Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Graft-Versus-Tumor Effects

Interleukin-15 administration increases graft-versus-tumor activity in recipients of haploidentical hematopoietic SCT

Abstract

Utilizing a clinically relevant haploidentical (HI) murine transplant model, lethally irradiated B6D2F1 (H2Kb/d) mice were transplanted with T cell-depleted (TCD) BM from B6CBAF1 (H2Kb/k) mice. We found that administration of IL-15 significantly increases the numbers of CD8+ T and natural killer (NK) cells in spleen and BM after transplantion without GVHD. Graft-versus-tumor (GVT) potency of the graft was evaluated upon tumor challenge using P815 tumor cells (H2d). IL-15 administration without T-cell infusion did not result in any survival improvement. However, IL-15 in combination with very low-dose T-cell infusion (1 × 104) significantly increased GVT activity and improved survival in recipients of HI hematopoietic SCT (HSCT). This effect was observed when IL-15 was given at a later time point, rather than immediately following transplantation. IL-15 administration also specifically increased slow-proliferative CD8+ T-cell proliferation and IFN-γ secretion in CD8+ T cells in recipients of CFSE (carboxyfluorescein succinimidyl ester)-labeled HI T-cell infusion, whereas there was no effect on CD4+ T-cell proliferation, suggesting the critical effect of IL-15 on CD8+ T-cell homeostasis in HI host. We conclude that IL-15 can be used for enhancing antileukemia effect of HI-HSCT, which requires presence of donor-derived T cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Katsanis E, Xu Z, Panoskaltsis-Mortari A, Weisdorf DJ, Widmer MB, Blazar BR . IL-15 administration following syngeneic bone marrow transplantation prolongs survival of lymphoma bearing mice. Transplantation 1996; 62: 872–875.

    Article  CAS  PubMed  Google Scholar 

  2. Judge AD, Zhang X, Fujii H, Surh CD, Sprent J . Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J Exp Med 2002; 196: 935–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alpdogan O, Eng JM, Muriglan SJ, Willis LM, Hubbard VM, Tjoe KH et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood 2005; 105: 865–873.

    Article  CAS  PubMed  Google Scholar 

  4. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 2001; 97: 3146–3151.

    Article  CAS  PubMed  Google Scholar 

  5. Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 1994; 264: 965–968.

    Article  CAS  PubMed  Google Scholar 

  6. Burton JD, Bamford RN, Peters C, Grant AJ, Kurys G, Goldman CK et al. A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci USA 1994; 91: 4935–4939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giri JG, Kumaki S, Ahdieh M, Friend DJ, Loomis A, Shanebeck K et al. Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J 1995; 14: 3654–3663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Prlic M, Blazar BR, Farrar MA, Jameson SC . In vivo survival and homeostatic proliferation of natural killer cells. J Exp Med 2003; 197: 967–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carson WE, Fehniger TA, Haldar S, Eckhert K, Lindemann MJ, Lai CF et al. A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 1997; 99: 937–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 2000; 191: 771–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998; 9: 669–676.

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki H, Duncan GS, Takimoto H, Mak TW . Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain. J Exp Med 1997; 185: 499–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Evans R, Fuller JA, Christianson G, Krupke DM, Troutt AB . IL-15 mediates anti-tumor effects after cyclophosphamide injection of tumor-bearing mice and enhances adoptive immunotherapy: the potential role of NK cell subpopulations. Cell Immunol 1997; 179: 66–73.

    Article  CAS  PubMed  Google Scholar 

  14. Marks-Konczalik J, Dubois S, Losi JM, Sabzevari H, Yamada N, Feigenbaum L et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci USA 2000; 97: 11445–11450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Aloisi T et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood 2007; 110: 433–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W et al. Haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of hematological malignancies. Bone Marrow Transplant 2006; 38: 291–297.

    Article  PubMed  Google Scholar 

  17. Luznik L, O'Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 2008; 14: 641–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med 1998; 339: 1186–1193.

    Article  CAS  PubMed  Google Scholar 

  19. Grosso D, Carabasi M, Filicko-O'Hara J, Kasner M, Wagner JL, Colombe B et al. A 2-step approach to myeloablative haploidentical stem cell transplantation: a phase 1/2 trial performed with optimized T-cell dosing. Blood 2011; 118: 4732–4739.

    Article  CAS  PubMed  Google Scholar 

  20. Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J Jr., Crawford JM et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood 1996; 88: 3230–3239.

    CAS  PubMed  Google Scholar 

  21. Lyons AB, Parish CR . Determination of lymphocyte division by flow cytometry. J Immunol Methods 1994; 171: 131–137.

    Article  CAS  PubMed  Google Scholar 

  22. Alpdogan O, Muriglan SJ, Eng JM, Willis LM, Greenberg AS, Kappel BJ et al. IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation. J Clin Invest 2003; 112: 1095–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blaser BW, Roychowdhury S, Kim DJ, Schwind NR, Bhatt D, Yuan W et al. Donor derived IL-15 is critical for acute allogeneic graft-versus-host disease. Blood 2004; 105: 894–901.

    Article  PubMed  Google Scholar 

  24. Roder JC, Rosen A, Fenyo EM, Troy FA . Target-effector interaction in the natural killer cell system: isolation of target structures. Proc Natl Acad Sci USA 1979; 76: 1405–1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stoklasek TA, Schluns KS, Lefrancois L . Combined IL-15/IL-15 Ralpha immunotherapy maximizes IL-15 activity in vivo. J Immunol 2006; 177: 6072–6080.

    Article  CAS  PubMed  Google Scholar 

  26. Eisenman J, Ahdieh M, Beers C, Brasel K, Kennedy MK, Le T et al. Interleukin-15 interactions with interleukin-15 receptor complexes: characterization and species specificity. Cytokine 2002; 20: 121–129.

    Article  CAS  PubMed  Google Scholar 

  27. Berger C, Berger M, Hackman RC, Gough M, Elliott C, Jensen MC et al. Safety and immunologic effects of IL-15 administration in nonhuman primates. Blood 2009; 114: 2417–2426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmaltz C, Alpdogan O, Horndasch KJ, Muriglan SJ, Kappel BJ, Teshima T et al. Differential use of Fas ligand and perforin cytotoxic pathways by donor T cells in graft-versus-host disease and graft-versus-leukemia effect. Blood 2001; 97: 2886–2895.

    Article  CAS  PubMed  Google Scholar 

  29. Sprent J, Surh CD . Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat Immunol 2011; 12: 478–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 2002; 110: 185–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klebanoff CA, Finkelstein SE, Surman DR, Lichtman MK, Gattinoni L, Theoret MR et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci USA 2004; 101: 1969–1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lugli E, Goldman CK, Perera LP, Smedley J, Pung R, Yovandich JL et al. Transient and persistent effects of IL-15 on lymphocyte homeostasis in nonhuman primates. Blood 2010; 116: 3238–3248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Marrow Donor Program (NMDP) and the Marrow Foundation through Amy Strelzer Manasevit Scholar Program. It is also supported by Leukemia Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Alpdogan.

Ethics declarations

Competing interests

The authors declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauter, C., Bailey, C., Panis, M. et al. Interleukin-15 administration increases graft-versus-tumor activity in recipients of haploidentical hematopoietic SCT. Bone Marrow Transplant 48, 1237–1242 (2013). https://doi.org/10.1038/bmt.2013.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2013.47

Keywords

This article is cited by

Search

Quick links