Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Post-Transplant Events

A potential role for B cells in suppressed immune responses in cord blood transplant recipients

Abstract

We evaluated immune reconstitution in 58 adults who received hematopoietic SCTs from allogeneic siblings (allosib), matched unrelated donors (MUD) or cord blood (CB) at 90-day intervals for 1 year post transplant. CB recipients had a higher incidence of infections in the first 100 days compared with allosib and MUD recipients. The number of circulating T cells was lower in CB recipients compared with MUD recipients at 90 days and compared with allosib recipients at 180 days. Spectratype analysis of the TCR Vβ complementarity determining region 3 (CDR3) of patient lymphocytes revealed that the TCR repertoire remained poorly diversified even at 360 days in nearly all patients. In contrast, the number of circulating B cells was significantly elevated in CB recipients compared with allosib recipients throughout the first year post transplant and compared with MUD recipients at 9–12 months. Spectratype analysis of the B-cell receptor VH CDR3 showed that the B-cell repertoire was diversified in most patients by 90 days. CD5pos B cells from assayed CB recipients expressed intracellular IL-10 early post transplant. Our data suggest that B cells, in addition to T cells, may have a role in impaired immune responses in CB transplant patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hao QL, Shah AJ, Thiemann FT, Smogorzewska EM, Crooks GM . A functional comparison of CD34+CD38- cells in cord blood and bone marrow. Blood 1995; 86: 3745–3753.

    CAS  PubMed  Google Scholar 

  2. Albano MS, Taylor P, Pass RF, Scaradavou A, Ciubotariu R, Carrier C et al. Umbilical cord blood transplantation and cytomegalovirus: Posttransplantation infection and donor screening. Blood 2006; 108: 4275–4282.

    Article  CAS  PubMed  Google Scholar 

  3. Eapen M, Rocha V, Sanz G, Scaradavou A, Zhang MJ, Arcese W et al. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol 2010; 11: 653–660.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Laughlin MJ, Eapen M, Rubinstein P, Wagner JE, Zhang MJ, Champlin RE et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med 2004; 351: 2265–2275.

    Article  CAS  PubMed  Google Scholar 

  5. Rocha V, Labopin M, Sanz G, Arcese W, Schwerdtfeger R, Bosi A et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med 2004; 351: 2276–2285.

    Article  CAS  PubMed  Google Scholar 

  6. Almyroudis NG, Fabian J, Hahn T, Segal BH, Wetzler M, McCarthy PL . Late infectious complications after cord blood stem cell transplantation. Eur J Clin Microbiol Infect Dis 2009; 28: 1405–1408.

    Article  CAS  PubMed  Google Scholar 

  7. Ooi J, Iseki T, Takahashi S, Tomonari A, Nagayama H, Ishii K et al. A clinical comparison of unrelated cord blood transplantation and unrelated bone marrow transplantation for adult patients with acute leukaemia in complete remission. Br J Haematol 2002; 118: 140–143.

    Article  PubMed  Google Scholar 

  8. Rocha V, Cornish J, Sievers EL, Filipovich A, Locatelli F, Peters C et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood 2001; 97: 2962–2971.

    Article  CAS  PubMed  Google Scholar 

  9. Rocha V, Gluckman E . Eurocord, European B, Marrow Transplant G. Clinical use of umbilical cord blood hematopoietic stem cells. Biol Blood Marrow Transplant 2006; 12 (1 Suppl 1): 34–41.

    Article  PubMed  Google Scholar 

  10. Barker JN, Hough RE, van Burik JA, DeFor TE, MacMillan ML, O'Brien MR et al. Serious infections after unrelated donor transplantation in 136 children: impact of stem cell source. Biol Blood Marrow Transplant 2005; 11: 362–370.

    Article  PubMed  Google Scholar 

  11. Eapen M, Rubinstein P, Zhang MJ, Stevens C, Kurtzberg J, Scaradavou A et al. Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet 2007; 369: 1947–1954.

    Article  PubMed  Google Scholar 

  12. Parody R, Martino R, Rovira M, Vazquez L, Vazquez MJ, de la Camara R et al. Severe infections after unrelated donor allogeneic hematopoietic stem cell transplantation in adults: comparison of cord blood transplantation with peripheral blood and bone marrow transplantation. Biol Blood Marrow Transplant 2006; 12: 734–748.

    Article  PubMed  Google Scholar 

  13. Hentschke P, Omazic B, Mattsson J, Nasman-Bjork I, Lundkvist I, Gigliotti D et al. T-cell receptor Vbeta repertoire after myeloablative and reduced intensity conditioning allogeneic haematopoietic stem cell transplantation. Scand J Immunol 2005; 61: 285–294.

    Article  CAS  PubMed  Google Scholar 

  14. Verfuerth S, Peggs K, Vyas P, Barnett L, O'Reilly RJ, Mackinnon S . Longitudinal monitoring of immune reconstitution by CDR3 size spectratyping after T-cell-depleted allogeneic bone marrow transplant and the effect of donor lymphocyte infusions on T-cell repertoire. Blood 2000; 95: 3990–3995.

    CAS  PubMed  Google Scholar 

  15. Wu CJ, Chillemi A, Alyea EP, Orsini E, Neuberg D, Soiffer RJ et al. Reconstitution of T-cell receptor repertoire diversity following T-cell depleted allogeneic bone marrow transplantation is related to hematopoietic chimerism. Blood 2000; 95: 352–359.

    CAS  PubMed  Google Scholar 

  16. Klein AK, Patel DD, Gooding ME, Sempowski GD, Chen BJ, Liu C et al. T-Cell recovery in adults and children following umbilical cord blood transplantation. Biol Blood Marrow Transplant 2001; 7: 454–466.

    Article  CAS  PubMed  Google Scholar 

  17. Talvensaari K, Clave E, Douay C, Rabian C, Garderet L, Busson M et al. A broad T-cell repertoire diversity and an efficient thymic function indicate a favorable long-term immune reconstitution after cord blood stem cell transplantation. Blood 2002; 99: 1458–1464.

    Article  CAS  PubMed  Google Scholar 

  18. Hamza NS, Lisgaris M, Yadavalli G, Nadeau L, Fox R, Fu P et al. Kinetics of myeloid and lymphocyte recovery and infectious complications after unrelated umbilical cord blood versus HLA-matched unrelated donor allogeneic transplantation in adults. Br J Haematol 2004; 124: 488–498.

    Article  PubMed  Google Scholar 

  19. Ottinger HD, Beelen DW, Scheulen B, Schaefer UW, Grosse-Wilde H . Improved immune reconstitution after allotransplantation of peripheral blood stem cells instead of bone marrow. Blood 1996; 88: 2775–2779.

    CAS  PubMed  Google Scholar 

  20. Petersen SL, Ryder LP, Bjork P, Madsen HO, Heilmann C, Jacobsen N et al. A comparison of T-, B- and NK-cell reconstitution following conventional or nonmyeloablative conditioning and transplantation with bone marrow or peripheral blood stem cells from human leucocyte antigen identical sibling donors. Bone Marrow Transplant 2003; 32: 65–72.

    Article  CAS  PubMed  Google Scholar 

  21. Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF . A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008; 28: 639–650.

    Article  CAS  PubMed  Google Scholar 

  22. Yang M, Sun L, Wang S, Ko KH, Xu H, Zheng BJ et al. Novel function of B cell-activating factor in the induction of IL-10-producing regulatory B cells. J Immunol 2010; 184: 3321–3325.

    Article  CAS  PubMed  Google Scholar 

  23. Saavedra S, Sanz GF, Jarque I, Moscardo F, Jimenez C, Lorenzo I et al. Early infections in adult patients undergoing unrelated donor cord blood transplantation. Bone Marrow Transplant 2002; 30: 937–943.

    Article  CAS  PubMed  Google Scholar 

  24. Giraud P, Thuret I, Reviron D, Chambost H, Brunet C, Novakovitch G et al. Immune reconstitution and outcome after unrelated cord blood transplantation: a single paediatric institution experience. Bone Marrow Transplant 2000; 25: 53–57.

    Article  CAS  PubMed  Google Scholar 

  25. Komanduri KV, John LS, de Lima M, McMannis J, Rosinski S, McNiece I et al. Delayed immune reconstitution after cord blood transplantation is characterized by impaired thymopoiesis and late memory T-cell skewing. Blood 2007; 110: 4543–4551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gokmen E, Raaphorst FM, Boldt DH, Teale JM . Ig heavy chain third complementarity determining regions (H CDR3s) after stem cell transplantation do not resemble the developing human fetal H CDR3s in size distribution and Ig gene utilization. Blood 1998; 92: 2802–2814.

    CAS  PubMed  Google Scholar 

  27. Suzuki I, Milner EC, Glas AM, Hufnagle WO, Rao SP, Pfister L et al. Immunoglobulin heavy chain variable region gene usage in bone marrow transplant recipients: lack of somatic mutation indicates a maturational arrest. Blood 1996; 87: 1873–1880.

    CAS  PubMed  Google Scholar 

  28. D'Sa S, Peggs K, Pizzey A, Verfuerth S, Thuraisundaram D, Watts M et al. T- and B-cell immune reconstitution and clinical outcome in patients with multiple myeloma receiving T-cell-depleted, reduced-intensity allogeneic stem cell transplantation with an alemtuzumab-containing conditioning regimen followed by escalated donor lymphocyte infusions. Br J Haematol 2003; 123: 309–322.

    Article  CAS  PubMed  Google Scholar 

  29. Omazic B, Hentschke P, Nasman-Bjork I, Mattsson J, Oxelius VA, Ringden O et al. Reconstitution of the Ig heavy chain CDR3 repertoire after allogeneic haematopoietic stem cell transplantation with myeloablative or reduced-intensity conditioning regimens. Scand J Immunol 2005; 61: 72–81.

    Article  CAS  PubMed  Google Scholar 

  30. Batten M, Groom J, Cachero TG, Qian F, Schneider P, Tschopp J et al. BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med 2000; 192: 1453–1466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rolink AG, Tschopp J, Schneider P, Melchers F . BAFF is a survival and maturation factor for mouse B cells. Eur J Immunol 2002; 32: 2004–2010.

    Article  CAS  PubMed  Google Scholar 

  32. Fu L, Lin-Lee YC, Pham LV, Tamayo A, Yoshimura L, Ford RJ . Constitutive NF-kappaB and NFAT activation leads to stimulation of the BLyS survival pathway in aggressive B-cell lymphomas. Blood 2006; 107: 4540–4548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Novak AJ, Bram RJ, Kay NE, Jelinek DF. . Aberrant expression of B-lymphocyte stimulator by B chronic lymphocytic leukemia cells: a mechanism for survival. Blood 2002; 100: 2973–2979.

    Article  CAS  PubMed  Google Scholar 

  34. Jacobson CA, Turki AT, McDonough SM, Stevenson KE, Kim HT, Kao G et al. Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 2012; 18: 565–574.

    Article  CAS  PubMed  Google Scholar 

  35. Abrahamsen IW, Somme S, Heldal D, Egeland T, Kvale D, Tjonnfjord GE . Immune reconstitution after allogeneic stem cell transplantation: the impact of stem cell source and graft-versus-host disease. Haematologica 2005; 90: 86–93.

    PubMed  Google Scholar 

  36. Sanchez-Garcia J, Serrano J, Gomez P, Martinez F, Martin C, Roman-Gomez J et al. The impact of acute and chronic graft-versus-host disease on normal and malignant B-lymphoid precursors after allogeneic stem cell transplantation for B-lineage acute lymphoblastic leukemia. Haematologica 2006; 91: 340–347.

    PubMed  Google Scholar 

  37. Small TN, Keever CA, Weiner-Fedus S, Heller G, O'Reilly RJ, Flomenberg N . B-cell differentiation following autologous, conventional, or T-cell depleted bone marrow transplantation: a recapitulation of normal B-cell ontogeny. Blood 1990; 76: 1647–1656.

    CAS  PubMed  Google Scholar 

  38. Villasenor-Bustamante S, Alvarado-De La BC, Richaud-Patin Y, Martinez-Ayala H, Llorente L . Possible role of interleukin-10 in autoantibody production and in the fate of human cord blood CD5+ B lymphocytes. Scand J Immunol 1999; 49: 629–632.

    Article  CAS  PubMed  Google Scholar 

  39. Marie-Cardine A, Divay F, Dutot I, Green A, Perdrix A, Boyer O et al. Transitional B cells in humans: characterization and insight from B lymphocyte reconstitution after hematopoietic stem cell transplantation. Clin Immunol 2008; 127: 14–25.

    Article  CAS  PubMed  Google Scholar 

  40. Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK . Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 2002; 16: 219–230.

    Article  CAS  PubMed  Google Scholar 

  41. Bouaziz JD, Calbo S, Maho-Vaillant M, Saussine A, Bagot M, Bensussan A et al. IL-10 produced by activated human B cells regulates CD4(+) T-cell activation in vitro. Eur J Immunol 2010; 40: 2686–2691.

    Article  CAS  PubMed  Google Scholar 

  42. Tretter T, Venigalla RK, Eckstein V, Saffrich R, Sertel S, Ho AD et al. Induction of CD4+ T-cell anergy and apoptosis by activated human B cells. Blood 2008; 112: 4555–4564.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Shi-kang Zhai for expert technical assistance with PCR and DNA sequencing and Patricia Simms of the flow cytometry core facility for assistance with data acquisition and analysis. We thank Karen Rychlik of the Biostatistics core facility for assistance with statistical analyses. We are indebted to the Division of Hematology/Oncology staff for consenting patients, collecting blood and organizing data. This work was supported by the Illinois Regenerative Medicine Institute (63080019 to PJS), and the National Institutes of Health Grants (AG023809 to PTL), (AI068390 to KLK) and (NHLBI F32HL096278 to BCBZ). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung and Blood Institute or the National Institutes of Health.

Author contributions: BCBZ wrote the manuscript, performed the research and analyzed the data; PTL and KLK designed the research study and critically reviewed the manuscript; S Zhang performed the research and analyzed the data; SZ consented patients and collected data; MP collected and analyzed data; and PJS designed the research study, consented patients and critically reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J Stiff.

Ethics declarations

Competing interests

The authors declares no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaudette-Zlatanova, B., Le, P., Knight, K. et al. A potential role for B cells in suppressed immune responses in cord blood transplant recipients. Bone Marrow Transplant 48, 85–93 (2013). https://doi.org/10.1038/bmt.2012.104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2012.104

Keywords

This article is cited by

Search

Quick links