PB before apheresis. Determination of the CD34+ cell count in PB before apheresis helps to identify patients at risk of poor PBSC collection and allows pre-emptive intervention to rescue mobilisation in these patients. Such a proactive approach might help to overcome deficiencies in stem cell mobilisation and offers a rationale for the use of novel mobilisation agents.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  1. Gertz MA . Current status of stem cell mobilization. Br J Haematol 2010; 150: 647–662.

    CAS  PubMed  Google Scholar 

  2. Mohty M, Ho AD . In and out of the niche: perspectives in mobilization of hematopoietic stem cells. Exp Hematol 2011; 39: 723–729.

    CAS  PubMed  Google Scholar 

  3. Passweg JR, Baldomero H, Gratwohl A, Bregni M, Cesaro S, Dreger P et al. The EBMT activity survey: 1990-2010. Bone Marrow Transplant 2012; 47: 906–923.

    CAS  PubMed  Google Scholar 

  4. Vellenga E, van Agthoven M, Croockewit AJ, Verdonck LF, Wijermans PJ, van Oers MH et al. Autologous peripheral blood stem cell transplantation in patients with relapsed lymphoma results in accelerated haematopoietic reconstitution, improved quality of life and cost reduction compared with bone marrow transplantation: the Hovon 22 study. Br J Haematol 2001; 114: 319–326.

    CAS  PubMed  Google Scholar 

  5. Vose JM, Sharp G, Chan WC, Nichols C, Loh K, Inwards D et al. Autologous transplantation for aggressive non-Hodgkin's lymphoma: results of a randomized trial evaluating graft source and minimal residual disease. J Clin Oncol 2002; 20: 2344–2352.

    PubMed  Google Scholar 

  6. Pusic I, DiPersio JF . The use of growth factors in hematopoietic stem cell transplantation. Curr Pharm Des 2008; 14: 1950–1961.

    CAS  PubMed  Google Scholar 

  7. Bensinger W, DiPersio JF, McCarty JM . Improving stem cell mobilization strategies: future directions. Bone Marrow Transplant 2009; 43: 181–195.

    CAS  PubMed  Google Scholar 

  8. Wuchter P, Ran D, Bruckner T, Schmitt T, Witzens-Harig M, Neben K et al. Poor mobilization of hematopoietic stem cells-definitions, incidence, risk factors, and impact on outcome of autologous transplantation. Biol Blood Marrow Transplant 2010; 16: 490–499.

    CAS  PubMed  Google Scholar 

  9. Isidori A, Tani M, Bonifazi F, Zinzani P, Curti A, Motta MR et al. Phase II study of a single pegfilgrastim injection as an adjunct to chemotherapy to mobilize stem cells into the peripheral blood of pretreated lymphoma patients. Haematologica 2005; 90: 225–231.

    CAS  PubMed  Google Scholar 

  10. Putkonen M, Rauhala A, Pelliniemi TT, Remes K . Single-dose pegfilgrastim is comparable to daily filgrastim in mobilizing peripheral blood stem cells: a case-matched study in patients with lymphoproliferative malignancies. Ann Hematol 2009; 88: 673–680.

    PubMed  Google Scholar 

  11. Russell N, Mesters R, Schubert J, Boogaerts M, Johnsen HE, Canizo CD et al. A phase 2 pilot study of pegfilgrastim and filgrastim for mobilizing peripheral blood progenitor cells in patients with non-Hodgkin's lymphoma receiving chemotherapy. Haematologica 2008; 93: 405–412.

    CAS  PubMed  Google Scholar 

  12. Tricot G, Barlogie B, Zangari M, van Rhee F, Hoering A, Szymonifka J et al. Mobilization of peripheral blood stem cells in myeloma with either pegfilgrastim or filgrastim following chemotherapy. Haematologica 2008; 93: 1739–1742.

    CAS  PubMed  Google Scholar 

  13. Hart C, Grassinger J, Andreesen R, Hennemann B . EPO in combination with G-CSF improves mobilization effectiveness after chemotherapy with ifosfamide, epirubicin and etoposide and reduces costs during mobilization and transplantation of autologous hematopoietic progenitor cells. Bone Marrow Transplant 2009; 43: 197–206.

    CAS  PubMed  Google Scholar 

  14. Johnsen HE, Geisler C, Juvonen E, Remes K, Juliusson G, Hörnsten P et al. Priming with r-metHuSCF and filgrastim or chemotherapy and filgrastim in patients with malignant lymphomas: a randomized phase II pilot study of mobilization and engraftment. Bone Marrow Transplant 2011; 46: 44–51.

    CAS  PubMed  Google Scholar 

  15. Lapierre V, Rossi JF, Heshmati F, Azar N, Vekhof A, Makowski C et al. Ancestim (r-metHuSCF) plus filgrastim and/or chemotherapy for mobilization of blood progenitors in 513 poorly mobilizing cancer patients: the French compassionate experience. Bone Marrow Transplant 2011; 46: 936–942.

    CAS  PubMed  Google Scholar 

  16. DiPersio JF, Stadtmauer EA, Nademanee A, Micallef IN, Stiff PJ, Kaufman JL et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 2009; 113: 5720–5726.

    CAS  PubMed  Google Scholar 

  17. DiPersio JF, Micallef IN, Stiff PJ, Bolwell BJ, Maziarz RT, Jacobsen E et al. Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin's lymphoma. J Clin Oncol 2009; 27: 4767–4773.

    CAS  PubMed  Google Scholar 

  18. Jantunen E, Lemoli RM . Preemptive use of plerixafor in difficult-to-mobilize patients: an emerging concept. Transfusion 2012; 52: 906–914.

    CAS  PubMed  Google Scholar 

  19. Neupogen [Summary of Product Characteristics]. Amgen Europe BV: Breda, The Netherlands, 2013. Available at: www.medicines.org.uk/emc/medicine/27485/SPC/Neupogen+30+MU+%280.3+mg+ml%29+solution+for+injection/ (accessed on 28 August 2013).

  20. Granocyte [Summary of Product Characteristics]. Chugai Pharma UK Ltd: London, UK, 1993. Available at: www.medicines.org.uk/emc/medicine/8347/SPC/Granocyte+13+million+IU%2c+and+34+million+IU/ (accessed on 28 August 2013).

  21. Gertz MA, Kumar SK, Lacy MQ, Dispenzieri A, Hayman SR, Buadi FK et al. Comparison of high-dose CY and growth factor with growth factor alone for mobilization of stem cells for transplantation in patients with multiple myeloma. Bone Marrow Transplant 2009; 43: 619–625.

    CAS  PubMed  Google Scholar 

  22. Pusic I, Jiang SY, Landua S, Uy GL, Rettig MP, Cashen AF et al. Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Transplant 2008; 14: 1045–1056.

    CAS  PubMed  Google Scholar 

  23. Alegre A, Tomás JF, Martínez-Chamorro C, Gil-Fernández JJ, Fernández-Villalta MJ, Arranz R et al. Comparison of peripheral blood progenitor cell mobilization in patients with multiple myeloma: high-dose cyclophosphamide plus GM-CSF vs G-CSF alone. Bone Marrow Transplant 1997; 20: 211–217.

    CAS  PubMed  Google Scholar 

  24. Wood WA, Whitley J, Moore D, Sharf A, Irons R, Rao K et al. Chemomobilization with etoposide is highly effective in patients with multiple myeloma and overcomes the effects of age and prior therapy. Biol Blood Marrow Transplant 2011; 17: 141–146.

    CAS  PubMed  Google Scholar 

  25. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Multiple Myeloma; version 2.2013. Available at: http://www.nccn.org (accessed on 19 August 2013).

  26. Desikan KR, Barlogie B, Jagannath S, Vesole DH, Siegel D, Fassas A et al. Comparable engraftment kinetics following peripheral-blood stem-cell infusion mobilized with granulocyte colony-stimulating factor with or without cyclophosphamide in multiple myeloma. J Clin Oncol 1998; 16: 1547–1553.

    CAS  PubMed  Google Scholar 

  27. Fox CP, McMillan AK, Bishton MJ, Haynes AP, Russell NH . IVE (ifosfamide, epirubicin and etoposide) is a more effective stem cell mobilisation regimen than ICE (ifosphamide, carboplatin and etoposide) in the context of salvage therapy for lymphoma. Br J Haematol 2008; 141: 244–248.

    CAS  PubMed  Google Scholar 

  28. Moskowitz CH, Bertino JR, Glassman JR, Hedrick EE, Hunte S, Coady-Lyons N et al. Ifosfamide, carboplatin, and etoposide: a highly effective cytoreduction and peripheral-blood progenitor-cell mobilization regimen for transplant-eligible patients with non-Hodgkin's lymphoma. J Clin Oncol 1999; 17: 3776–3785.

    CAS  PubMed  Google Scholar 

  29. Pavone V, Gaudio F, Guarini A, Perrone T, Zonno A, Curci P et al. Mobilization of peripheral blood stem cells with high-dose cyclophosphamide or the DHAP regimen plus G-CSF in non-Hodgkin's lymphoma. Bone Marrow Transplant 2002; 29: 285–290.

    CAS  PubMed  Google Scholar 

  30. Watts MJ, Ings SJ, Leverett D, MacMillan A, Devereux S, Goldstone AH et al. ESHAP and G-CSF is a superior blood stem cell mobilizing regimen compared to cyclophosphamide 1.5 g m(-2) and G-CSF for pre-treated lymphoma patients: a matched pairs analysis of 78 patients. Br J Cancer 2000; 82: 278–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jantunen E . Novel strategies for blood stem cell mobilization: special focus on plerixafor. Expert Opin Biol Ther 2011; 11: 1241–1248.

    CAS  PubMed  Google Scholar 

  32. Mozobil [Product Information]. Genzyme Ltd: Suffolk, UK, 2009. Available at: www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001030/WC500030686.pdf (accessed on 28 August 2013).

  33. Attolico I, Pavone V, Ostuni A, Rossini B, Musso M, Crescimanno A et al. Plerixafor added to chemotherapy plus G-CSF is safe and allows adequate PBSC collection in predicted poor mobilizer patients with multiple myeloma or lymphoma. Biol Blood Marrow Transplant 2012; 18: 241–249.

    CAS  PubMed  Google Scholar 

  34. Basak GW, Jaksic O, Koristek Z, Mikala G, Basic-Kinda S, Mayer J et al. Haematopoietic stem cell mobilization with plerixafor and G-CSF in patients with multiple myeloma transplanted with autologous stem cells. Eur J Haematol 2011; 86: 488–495.

    CAS  PubMed  Google Scholar 

  35. Cashen A, Lopez S, Gao F, Calandra G, MacFarland R, Badel K et al. A phase II study of plerixafor (AMD3100) plus G-CSF for autologous hematopoietic progenitor cell mobilization in patients with Hodgkin lymphoma. Biol Blood Marrow Transplant 2008; 14: 1253–1261.

    CAS  PubMed  Google Scholar 

  36. D’Addio A, Curti A, Worel N, Douglas K, Motta MR, Rizzi S et al. The addition of plerixafor is safe and allows adequate PBSC collection in multiple myeloma and lymphoma patients poor mobilizers after chemotherapy and G-CSF. Bone Marrow Transplant 2011; 46: 356–363.

    PubMed  Google Scholar 

  37. Dugan MJ, Maziarz RT, Bensinger WI, Nademanee A, Liesveld J, Badel K et al. Safety and preliminary efficacy of plerixafor (Mozobil) in combination with chemotherapy and G-CSF: an open-label, multicenter, exploratory trial in patients with multiple myeloma and non-Hodgkin's lymphoma undergoing stem cell mobilization. Bone Marrow Transplant 2010; 45: 39–47.

    CAS  PubMed  Google Scholar 

  38. Basak GW, Mikala G, Koristek Z, Jaksic O, Basic-Kinda S, Cegledi A et al. Plerixafor to rescue failing chemotherapy-based stem cell mobilization: it’s not too late. Leuk Lymphoma 2011; 52: 1711–1719.

    CAS  PubMed  Google Scholar 

  39. Calandra G, McCarty J, McGuirk J, Tricot G, Crocker SA, Badel K et al. AMD3100 plus G-CSF can successfully mobilize CD34+ cells from non-Hodgkin’s lymphoma, Hodgkin’s disease and multiple myeloma patients previously failing mobilization with chemotherapy and/or cytokine treatment: compassionate use data. Bone Marrow Transplant 2008; 41: 331–338.

    CAS  PubMed  Google Scholar 

  40. Duarte RF, Shaw BE, Marín P, Kottaridis P, Ortiz M, Morante C et al. Plerixafor plus granulocyte CSF can mobilize hematopoietic stem cells from multiple myeloma and lymphoma patients failing previous mobilization attempts: EU compassionate use data. Bone Marrow Transplant 2011; 46: 52–58.

    CAS  PubMed  Google Scholar 

  41. Micallef IN, Stiff PJ, DiPersio JF, Maziarz RT, McCarty JM, Bridger G et al. Successful stem cell remobilization using plerixafor (mozobil) plus granulocyte colony-stimulating factor in patients with non-hodgkin lymphoma: results from the plerixafor NHL phase 3 study rescue protocol. Biol Blood Marrow Transplant 2009; 15: 1578–1586.

    CAS  PubMed  Google Scholar 

  42. Carrión R, Serrano D, Gómez-Pineda A, Díez-Martín JL. A randomised study of 10 microg/kg/day (single dose) vs 2 × 5 microg/kg/day (split dose) G-CSF as stem cell mobilisation regimen in high-risk breast cancer patients. Bone Marrow Transplant 2003; 32: 563–567.

    PubMed  Google Scholar 

  43. Romeo A, Chierichini A, Spagnoli A, Vittori M, Vacca M, Gozzer M et al. Standard- versus high-dose lenograstim in adults with hematologic malignancies for peripheral blood progenitor cell mobilization. Transfusion 2010; 50: 2432–2446.

    PubMed  Google Scholar 

  44. Nuamah NM, Goker H, Kilic YA, Dagmoura H, Cakmak A . Spontaneous splenic rupture in a healthy allogeneic donor of peripheral-blood stem cell following the administration of granulocyte colony-stimulating factor (g-csf). A case report and review of the literature. Haematologica 2006; 91: ECR08.

    PubMed  Google Scholar 

  45. Kim JE, Yoo C, Kim S, Lee DH, Kim SW, Lee JS et al. Optimal timing of G-CSF administration for effective autologous stem cell collection. Bone Marrow Transplant 2011; 46: 806–812.

    CAS  PubMed  Google Scholar 

  46. Micallef IN, Sinha S, Gastineau DA, Wolf R, Inwards DJ, Gertz MA et al. Cost-effectiveness analysis of a risk-adapted algorithm of plerixafor use for autologous peripheral blood stem cell mobilization. Biol Blood Marrow Transplant 2013; 19: 87–93.

    CAS  PubMed  Google Scholar 

  47. Keeney M, Brown W, Gratama J, Papa S, Lanza F, Sutherland DR et al. Single platform enumeration of viable CD34(pos) cells. J Biol Regul Homeost Agents 2003; 17: 247–253.

    CAS  PubMed  Google Scholar 

  48. Whitby A, Whitby L, Fletcher M, Reilly JT, Sutherland DR, Keeney M et al. ISHAGE protocol: are we doing it correctly? Cytometry B 2012; 82: 9–17.

    Google Scholar 

  49. Abrahamsen JF, Stamnesfet S, Liseth K, Hervig T, Bruserud O . Large-volume leukapheresis yields more viable CD34+ cells and colony-forming units than normal-volume leukapheresis, especially in patients who mobilize low numbers of CD34+ cells. Transfusion 2005; 45: 248–253.

    CAS  PubMed  Google Scholar 

  50. Coluccia P, Montefusco V, Tunesi S, Avella M, Bompadre A, Longoni P et al. Peripheral blood stem cell collection in multiple myeloma: a retrospective analysis of 6 years leukapheresis activity in 109 patients treated at the Istituto Nazionale dei Tumori of Milan. J Clin Apher 2009; 24: 134–140.

    PubMed  Google Scholar 

  51. Jaksic O, Basic-Kinda S, Maricic I, Bojanic I, Nemet D, Pejsa V et al. Effective stem cell mobilization with plerixafor+G-CSF followed by large volume leukapheresis in poor mobilizers: the experience of the Croatian cooperative group for haematologic diseases (KROHEM). Bone Marrow Transplant 2010; 45: S321 (abstract P1018).

    Google Scholar 

  52. Donmez A, Tombuloglu M, Gungor A, Soyer N, Saydam G, Cagirgan S . Clinical side effects during peripheral blood progenitor cell infusion. Transfus Apher Sci 2007; 36: 95–101.

    PubMed  Google Scholar 

  53. Jiang L, Malik S, Litzow M, Gastineau D, Micallef I, Roy V et al. Hematopoietic stem cells from poor and good mobilizers are qualitatively equivalent. Transfusion 2012; 52: 542–548.

    CAS  PubMed  Google Scholar 

  54. Weaver CH, Hazelton B, Birch R, Palmer P, Allen C, Schwartzberg L et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 1995; 86: 3961–3969.

    CAS  PubMed  Google Scholar 

  55. Holtan SG, Porrata LF, Micallef IN, Padley DJ, Inwards DJ, Ansell SA et al. AMD3100 affects autograft lymphocyte collection and progression-free survival after autologous stem cell transplantation in non-Hodgkin lymphoma. Clin Lymphoma Myeloma 2007; 7: 315–318.

    CAS  PubMed  Google Scholar 

  56. Fruehauf S, Veldwijk MR, Seeger T, Schubert M, Laufs S, Topaly J et al. A combination of granulocyte-colony-stimulating factor (G-CSF) and plerixafor mobilizes more primitive peripheral blood progenitor cells than G-CSF alone: results of a European phase II study. Cytotherapy 2009; 11: 992–1001.

    CAS  PubMed  Google Scholar 

  57. Taubert I, Saffrich R, Zepeda-Moreno A, Hellwig I, Eckstein V, Bruckner T et al. Characterization of hematopoietic stem cell subsets from patients with multiple myeloma after mobilization with plerixafor. Cytotherapy 2011; 13: 459–466.

    CAS  PubMed  Google Scholar 

  58. Varmavuo V, Mäntymaa P, Silvennoinen R, Nousiainen T, Kuittinen T, Jantunen E . CD34+ cell subclasses and lymphocyte subsets in blood grafts collected after various mobilization methods in myeloma patients. Transfusion 2013; 53: 1024–1032.

    CAS  PubMed  Google Scholar 

  59. Varmavuo V, Mäntymaa P, Kuittinen T, Nousiainen T, Jantunen E . Blood graft lymphocyte subsets after plerixafor injection in non-Hodgkin's lymphoma patients mobilizing poorly with chemotherapy plus granulocyte-colony-stimulating factor. Transfusion 2012; 52: 1785–1791.

    CAS  PubMed  Google Scholar 

  60. Porrata LF, Gastineau DA, Padley D, Bundy K, Markovic SN . Re-infused autologous graft natural killer cells correlates with absolute lymphocyte count recovery after autologous stem cell transplantation. Leuk Lymphoma 2003; 44: 997–1000.

    CAS  PubMed  Google Scholar 

  61. Demirkazik A, Kessinger A, Armitage JO, Bierman PJ, Lynch J, Vose J et al. Progenitor and lymphoma cells in blood stem cell harvests: impact on survival following transplantation. Bone Marrow Transplant 2001; 28: 207–212.

    CAS  PubMed  Google Scholar 

  62. DiPersio JF, Ho AD, Hanrahan J, Hsu FJ, Fruehauf S . Relevance and clinical implications of tumor cell mobilization in the autologous transplant setting. Biol Blood Marrow Transplant 2011; 17: 943–955.

    PubMed  Google Scholar 

  63. Ho J, Yang L, Banihashemi B, Martin L, Halpenny M Atkins H et al. Contaminating tumour cells in autologous PBSC grafts do not influence survival or relapse following transplant for multiple myeloma or B-cell non-Hodgkin's lymphoma. Bone Marrow Transplant 2009; 43: 223–228.

    CAS  PubMed  Google Scholar 

  64. Kopp HG, Yildirim S, Weisel KC, Kanz L, Vogel W . Contamination of autologous peripheral blood progenitor cell grafts predicts overall survival after high-dose chemotherapy in multiple myeloma. J Cancer Res Clin Oncol 2009; 135: 637–642.

    CAS  PubMed  Google Scholar 

  65. Lemoli RM, Fortuna A, Motta MR, Rizzi S, Giudice V, Nannetti A et al. Concomitant mobilization of plasma cells and hematopoietic progenitors into peripheral blood of multiple myeloma patients: positive selection and transplantation of enriched CD34+ cells to remove circulating myeloma cells. Blood 1996; 87: 1625–1634.

    CAS  PubMed  Google Scholar 

  66. Vogel W, Kopp HG, Kanz L, Einsele H . Myeloma cell contamination of peripheral blood stem-cell grafts can predict the outcome in multiple myeloma patients after high-dose chemotherapy and autologous stem-cell transplantation. J Cancer Res Clin Oncol 2005; 131: 214–218.

    PubMed  Google Scholar 

  67. Fruehauf S, Ehninger G, Hübel K, Topaly J, Goldschmidt H, Ho AD et al. Mobilization of peripheral blood stem cells for autologous transplant in non-Hodgkin's lymphoma and multiple myeloma patients by plerixafor and G-CSF and detection of tumor cell mobilization by PCR in multiple myeloma patients. Bone Marrow Transplant 2010; 45: 269–275.

    CAS  PubMed  Google Scholar 

  68. Tricot G, Cottler-Fox MH, Calandra G . Safety and efficacy assessment of plerixafor in patients with multiple myeloma proven or predicted to be poor mobilizers, including assessment of tumor cell mobilization. Bone Marrow Transplant 2010; 45: 63–68.

    CAS  PubMed  Google Scholar 

  69. Bourhis JH, Bouko Y, Koscielny S, Bakkus M, Greinix H, Derigs G et al. Relapse risk after autologous transplantation in patients with newly diagnosed myeloma is not related with infused tumor cell load and the outcome is not improved by CD34+ cell selection: long term follow-up of an EBMT phase III randomized study. Haematologica 2007; 92: 1083–1090.

    PubMed  Google Scholar 

  70. Lemoli RM, Martinelli G, Zamagni E, Motta MR, Rizzi S, Terragna C et al. Engraftment, clinical, and molecular follow-up of patients with multiple myeloma who were reinfused with highly purified CD34+ cells to support single or tandem high-dose chemotherapy. Blood 2000; 95: 2234–2239.

    CAS  PubMed  Google Scholar 

  71. Stewart AK, Vescio R, Schiller G, Ballester O, Noga S, Rugo H et al. Purging of autologous peripheral-blood stem cells using CD34 selection does not improve overall or progression-free survival after high-dose chemotherapy for multiple myeloma: results of a multicenter randomized controlled trial. J Clin Oncol 2001; 19: 3771–3779.

    CAS  PubMed  Google Scholar 

  72. Bashey A, Pérez WS, Zhang MJ, Anderson KC, Ballen K, Berenson JR et al. Comparison of twin and autologous transplants for multiple myeloma. Biol Blood Marrow Transplant 2008; 14: 1118–1124.

    PubMed  PubMed Central  Google Scholar 

  73. Bierman PJ, Sweetenham JW, Loberiza FR Jr, Taghipour G, Lazarus HM Rizzo JD et al. Syngeneic hematopoietic stem-cell transplantation for non-Hodgkin's lymphoma: a comparison with allogeneic and autologous transplantation—The Lymphoma Working Committee of the International Bone Marrow Transplant Registry and the European Group for Blood and Marrow Transplantation. J Clin Oncol 2003; 21: 3744–3753.

    PubMed  Google Scholar 

  74. Eve HE, Seymour JF, Rule SA . Impairment of peripheral blood stem-cell mobilisation in patients with mantle-cell lymphoma following primary treatment with fludarabine and cyclophosphamide +/− rituximab. Leuk Lymphoma 2009; 50: 463–465.

    CAS  PubMed  Google Scholar 

  75. Han X, Ma L, Zhao L, He X, Liu P, Zhou S et al. Predictive factors for inadequate stem cell mobilization in Chinese patients with NHL and HL: 14-year experience of a single-center study. J Clin Apher 2012; 27: 64–74.

    CAS  PubMed  Google Scholar 

  76. Janikova A, Koristek Z, Vinklarkova J, Pavlik T, Sticha M, Navratil M et al. Efficacious but insidious: a retrospective analysis of fludarabine-induced myelotoxicity using long-term culture-initiating cells in 100 follicular lymphoma patients. Exp Hematol 2009; 37: 1266–1273.

    CAS  PubMed  Google Scholar 

  77. Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Gastineau DA et al. Impact of lenalidomide therapy on stem cell mobilization and engraftment post-peripheral blood stem cell transplantation in patients with newly diagnosed myeloma. Leukemia 2007; 21: 2035–2042.

    CAS  PubMed  Google Scholar 

  78. Mazumder A, Kaufman J, Niesvizky R, Lonial S, Vesole D, Jagannath S . Effect of lenalidomide therapy on mobilization of peripheral blood stem cells in previously untreated multiple myeloma patients. Leukemia 2008; 22: 1280–1281.

    CAS  PubMed  Google Scholar 

  79. Mendrone A Jr, Arrais CA, Saboya R, Chamone Dde A, Dulley FL . Factors affecting hematopoietic progenitor cell mobilization: an analysis of 307 patients. Transfus Apher Sci 2008; 39: 187–192.

    PubMed  Google Scholar 

  80. Nakasone H, Kanda Y, Ueda T, Matsumoto K, Shimizu N, Minami J et al. Retrospective comparison of mobilization methods for autologous stem cell transplantation in multiple myeloma. Am J Hematol 2009; 84: 809–814.

    CAS  PubMed  Google Scholar 

  81. Ozsan GH, Micallef IN, Dispenzieri A, Kumar S, Lacy MQ, Dingli D et al. Hematopoietic recovery kinetics predicts for poor CD34+ cell mobilization after cyclophosphamide chemotherapy in multiple myeloma. Am J Hematol 2012; 87: 1–4.

    CAS  PubMed  Google Scholar 

  82. Paripati H, Stewart AK, Cabou S, Dueck A, Zepeda VJ, Pirooz N et al. Compromised stem cell mobilization following induction therapy with lenalidomide in myeloma. Leukemia 2008; 22: 1282–1284.

    CAS  PubMed  Google Scholar 

  83. Perseghin P, Terruzzi E, Dassi M, Baldini V, Parma M, Coluccia P et al. Management of poor peripheral blood stem cell mobilization: incidence, predictive factors, alternative strategies and outcome. A retrospective analysis on 2177 patients from three major Italian institutions. Transfus Apher Sci 2009; 41: 33–37.

    PubMed  Google Scholar 

  84. Popat U, Saliba R, Thandi R, Hosing C, Qazilbash M, Anderlini P et al. Impairment of filgrastim-induced stem cell mobilization after prior lenalidomide in patients with multiple myeloma. Biol Blood Marrow Transplant 2009; 15: 718–723.

    PubMed  PubMed Central  Google Scholar 

  85. Sancho JM, Morgades M, Grifols JR, Juncà J, Guardia R, Vives S et al. Predictive factors for poor peripheral blood stem cell mobilization and peak CD34(+) cell count to guide pre-emptive or immediate rescue mobilization. Cytotherapy 2012; 14: 823–829.

    CAS  PubMed  Google Scholar 

  86. Sinha S, Gastineau D, Micallef I, Hogan W, Ansell S, Buadi F et al. Predicting PBSC harvest failure using circulating CD34 levels: developing target-based cutoff points for early intervention. Bone Marrow Transplant 2011; 46: 943–949.

    CAS  PubMed  Google Scholar 

  87. Waterman J, Rybicki L, Bolwell B, Copelan E, Pohlman B, Sweetenham J et al. Fludarabine as a risk factor for poor stem cell harvest, treatment-related MDS and AML in follicular lymphoma patients after autologous hematopoietic cell transplantation. Bone Marrow Transplant 2012; 47: 488–493.

    CAS  PubMed  Google Scholar 

  88. Duarte R, Apperley JF, Basak G, Douglas K, Gabriel IH, Geraldes C et al. Patient and disease characteristics influencing the outcome of mobilization with plerixafor: large compassionate-use analysis by ECOSM (European Consortium for Stem Cell Mobilization). Bone Marrow Transplant 2011; 46: S60.

    Google Scholar 

  89. Copelan E, Pohlman B, Rybicki L, Kalaycio M, Sobecks R, Andresen S et al. A randomized trial of etoposide and G-CSF with or without rituximab for PBSC mobilization in B-cell non-Hodgkin's lymphoma. Bone Marrow Transplant 2009; 43: 101–105.

    CAS  PubMed  Google Scholar 

  90. Cavallo F, Bringhen S, Milone G, Ben-Yehuda D, Nagler A, Calabrese E et al. Stem cell mobilization in patients with newly diagnosed multiple myeloma after lenalidomide induction therapy. Leukemia 2011; 25: 1627–1631.

    CAS  PubMed  Google Scholar 

  91. Sinha S, Gertz MA, Lacy MQ, Dispenzieri A, Hayman SR, Buadi FK et al. Majority of patients receiving initial therapy with lenalidomide-based regimens can be successfully mobilized with appropriate mobilization strategies. Leukemia 2012; 26: 1119–1122.

    CAS  PubMed  Google Scholar 

  92. Mark T, Stern J, Furst JR, Jayabalan D, Zafar F, LaRow A et al. Stem cell mobilization with cyclophosphamide overcomes the suppressive effect of lenalidomide therapy on stem cell collection in multiple myeloma. Biol Blood Marrow Transplant 2008; 14: 795–798.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Nazha A, Cook R, Vogl DT, Mangan PA, Gardler M, Hummel K et al. Stem cell collection in patients with multiple myeloma: impact of induction therapy and mobilization regimen. Bone Marrow Transplant 2011; 46: 59–63.

    CAS  PubMed  Google Scholar 

  94. Lanza F, Lemoli RM, Olivieri A, Laszlo D, Martino M, Specchia G et al. Factors affecting successful mobilization with plerixafor: an Italian prospective survey in 215 patients with multiple myeloma and lymphoma. Transfusion 2013; 54: 331–339.

    PubMed  Google Scholar 

  95. Abhyankar S, DeJarnette S, Aljitawi O, Ganguly S, Merkel D, McGuirk J . A risk-based approach to optimize autologous hematopoietic stem cell (HSC) collection with the use of plerixafor. Bone Marrow Transplant 2012; 47: 483–487.

    CAS  PubMed  Google Scholar 

  96. Chen AI, Bains T, Murray S, Knight R, Shoop K, Bubalo J et al. Clinical experience with a simple algorithm for plerixafor utilization in autologous stem cell mobilization. Bone Marrow Transplant 2012; 47: 1526–1529.

    CAS  PubMed  Google Scholar 

  97. Costa LJ, Alexander ET, Hogan KR, Schaub C, Fouts TV, Stuart RK . Development and validation of a decision-making algorithm to guide the use of plerixafor for autologous hematopoietic stem cell mobilization. Bone Marrow Transplant 2011; 46: 64–69.

    CAS  PubMed  Google Scholar 

  98. Costa LJ, Miller AN, Alexander ET, Hogan KR, Shabbir M, Schaub C et al. Growth factor and patient-adapted use of plerixafor is superior to CY and growth factor for autologous hematopoietic stem cells mobilization. Bone Marrow Transplant 2011; 46: 523–528.

    CAS  PubMed  Google Scholar 

  99. Costa LJ, Abbas J, Hogan KR, Kramer C, McDonald K, Butcher CD et al. Growth factor plus preemptive ('just-in-time') plerixafor successfully mobilizes hematopoietic stem cells in multiple myeloma patients despite prior lenalidomide exposure. Bone Marrow Transplant 2012; 47: 1403–1408.

    CAS  PubMed  Google Scholar 

  100. Olivieri A, Marchetti M, Lemoli R, Tarella C, Iacone A, Lanza F et al. Proposed definition of 'poor mobilizer' in lymphoma and multiple myeloma: an analytic hierarchy process by ad hoc working group Gruppo Italiano Trapianto di Midollo Osseo. Bone Marrow Transplant 2012; 47: 342–351.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Medical writing and editorial assistance was provided by Marianne Jenal-Eyholzer, PhD, CMPP, from ETICHO (European Training in Clinical Hematology and Oncology), The Hague, The Netherlands, funded by an unrestricted grant from Sanofi. The authors are fully responsible for the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Mohty.

Ethics declarations

Competing interests

MM: Research support and honoraria from Sanofi, Amgen and Chugai, whose products are discussed here. KH: Consulting fee or honorarium and support for travel to meetings from Genzyme/Sanofi; board membership for Pfizer and Noxxon; payment for lectures including service on speakers’ bureaus from Janssen; and travel/accommodations/meeting expenses unrelated to activities listed from Roche. NK: Honorarium for lectures from Sanofi; and consultant fee from Noxxon. MA: Consulting fee or honorarium from ETICHO. GWB: Sponsorship for participation in scientific conferences from Sanofi; membership of Mozobil advisory boards for Sanofi; and reimbursements for trainings from Sanofi. AB: Honoraria from Sanofi whose products are discussed here. KD: Speaker’s fees and honoraria for medical advisory board work from Genzyme and Sanofi Europe between 2009 and 2012 inclusive. GL: Consulting fee or honorarium from ETICHO. CG: None disclosed. OJ: Consulting fee or honorarium from ETICHO; and consultancy for Sanofi. MWK: consultancy for GlaxoSmithKline, Bayer and Merck. ZK: Consultancy for CEEOR; payment for lectures including service on speakers’ bureaus from Sanofi-Aventis; and travel/accommodations/meeting expenses unrelated to activities listed from Sanofi-Aventis. RML: Payment for lectures including service on speakers’ bureaus from Sanofi; and consultancy and board membership for Sanofi. GM: Grant and fees for participation in review activities such as data monitoring boards, statistical analysis, end point committees and the like from ETICHO; support for travel to meetings or other purposes from Genzyme; expert testimony for Janssen and ETICHO; and payment for lectures including service on speakers’ bureaus from Janssen. AN: Research grant from Genzyme/Sanofi; and honorarium for participating in a scientific advisory board. HCS: Membership of an advisory board for Sanofi. DS: Honoraria and research grants from Genzyme and Amgen; and membership of advisory boards for Genzyme and Amgen. AS: Participation in Sanofi-organised advisory boards. NW: Speaker’s fee from Sanofi and membership of the advisory board. PW: Honorarium for lectures from Sanofi; and consulting fee or honorarium from ETICHO. CC: Consultancy for Terumo BCT, Novartis and Sanofi-Genzyme; and membership of an advisory board for Sanofi-Genzyme. RFD: Consultancy for Sanofi-Genzyme, Amgen and Italfarmaco; and payment for lectures including service on speakers’ bureaus from Sanofi-Genzyme, Amgen and Italfarmaco. JA, IG, FL, NM, LM and SS: no relevant conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mohty, M., Hübel, K., Kröger, N. et al. Autologous haematopoietic stem cell mobilisation in multiple myeloma and lymphoma patients: a position statement from the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 49, 865–872 (2014). https://doi.org/10.1038/bmt.2014.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2014.39

This article is cited by

Search

Quick links