Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Allografting

G-CSF downregulates natural killer cell-mediated cytotoxicity in donors for hematopoietic SCT

Abstract

In G-CSF-mobilized hematopoietic SCT (HSCT), natural killer (NK) cells have a critical role in GVHD and GVL effects. However, regulation of NK cell response to G-CSF remains unclear. This study assayed G-CSF effects in both HSCT donors and NK-92MI cells. The donors who received G-CSF had significantly decreased NK cell cytotoxicity. Levels of phosphatidylinositol 3-kinase (PI3K) and phosphorylated (p)-Akt, but not mammalian target of rapamycin (mTOR), were downregulated in NK cells from G-CSF-injected donors. G-CSF also decreased cytotoxicity without affecting viability and NF-κB of NK-92MI cells. PI3K and p-ERK expression were also decreased in G-CSF-treated NK-92MI cells, and their inhibitors, wortmannin and PD98059, respectively, both enhanced the downregulation of cytotoxicity. These effects were accompanied by decreased expression of a cytotoxicity-related gene, triosephosphate isomerase (TPI). Wortmannin, but not PD98059, enhanced the downregulation of TPI in G-CSF-treated NK-92MI cells, indicating a correlation between PI3K and TPI. We conclude that G-CSF-impaired NK cell cytotoxicity may accompany PI3K/Akt signaling. The effect is transient and NK cells may recover after G-CSF clearance, suggesting that G-CSF-mobilized HSCT may benefit both acute GVHD prevention and late-phase GVL promotion in HSCT recipients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kusano K, Ebara S, Tachibana K, Nishimura T, Sato S, Kuwaki T et al. A potential therapeutic role for small nonpeptidyl compounds that mimic human granulocyte colony-stimulating factor. Blood 2004; 103: 836–842.

    Article  CAS  PubMed  Google Scholar 

  2. Joshi SS, Lynch JC, Pavletic SZ, Tarantolo SR, Pirruccello SJ, Kessinger A et al. Decreased immune functions of blood cells following mobilization with granulocyte colony-stimulating factor: association with donor characteristics. Blood 2001; 98: 1963–1970.

    Article  CAS  PubMed  Google Scholar 

  3. Pavletic ZS, Joshi SS, Pirruccello SJ, Tarantolo SR, Kollath J, Reed EC et al. Lymphocyte reconstitution after allogeneic blood stem cell transplantation for hematologic malignancy. Bone Marrow Transplant 1998; 21: 33–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sloand EM, Kim S, Maciejewski JP, Van Rhee F, Chaudhuri A, Barrett J et al. Pharmacologic doses of granulocyte colony-stimulating factor affect cytokine production by lymphocytes in vitro and in vivo. Blood 2000; 95: 2269–2274.

    CAS  PubMed  Google Scholar 

  5. Young HA, Ortaldo J . Cytokines as critical co-stimulatory molecules in modulating the immune response of natural killer cells. Cell Res 2006; 16: 20–24.

    Article  CAS  PubMed  Google Scholar 

  6. Chen YJ, Liao HF . NK/NKT cells and aging. Int J Gerontol 2007; 1: 65–76.

    Article  Google Scholar 

  7. Chen YJ, Yu CC, Chen ST, Chen TY, Liao HF . Functional regulation and proteomic characterization of human natural killer cells through recombinant human granulocyte-colony stimulating factor treatment. Proteomics Clin Appl 2009; 3: 563–573.

    Article  CAS  Google Scholar 

  8. Weitz-Schmidt G, Chreng S, Riek S . Allosteric LFA-1 inhibitors modulate natural killer cell function. Mol Pharmacol 2009; 75: 355–362.

    Article  CAS  PubMed  Google Scholar 

  9. Burt RK, Loh Y, Pearce W, Beohar N, Barr WG, Craig R et al. Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA 2008; 299: 925–936.

    Article  CAS  PubMed  Google Scholar 

  10. Russell N, Bessell E, Stainer C, Haynes A, Das-Gupta E, Byrne J . Allogeneic haemopoietic stem cell transplantation for multiple myeloma or plasma cell leukaemia using fractionated total body radiation and high-dose melphalan conditioning. Acta Oncol 2000; 39: 837–841.

    Article  CAS  PubMed  Google Scholar 

  11. Robertson NJ, Chai JG, Millrain M, Scott D, Hashim F, Manktelow E et al. Natural regulation of immunity to minor histocompatibility antigens. J Immunol 2007; 178: 3558–3565.

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura R, Auayporn N, Smith DD, Palmer J, Sun JY, Schriber J et al. Impact of graft cell dose on transplant outcomes following unrelated donor allogeneic peripheral blood stem cell transplantation: higher CD34+ cell doses are associated with decreased relapse rates. Biol Blood Marrow Transplant 2008; 14: 449–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Malmberg KJ, Schaffer M, Ringdén O, Remberger M, Ljunggren HG . KIR-ligand mismatch in allogeneic hematopoietic stem cell transplantation. Mol Immunol 2005; 42: 531–534.

    Article  CAS  PubMed  Google Scholar 

  14. Rondelli D, Raspodiri D, Anasetti C, Bandini G, Re F, Arpinati M et al. Alloantigen presenting capacity, T cell alloreactivity and NK function of G-CSF-mobilized peripheral blood cells. Bone Marrow Transplant 1998; 22: 631–637.

    Article  CAS  PubMed  Google Scholar 

  15. Miller JS, Prosper F, McCullar V . Natural killer (NK) cells are functionally abnormal and NK cells are diminished in granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cell collections. Blood 1997; 90: 3098–3105.

    CAS  PubMed  Google Scholar 

  16. Joshi SS, Lynch JC, Pavletic SZ, Tarantolo SR, Pirruccello SJ, Kessinger A et al. Decreased immune functions of blood cells following mobilization with granulocyte colony-stimulating factor: association with donor characteristics. Blood 2001; 98: 1963–1970.

    Article  CAS  PubMed  Google Scholar 

  17. Yokoyama WM, Riley JK . NK cells and their receptors. Reprod Biomed Online 2008; 16: 173–191.

    Article  CAS  PubMed  Google Scholar 

  18. Schlahsa L, Jaimes Y, Blasczyk R, Figueiredo C . Granulocyte-colony-stimulatory factor: a strong inhibitor of natural killer cell function. Transfusion 2010; 51: 293–305.

    Article  PubMed  Google Scholar 

  19. Morel E, Bellón T . HLA class I molecules regulate IFN-gamma production induced in NK cells by target cells, viral products, or immature dendritic cells through the inhibitory receptor ILT2/CD85j. J Immunol 2008; 181: 2368–2381.

    Article  CAS  PubMed  Google Scholar 

  20. Ryan MA, Nattamai KJ, Xing E, Schleimer D, Daria D, Sengupta A et al. Pharmacological inhibition of EGFR signaling enhances G-CSF-induced hematopoietic stem cell mobilization. Nat Med 2010; 16: 1141–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Banovic T, MacDonald KP, Markey KA, Morris ES, Kuns RD, Varelias A et al. Donor treatment with a multipegylated G-CSF maximizes graft-versus-leukemia effects. Biol Blood Marrow Transplant 2009; 15: 126–130.

    Article  CAS  PubMed  Google Scholar 

  22. Puwada SD, Funkhouser WK, Greene K, Deal A, Chu H, Baldwin AS et al. NF-kB and Bcl-3 activation are prognostic in metastatic colorectal cancer. Oncology 2010; 78: 181–188.

    Article  Google Scholar 

  23. Cesaro S, Chinello P, De Silvestro G, Marson P, Picco G, Varotto S et al. Granulocyte transfusions from G-CSF-stimulated donors for the treatment of severe infections in neutropenic pediatric patients with onco-hematological diseases. Support Care Cancer 2003; 11: 101–106.

    Article  PubMed  Google Scholar 

  24. Vose JM, Ho AD, Coiffier B, Corradini P, Khouri I, Sureda A et al. Advances in mobilization for the optimization of autologous stem cell transplantation. Leuk Lymphoma 2009; 50: 1412–1421.

    Article  CAS  PubMed  Google Scholar 

  25. Hershman D, Neugut AI, Jacobson JS, Wang J, Tsai WY, McBride R et al. Acute myeloid leukemia or myelodysplastic syndrome following use of granulocyte colony-stimulating factors during breast cancer adjuvant chemotherapy. J Natl Cancer Inst 2007; 99: 196–205.

    Article  CAS  PubMed  Google Scholar 

  26. Verheyden S, Schots R, Duquet W, Demanet C . A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation. Leukemia 2005; 19: 1446–1451.

    Article  CAS  PubMed  Google Scholar 

  27. Segovis CM, Schoon RA, Dick CJ, Nacusi LP, Leibson PJ, Billadeau DD . PI3K links NKG2D signaling to a CrkL pathway involved in natural killer cell adhesion, polarity, and granule secretion. J Immunol 2009; 182: 6933–6942.

    Article  CAS  PubMed  Google Scholar 

  28. Kim N, Saudemont A, Webb L, Camps M, Ruckle T, Hirsch E et al. The p110delta catalytic isoform of PI3K is a key player in NK-cell development and cytokine secretion. Blood 2007; 110: 3202–3208.

    Article  CAS  PubMed  Google Scholar 

  29. Lagadari M, Lehmann K, Ziemer M, Truta-Feles K, Berod L, Idzko M et al. Sphingosine-1-phosphate inhibits the cytotoxic activity of NK cells via Gs protein-mediated signalling. Int J Oncol 2009; 34: 287–294.

    CAS  PubMed  Google Scholar 

  30. Kawauchi K, Ihjima K, Yamada O . IL-2 increases human telomerase reverse transcriptase activity transcriptionally and posttranslationally through phosphatidylinositol 3′-kinase/Akt, heat shock protein 90, and mammalian target of rapamycin in transformed NK cells. J Immunol 2005; 174: 5261–5269.

    Article  CAS  PubMed  Google Scholar 

  31. Saemann MD, Haidinger M, Hecking M, Horl WH, Weichhart T . The multifunctional role of mTOR in innate immunity: implications for transplant immunity. Am J Transplant 2009; 9: 2655–2661.

    Article  CAS  PubMed  Google Scholar 

  32. Thomson AW, Turnquist HR, Raimondi G . Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol 2009; 9: 324–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wai LE, Fujiki M, Takeda S, Martinez OM, Krams SM . Rapamycin, but not cyclosporine or FK506, alters natural killer cell function. Transplantation 2008; 85: 145–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Plas DR, Rathmell JC, Thompson CB . Homeostatic control of lymphocyte survival: potential origins and implications. Nat Immunol 2002; 3: 515–521.

    Article  CAS  PubMed  Google Scholar 

  35. Chang M, Hamilton JA, Scholz GM, Elsegood CL . Glycolytic control of adjuvant-induced macrophage survival: role of PI3K, MEK1/2, and Bcl-2. J Leukoc Biol 2009; 85: 947–956.

    Article  CAS  PubMed  Google Scholar 

  36. Greinix HT, Worel N . New agents for mobilizing peripheral blood stem cells. Transfus Apher Sci 2009; 41: 67–71.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This human subject research study was approved before implementation by the institutional review board of Buddhist Dalin Tzu Chi General Hospital, Taiwan (No. B09604006). The authors thank Miss Ya-Ting Tung and Mr Yi-Hua Jang for assistance with anamnesis integration and sample collection from donors. Dr Elizabeth Coolidge-Stolz, whom we employed, provided editorial assistance during finalization of the manuscript. This study was supported by grant NSC96-2313-B-415-010-MY3 from the National Science Council of the Republic of China, Taipei, Taiwan and grant DTCRD 98-20 from Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-F Liao.

Ethics declarations

Competing interests

The authors declare conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, YC., Li, SC., Hsu, CK. et al. G-CSF downregulates natural killer cell-mediated cytotoxicity in donors for hematopoietic SCT. Bone Marrow Transplant 47, 73–81 (2012). https://doi.org/10.1038/bmt.2011.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2011.22

Keywords

This article is cited by

Search

Quick links