Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pediatric Transplants

Reconstitution of maturating and regulatory lymphocyte subsets after cord blood and BMT in children

Abstract

Some clinical characteristics of cord blood transplantation (CBT) might be explained by specificities in the reconstitution of immune subsets differing by their maturation stage or their implication in GVHD, tolerance or immune responses against tumor or infectious agents. Here, we compare the immune reconstitution of several of these subsets after CBT and BMT. B-cell count recovery was faster after CBT. There was no difference in the recovery of CD4+ and CD8+ cell counts. There was no difference either in the frequency of several subsets: CD45RO+ memory, and CD45RA+ naïve cells within the CD4+ T-cell compartment, CD27+ among B cells, CD56bright, NKG2A+, and KIR+ cells among natural killer (NK) cells, CD25+FOXP3+ regulatory T cells and invariant NKT cells. The proportion of the thymic naïve CD31+CD45RA+CD4+ T cells was lower after CBT at 6 months post-transplant, and was still below normal at 1 year in both groups. NK-cell expansion was more sustained after CBT, with fewer double-negative NKG2AKIR hyporesponsive cells and more double-positive NKG2A+KIR+ hyper-responsive NK cells. These results, therefore, indicate that further research to improve CBT outcome should try to improve thymopoieisis and take advantage of the sustained NK-cell reconstitution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Eapen M, Rubinstein P, Zhang MJ, Stevens C, Kurtzberg J, Scaradavou A et al. Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet 2007; 369: 1947–1954.

    Article  PubMed  Google Scholar 

  2. Thomson BG, Robertson KA, Gowan D, Heilman D, Broxmeyer HE, Emanuel D et al. Analysis of engraftment, graft-versus-host disease, and immune recovery following unrelated donor cord blood transplantation. Blood 2000; 96: 2703–2711.

    CAS  PubMed  Google Scholar 

  3. Barker JN, Hough RE, van Burik JA, DeFor TE, MacMillan ML, O'Brien MR et al. Serious infections after unrelated donor transplantation in 136 children: impact of stem cell source. Biol Blood Marrow Transplant 2005; 11: 362–370.

    Article  PubMed  Google Scholar 

  4. van Burik JA, Burnstein GC . Infectious complications following unrelated cord blood transplantation. Vox Sang 2007; 92: 289–296.

    PubMed  Google Scholar 

  5. Parody R, Martino R, Rovira M, Vazquez L, Vazquez MJ, de la Camara R et al. Severe infections after unrelated donor allogeneic hematopoietic stem cell transplantation in adults: comparison of cord blood transplantation with peripheral blood and bone marrow transplantation. Biol Blood Marrow Transplant 2006; 12: 734–748.

    Article  PubMed  Google Scholar 

  6. Renard C, Barlogis V, Mialou V, Galambrun C, Bernoux D, Goutagny MP et al. Lymphocyte subset reconstitution after unrelated cord blood or bone marrow transplantation in children. Br J Haematol 2010; 152: 322–330.

    Article  PubMed  Google Scholar 

  7. Talvensaari K, Clave E, Douay C, Rabian C, Garderet L, Busson M et al. A broad T-cell repertoire diversity and an efficient thymic function indicate a favorable long-term immune reconstitution after cord blood stem cell transplantation. Blood 2002; 99: 1458–1464.

    Article  CAS  PubMed  Google Scholar 

  8. Giraud P, Thuret I, Reviron D, Chambost H, Brunet C, Novakovitch G et al. Immune reconstitution and outcome after unrelated cord blood transplantation: a single paediatric institution experience. Bone Marrow Transplant 2000; 25: 53–57.

    Article  CAS  PubMed  Google Scholar 

  9. Jacobson CA, Turki AT, McDonough SM, Stevenson KE, Kim HT, Kao G et al. Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 2012; 18: 565–574.

    Article  CAS  PubMed  Google Scholar 

  10. Cohen G, Carter SL, Weinberg KI, Masinsin B, Guinan E, Kurtzberg J et al. Antigen-specific T-lymphocyte function after cord blood transplantation. Biol Blood Marrow Transplant 2006; 12: 1335–1342.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Beziat V, Nguyen S, Lapusan S, Hervier B, Dhedin N, Bories D et al. Fully functional NK cells after unrelated cord blood transplantation. Leukemia 2009; 23: 721–728.

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka J, Sugita J, Asanuma S, Arita K, Shono Y, Kikutchi M et al. Increased number of CD16(+)CD56(dim) NK cells in peripheral blood mononuclear cells after allogeneic cord blood transplantation. Hum Immunol 2009; 70: 701–705.

    Article  CAS  PubMed  Google Scholar 

  13. Jacobson CA, Turki AT, McDonough SM, Stevenson KE, Kim HT, Kao G et al. Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 2012; 18: 565–574.

    Article  CAS  PubMed  Google Scholar 

  14. Dutt S, Tseng D, Ermann J, George TI, Liu YP, Davis CR et al. Naive and memory T cells induce different types of graft-versus-host disease. J Immunol 2007; 179: 6547–6554.

    Article  CAS  PubMed  Google Scholar 

  15. Anderson BE, McNiff J, Yan J, Doyle H, Mamula M, Shlomchik MJ et al. Memory CD4+ T cells do not induce graft-versus-host disease. J Clin Invest 2003; 112: 101–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng H, Matte-Martone C, Li H, Anderson BE, Venketesan S, Sheng Tan H et al. Effector memory CD4+ T cells mediate graft-versus-leukemia without inducing graft-versus-host disease. Blood 2008; 111: 2476–2484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Joe G, Hexner E, Zhu J, Emerson SG . Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat Med 2005; 11: 1299–1305.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Joe G, Hexner E, Zhu J, Emerson SG . Alloreactive memory T cells are responsible for the persistence of graft-versus-host disease. J Immunol 2005; 174: 3051–3058.

    Article  CAS  PubMed  Google Scholar 

  19. Kohler S, Thiel A . Life after the thymus: CD31+ and CD31- human naive CD4+ T-cell subsets. Blood 2009; 113: 769–774.

    Article  CAS  PubMed  Google Scholar 

  20. Kimmig S, Przybylski GK, Schmidt CA, Laurisch K, Mowes B, Radbruch A et al. Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J Exp Med 2002; 195: 789–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Storek J, Ferrara S, Ku N, Giorgi JV, Champlin RE, Saxon A . B cell reconstitution after human bone marrow transplantation: recapitulation of ontogeny? Bone Marrow Transplant 1993; 12: 387–398.

    CAS  PubMed  Google Scholar 

  22. D'Orsogna LJ, Wright MP, Krueger RG, McKinnon EJ, Buffery SI, Witt CS et al. Allogeneic hematopoietic stem cell transplantation recipients have defects of both switched and igm memory B cells. Biol Blood Marrow Transplant 2009; 15: 795–803.

    Article  CAS  PubMed  Google Scholar 

  23. Avanzini MA, Locatelli F, Dos Santos C, Maccario R, Lenta E, Oliveri M et al. B lymphocyte reconstitution after hematopoietic stem cell transplantation: functional immaturity and slow recovery of memory CD27+ B cells. Exp Hematol 2005; 33: 480–486.

    Article  CAS  PubMed  Google Scholar 

  24. Yu J, Mao HC, Wei M, Hughes T, Zhang J, Park IK et al. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood 2010; 115: 274–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bjorkstrom NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 2010; 116: 3853–3864.

    Article  PubMed  Google Scholar 

  26. Beziat V, Descours B, Parizot C, Debre P, Vieillard VNK . cell terminal differentiation: correlated stepwise decrease of NKG2A and acquisition of KIRs. PLoS One 2010; 5: e11966.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bendelac A, Savage PB, Teyton L . The biology of NKT cells. Annu Rev Immunol 2007; 25: 297–336.

    Article  CAS  PubMed  Google Scholar 

  28. Morris ES, MacDonald KP, Rowe V, Banovic T, Kuns RD, Don AL et al. NKT cell-dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs. J Clin Invest 2005; 115: 3093–3103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuns RD, Morris ES, Macdonald KP, Markey KA, Morris HM, Raffelt NC et al. Invariant natural killer T cell-natural killer cell interactions dictate transplantation outcome after alpha-galactosylceramide administration. Blood 2009; 113: 5999–6010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tolar J, Hippen KL, Blazar BR . Immune regulatory cells in umbilical cord blood: T regulatory cells and mesenchymal stromal cells. Br J Haematol 2009; 147: 200–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim YJ, Broxmeyer HE . Immune regulatory cells in umbilical cord blood and their potential roles in transplantation tolerance. Crit Rev Oncol Hematol 2011; 79: 112–126.

    Article  PubMed  Google Scholar 

  32. Dalle JH, Duval M, Moghrabi A, Wagner E, Vachon MF, Barrette S et al. Results of an unrelated transplant search strategy using partially HLA-mismatched cord blood as an immediate alternative to HLA-matched bone marrow. Bone Marrow Transplant 2004; 33: 605–611.

    Article  CAS  PubMed  Google Scholar 

  33. Ruggeri A, Peffault de Latour R, Carmagnat M, Clave E, Douay C, Larghero J et al. Outcomes, infections, and immune reconstitution after double cord blood transplantation in patients with high-risk hematological diseases. Transpl Infect Dis 2011; 13: 456–465.

    Article  CAS  PubMed  Google Scholar 

  34. Komanduri KV, John LS, de Lima M, McMannis J, Rosinski S, McNiece I et al. Delayed immune reconstitution after cord blood transplantation is characterized by impaired thymopoiesis and late memory T-cell skewing. Blood 2007; 110: 4543–4551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brown JA, Stevenson K, Kim HT, Cutler C, Ballen K, McDonough S et al. Clearance of CMV viremia and survival after double umbilical cord blood transplantation in adults depends on reconstitution of thymopoiesis. Blood 2010; 115: 4111–4119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Merindol N, Salem FI, Brito RM, Grenier AJ, Charrier E, Cordeiro P et al. Reconstitution of protective immune responses against CMV and VZV does not require disease development in paediatric recipients of umbilical cord blood transplantation. J Immunol 2012 (in press).

  37. Arakawa-Hoyt J, Dao MA, Thiemann F, Hao QL, Ertl DC, Weinberg KI et al. The number and generative capacity of human B lymphocyte progenitors, measured in vitro and in vivo, is higher in umbilical cord blood than in adult or pediatric bone marrow. Bone Marrow Transplant 1999; 24: 1167–1176.

    Article  CAS  PubMed  Google Scholar 

  38. Moretta A, Maccario R, Fagioli F, Giraldi E, Busca A, Montagna D et al. Analysis of immune reconstitution in children undergoing cord blood transplantation. Exp Hematol 2001; 29: 371–379.

    Article  CAS  PubMed  Google Scholar 

  39. Vandenbosch K, Ovetchkine P . Champagne MA, Haddad E, Alexandrov L, Duval M. Varicella-zoster virus disease is more frequent after cord blood than after bone marrow transplantation. Biol Blood Marrow Transplant 2008; 14: 867–871.

    Article  PubMed  Google Scholar 

  40. Freud AG, Caligiuri MA . Human natural killer cell development. Immunol Rev 2006; 214: 56–72.

    Article  CAS  PubMed  Google Scholar 

  41. Nguyen S, Dhedin N, Vernant JP, Kuentz M, Al Jijakli A, Rouas-Freiss N et al. NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood 2005; 105: 4135–4142.

    Article  CAS  PubMed  Google Scholar 

  42. Giebel S, Dziaczkowska J, Czerw T, Wojnar J, Krawczyk-Kulis M, Nowak I et al. Sequential recovery of NK cell receptor repertoire after allogeneic hematopoietic SCT. Bone Marrow Transplant 2010; 45: 1022–1030.

    Article  CAS  PubMed  Google Scholar 

  43. Haas P, Loiseau P, Tamouza R, Cayuela JM, Moins-Teisserenc H, Busson M et al. NK-cell education is shaped by donor HLA genotype after unrelated allogeneic hematopoietic stem cell transplantation. Blood 2010; 117: 1021–1029.

    Article  PubMed  Google Scholar 

  44. Cooley S, Xiao F, Pitt M, Gleason M, McCullar V, Bergemann TL et al. A subpopulation of human peripheral blood NK cells that lacks inhibitory receptors for self-MHC is developmentally immature. Blood 2007; 110: 578–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Trenado A, Charlotte F, Fisson S, Yagello M, Klatzmann D, Salomon BL et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest 2003; 112: 1688–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ukena SN, Velaga S, Geffers R, Grosse J, Baron U, Buchholz S et al. Human regulatory T cells in allogeneic stem cell transplantation. Blood 2011; 118: e82–e92.

    Article  CAS  PubMed  Google Scholar 

  47. de Lalla C, Rinaldi A, Montagna D, Azzimonti L, Bernardo ME, Sangalli LM et al. Invariant NKT cell reconstitution in pediatric leukemia patients given HLA-haploidentical stem cell transplantation defines distinct CD4+ and CD4- subset dynamics and correlates with remission state. J Immunol 2011; 186: 4490–4499.

    Article  CAS  PubMed  Google Scholar 

  48. Godfrey WR, Spoden DJ, Ge YG, Baker SR, Liu B, Levine BL et al. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood 2005; 105: 750–758.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fonds de Recherche en Santé du Québec and the Fondation Charles-Bruneau. Emily Charrier is a fellow of The Cole Foundation and the Fondation du CHU Sainte-Justine/Fondation des Etoiles. We gratefully acknowledge Drs Elie Haddad, Nikolaus Heveker, Christian Beauséjour and Hugo Soudeyns (GRETISC members, CHU Sainte-Justine) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Herblot.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charrier, E., Cordeiro, P., Brito, RM. et al. Reconstitution of maturating and regulatory lymphocyte subsets after cord blood and BMT in children. Bone Marrow Transplant 48, 376–382 (2013). https://doi.org/10.1038/bmt.2012.176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2012.176

Keywords

This article is cited by

Search

Quick links