Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft Source

Umbilical cord blood transplantation and unmanipulated haploidentical hematopoietic SCT for pediatric hematologic malignances

Abstract

This study aimed to compare the therapeutic effects of single umbilical cord blood transplantation (UCBT) and unmanipulated haploidentical hematopoietic SCT (haplo-HSCT) in childhood hematologic malignances. We enrolled 410 consecutive children who received either single UCBT (n=37) or haplo-HSCT from a family donor (n=373) during the same time period. For each UCBT recipient, three recipients matched for year of HSCT, underlying diseases, disease status and the length of follow-up were randomly selected from the haplo-HSCT cohort. Hematopoietic recovery was significantly faster in haplo-HSCT recipients than in UCBT recipients. The incidence of chronic GVHD was significantly higher in haplo-HSCT recipients. The incidence of CMV-related interstitial pneumonia was higher in UCBT recipients. The haplo-HSCT recipients had better 1-year OS (73.0% vs 56.8%, P=0.048), lower 1-year non-relapse mortality (NRM, 18.0% vs 35.1%, P=0.026) and lower 2-year NRM rates (19.9% vs 35.1%, P=0.044). The relapse- and disease-free survival rates did not differ significantly between the groups. Our results showed that compared with UCBT, unmanipulated haplo-HSCT can improve the outcomes of children with hematologic malignances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Michel G, Rocha V, Chevret S, Arcese W, Chan KW, Filipovich A et al. Unrelated cord blood transplantation for childhood acute myeloid leukemia: a Eurocord Group analysis. Blood 2003; 102: 4290–4297.

    Article  CAS  Google Scholar 

  2. Kurtzberg J, Prasad VK, Carter SL, Wagner JE, Baxter-Lowe LA, Wall D et al. Results of the Cord Blood Transplantation Study (COBLT): clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies. Blood 2008; 112: 4318–4327.

    Article  CAS  Google Scholar 

  3. Lang P, Handgretinger R . Haploidentical SCT in children: an update and future perspectives. Bone Marrow Transplant 2008; 42: S54–S59.

    Article  Google Scholar 

  4. Liu D, Huang X, Liu K, Xu L, Chen H, Han W et al. Haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for treatment of hematological malignancies in children. Biol Blood Marrow Transplant 2008; 14: 469–477.

    Article  CAS  Google Scholar 

  5. Brunstein CG, Fuchs EJ, Carter SL, Karanes C, Costa LJ, Wu J et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood 2011; 118: 282–288.

    Article  CAS  Google Scholar 

  6. Kanda J, Ichinohe T, Kato S, Uchida N, Terakura S, Fukuda T et al. Unrelated cord blood transplantation vs related transplantation with HLA 1-antigen mismatch in the graft-versus-host direction. Leukemia 2013; 27: 286–294.

    Article  CAS  Google Scholar 

  7. Xiao-Jun H, Lan-Ping X, Kai-Yan L, Dai-Hong L, Yu W, Huan C et al. Partially matched related donor transplantation can achieve outcomes comparable with unrelated donor transplantation for patients with hematologic malignancies. Clin Cancer Res 2009; 15: 4777–4783.

    Article  Google Scholar 

  8. Chen YH, Xu LP, Liu DH, Chen H, Zhang XH, Han W et al. Comparative outcomes between cord blood transplantation and bone marrow or peripheral blood stem cell transplantation from unrelated donors in patients with hematologic malignancies: a single-institute analysis. Chin Med J (Engl) 2013; 126: 2499–2503.

    CAS  Google Scholar 

  9. Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W et al. Haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for the treatment of hematological malignancies. Bone Marrow Transplant 2006; 38: 291–297.

    Article  Google Scholar 

  10. Lu DP, Dong L, Wu T, Huang XJ, Zhang MJ, Han W et al. Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood 2006; 107: 3065–3073.

    Article  CAS  Google Scholar 

  11. Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W . Donor lymphocyte infusion for the treatment of leukemia relapse after HLA-mismatched/haploidentical T-cell-replete hematopoietic stem cell transplantation. Haematologica 2007; 92: 414–417.

    Article  Google Scholar 

  12. Wang Y, Liu DH, Liu KY, Xu LP, Zhang XH, Han W et al. Long-term follow-up of haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for the treatment of leukemia: Nine years of experience at a single center. Cancer 2013; 119: 978–985.

    Article  Google Scholar 

  13. Chen H, Liu KY, Xu LP, Liu DH, Chen YH, Zhao XY et al. Administration of imatinib after allogeneic hematopoietic stem cell transplantation may improve disease-free survival for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. J Hematol Oncol 2012; 5: 29.

    Article  CAS  Google Scholar 

  14. Chang YJ, Zhao XY, Huo MR, Xu LP, Liu DH, Liu KY et al. Immune reconstitution following unmanipulated HLA-mismatched/haploidentical transplantation compared with HLA-identical sibling transplantation. J Clin Immunol 2012; 32: 268–280.

    Article  CAS  Google Scholar 

  15. Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W et al. Treatment of acute leukemia with unmanipulated HLA-mismatched/haploidentical blood and bone marrow transplantation. Biol Blood Marrow Transplant 2009; 15: 257–265.

    Article  CAS  Google Scholar 

  16. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant 1995; 15: 825–828.

    CAS  Google Scholar 

  17. Shulman HM, Sullivan KM, Weiden PL, McDonald GB, Striker GE, Sale GE et al. Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med 1980; 69: 204–217.

    Article  CAS  Google Scholar 

  18. Gooley TA, Leisenring W, Crowley J, Storer BE . Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med 1999; 18: 695–706.

    Article  CAS  Google Scholar 

  19. Scrucca L, Santucci A, Aversa F . Regression modeling of competing risk using R: an in depth guide for clinicians. Bone Marrow Transplant 2010; 45: 1388–1395.

    Article  CAS  Google Scholar 

  20. Shahrokhi S, Menaa F, Alimoghaddam K, McGuckin C, Ebtekar M . Insights and hopes in umbilical cord blood stem cell transplantations. J Biomed Biotechnol 2012; 2012: 572821.

    Article  Google Scholar 

  21. Luo XH, Huang XJ, Li D, Liu KY, Xu LP, Liu DH . Immune reconstitution to cytomegalovirus following partially matched-related donor transplantation: impact of in vivo T-cell depletion and granulocyte colony-stimulating factor-primed peripheral blood/bone marrow mixed grafts. Transpl Infect Dis 2013; 15: 22–33.

    Article  CAS  Google Scholar 

  22. Di Bartolomeo P, Santarone S, De Angelis G, Picardi A, Cudillo L, Cerretti R et al. Haploidentical, unmanipulated, G-CSF-primed bone marrow transplantation for patients with high-risk hematologic malignancies. Blood 2013; 121: 849–857.

    Article  CAS  Google Scholar 

  23. Raiola AM, Dominietto A, Ghiso A, Di Grazia C, Lamparelli T, Gualandi F et al. Unmanipulated haploidentical bone marrow transplantation and posttransplantation cyclophosphamide for hematologic malignancies after myeloablative conditioning. Biol Blood Marrow Transplant 2013; 19: 117–122.

    Article  CAS  Google Scholar 

  24. Luznik L, O'Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 2008; 14: 641–650.

    Article  CAS  Google Scholar 

  25. Leung W, Campana D, Yang J, Pei D, Coustan-Smith E, Gan K et al. High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia. Blood 2011; 118: 223–230.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Editage for providing editorial assistance. This work was supported by the Beijing Municipal Science and Technology Program (Grant No. Z111107067311070) and the Key Program of National Natural Science Foundation of China (Grant No. 81230013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X-J Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Bone Marrow Transplantation website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, XD., Zhao, XY., Liu, DH. et al. Umbilical cord blood transplantation and unmanipulated haploidentical hematopoietic SCT for pediatric hematologic malignances. Bone Marrow Transplant 49, 1070–1075 (2014). https://doi.org/10.1038/bmt.2014.109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2014.109

This article is cited by

Search

Quick links