Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transplant Toxicities

BAT2 and BAT3 polymorphisms as novel genetic risk factors for rejection after HLA-related SCT

Subjects

A Corrigendum to this article was published on 05 November 2014

This article has been updated

Abstract

The genetic background of donor and recipient is an important factor determining the outcome of allogeneic hematopoietic SCT (allo-HSCT). We applied whole-genome analysis to investigate genetic variants—other than HLA class I and II—associated with negative outcome after HLA-identical sibling allo-HSCT in a cohort of 110 β-Thalassemic patients. We identified two single-nucleotide polymorphisms (SNPs) in BAT2 (A/G) and BAT3 (T/C) genes, SNP rs11538264 and SNP rs10484558, both located in the HLA class III region, in strong linkage disequilibrium between each other (R2=0.92). When considered as single SNP, none of them reached a significant association with graft rejection (nominal P<0.00001 for BAT2 SNP rs11538264, and P<0.0001 for BAT3 SNP rs10484558), whereas the BAT2/BAT3 A/C haplotype was present at significantly higher frequency in patients who rejected as compared to those with functional graft (30.0% vs 2.6%, nominal P=1.15 × 10−8; and adjusted P=0.0071). The BAT2/BAT3 polymorphisms and specifically the A/C haplotype may represent a novel immunogenetic factor associated with graft rejection in patients undergoing allo-HSCT.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Change history

  • 05 November 2014

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  1. Petersdorf EW . Genetics of graft-versus-host disease: the major histocompatibility complex. Blood Rev 2013; 27: 1–12.

    Article  CAS  Google Scholar 

  2. Auletta JJ, Cooke KR . Bone marrow transplantation: new approaches to immunosuppression and management of acute graft-versus-host disease. Curr Opin Pediatr 2009; 21: 30–38.

    Article  Google Scholar 

  3. Horan J, Wang T, Haagenson M, Spellman SR, Dehn J, Eapen M et al. Evaluation of HLA matching in unrelated hematopoietic stem cell transplantation for nonmalignant disorders. Blood 2012; 120: 2918–2924.

    Article  CAS  Google Scholar 

  4. La Nasa G, Littera R, Locatelli F, Giardini C, Ventrella A, Mulargia M et al. Status of donor-recipient HLA class I ligands and not the KIR genotype is predictive for the outcome of unrelated hematopoietic stem cell transplantation in beta-thalassemia patients. Biol Blood Marrow Transplant 2007; 13: 1358–1368.

    Article  Google Scholar 

  5. Fernandez-Vina MA . HLA factors in transplantation for nonmalignant hematologic disorders. Blood 2012; 120: 2781–2782.

    Article  CAS  Google Scholar 

  6. Dickinson AM . Non-HLA genetics and predicting outcome in HSCT. Int J Immunogenet 2008; 35: 375–380.

    Article  CAS  Google Scholar 

  7. Pearce KF, Lee SJ, Haagenson M, Petersdorf EW, Norden J, Collin MP et al. Analysis of non-HLA genomic risk factors in HLA-matched unrelated donor hematopoietic cell transplantation for chronic myeloid leukemia. Haematologica 2012; 97: 1014–1019.

    Article  CAS  Google Scholar 

  8. Dickinson AM, Harrold JL, Cullup H . Haematopoietic stem cell transplantation: can our genes predict clinical outcome? Expert Rev Mol Med 2007; 9: 1–19.

    Article  Google Scholar 

  9. Nordlander A, Uzunel M, Mattsson J, Remberger M . The TNFd4 allele is correlated to moderate-to-severe acute graft-versus-host disease after allogeneic stem cell transplantation. Br J Haematol 2002; 119: 1133–1136.

    Article  Google Scholar 

  10. Gaziev J, Lucarelli G . Hematopoietic stem cell transplantation for thalassemia. Curr Stem Cell Res Ther 2011; 6: 162–169.

    Article  CAS  Google Scholar 

  11. Bernardo ME, Piras E, Vacca A, Giorgiani G, Zecca M, Bertaina A et al. Allogeneic hematopoietic stem cell transplantation in thalassemia major: results of a reduced-toxicity conditioning regimen based on the use of treosulfan. Blood 2012; 120: 473–476.

    Article  CAS  Google Scholar 

  12. Angelucci E . Hematopoietic stem cell transplantation in thalassemia. Hematology Am Soc Hematol Educ Program 2010; 2010: 456–462.

    Article  Google Scholar 

  13. McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet 2008; 40: 1166–1174.

    Article  CAS  Google Scholar 

  14. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  Google Scholar 

  15. Excoffier L, Slatkin M . Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995; 12: 921–927.

    CAS  Google Scholar 

  16. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 2012; 22: 1790–1797.

    Article  CAS  Google Scholar 

  17. Team RDC R . A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008.

  18. Andreani M, Testi M, Gaziev J, Condello R, Bontadini A, Tazzari PL et al. Quantitatively different red cell/nucleated cell chimerism in patients with long-term, persistent hematopoietic mixed chimerism after bone marrow transplantation for thalassemia major or sickle cell disease. Haematologica 2011; 96: 128–133.

    Article  Google Scholar 

  19. Banerji J, Sands J, Strominger JL, Spies T . A gene pair from the human major histocompatibility complex encodes large proline-rich proteins with multiple repeated motifs and a single ubiquitin-like domain. Proc Natl Acad Sci USA 1990; 87: 2374–2378.

    Article  CAS  Google Scholar 

  20. Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F et al. Integrating common and rare genetic variation in diverse human populations. Nature 2010; 467: 52–58.

    Article  CAS  Google Scholar 

  21. Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, Castagne R et al. Genetics and beyond–the transcriptome of human monocytes and disease susceptibility. PLoS One 2010; 5: e10693.

    Article  Google Scholar 

  22. Nguyen P, Bar-Sela G, Sun L, Bisht KS, Cui H, Kohn E et al. BAT3 and SET1A form a complex with CTCFL/BORIS to modulate H3K4 histone dimethylation and gene expression. Mol Cell Biol 2008; 28: 6720–6729.

    Article  CAS  Google Scholar 

  23. Sasaki T, Gan EC, Wakeham A, Kornbluth S, Mak TW, Okada H . HLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53. Genes Dev 2007; 21: 848–861.

    Article  CAS  Google Scholar 

  24. Desmots F, Russell HR, Michel D, McKinnon PJ . Scythe regulates apoptosis-inducing factor stability during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 2008; 283: 3264–3271.

    Article  CAS  Google Scholar 

  25. Thress K, Henzel W, Shillinglaw W, Kornbluth S . Scythe: a novel reaper-binding apoptotic regulator. EMBO J 1998; 17: 6135–6143.

    Article  CAS  Google Scholar 

  26. Tsukahara T, Kimura S, Ichimiya S, Torigoe T, Kawaguchi S, Wada T et al. Scythe/BAT3 regulates apoptotic cell death induced by papillomavirus binding factor in human osteosarcoma. Cancer Sci 2009; 100: 47–53.

    Article  CAS  Google Scholar 

  27. Choufi B, Chalabi N, Le Corre L, Delort L, Satih S, Bignon Y et al. Gene expression in human acute cutaneous and hepatic graft versus host disease after allogeneic bone marrow transplantation. Cancer Genomics Proteomics 2006; 3: 113–118.

    Google Scholar 

  28. Kamper N, Franken S, Temme S, Koch S, Bieber T, Koch N . gamma-Interferon-regulated chaperone governs human lymphocyte antigen class II expression. FASEB J 2012; 26: 104–116.

    Article  Google Scholar 

  29. Rangachari M, Zhu C, Sakuishi K, Xiao S, Karman J, Chen A et al. Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 2012; 18: 1394–1400.

    Article  CAS  Google Scholar 

  30. Hashimoto M, Nakamura N, Obayashi H, Kimura F, Moriwaki A, Hasegawa G et al. Genetic contribution of the BAT2 gene microsatellite polymorphism to the age-at-onset of insulin-dependent diabetes mellitus. Hum Genet 1999; 105: 197–199.

    Article  CAS  Google Scholar 

  31. Degli-Esposti MA, Andreas A, Christiansen FT, Schalke B, Albert E, Dawkins RL . An approach to the localization of the susceptibility genes for generalized myasthenia gravis by mapping recombinant ancestral haplotypes. Immunogenetics 1992; 35: 355–364.

    Article  CAS  Google Scholar 

  32. Kamper N, Kessler J, Temme S, Wegscheid C, Winkler J, Koch N . A novel BAT3 sequence generated by alternative RNA splicing of exon 11B displays cell type-specific expression and impacts on subcellular localization. PLoS One 2012; 7: e35972.

    Article  Google Scholar 

  33. Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R . RNAMotif an RNA secondary structure definition and search algorithm. Nucleic Acids Res 2001; 29: 4724–4735.

    Article  CAS  Google Scholar 

  34. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR . ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res 2003; 31: 3568–3571.

    Article  CAS  Google Scholar 

  35. Sanford JR, Wang X, Mort M, Vanduyn N, Cooper DN, Mooney SD et al. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res 2009; 19: 381–394.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Mediterranean Institution of Hematology Foundation (IME), Bioflag Srl. internal development funds, and Telethon Italy grant number TGT11A03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Bacchetta.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Bone Marrow Transplantation website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piras, I., Angius, A., Andreani, M. et al. BAT2 and BAT3 polymorphisms as novel genetic risk factors for rejection after HLA-related SCT. Bone Marrow Transplant 49, 1400–1404 (2014). https://doi.org/10.1038/bmt.2014.177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2014.177

This article is cited by

Search

Quick links