Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft-versus-host Disease

The humanized anti-HLA-DR moAb, IMMU-114, depletes APCs and reduces alloreactive T cells: implications for preventing GVHD

Abstract

In contrast to the conventional immunosuppressive agents and nonselective T-cell-depleting antibodies, selective depletion of donor alloreactive T cells and/or host APCs, particularly DCs, represents a novel approach that can effectively control GVHD with less or no impairment of T-cell-mediated antiviral and GVL immunity. Here we report that IMMU-114, a humanized anti-human leukocyte antigen-DR (HLA-DR) moAb, efficiently depleted human PBMCs of all APCs, including B cells, monocytes, myeloid DC type-1 (mDC1), mDC2 and plasmacytoid DCs (pDCs). Early and late apoptosis of mDC1, mDC2 and pDCs, and late apoptosis of all APC subsets, were increased by IMMU-114 treatment. Although IMMU-114 had little, if any, effect on the survival and apoptosis of non-B lymphocytes (>80% of which are T cells and 1-2% of T cells express HLA-DR), it selectively inhibited the proliferation of purified HLA-DR+ T cells rather than HLA-DR T cells. As a consequence, IMMU-114 treatment resulted in suppressed T-cell proliferation and reduced CD25+ alloreactive T cells in allogeneic MLRs. Given the critical roles of APCs and alloreactive T cells in the pathogenesis of GVHD, these results suggest that IMMU-114 may have therapeutic potential against GVHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Appelbaum FR . Haematopoietic cell transplantation as immunotherapy. Nature 2001; 411: 385–389.

    Article  CAS  PubMed  Google Scholar 

  2. Socie G, Blazar BR . Acute graft-versus-host disease: from the bench to the bedside. Blood 2009; 114: 4327–4336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Landfried K, Wolff D, Holler E . Pathophysiology and management of graft-versus-host disease in the era of reduced-intensity conditioning. Curr Opin Oncol 2009; 21: S39–S41.

    Article  PubMed  Google Scholar 

  4. Chakraverty R, Robinson S, Peggs K, Kottaridis PD, Watts MJ, Ings SJ et al. Excessive T cell depletion of peripheral blood stem cells has an adverse effect upon outcome following allogeneic stem cell transplantation. Bone Marrow Transplant 2001; 28: 827–834.

    Article  CAS  PubMed  Google Scholar 

  5. Wagner JE, Thompson JS, Carter SL, Kernan NA . Effect of graft-versus-host disease prophylaxis on 3-year disease-free survival in recipients of unrelated donor bone marrow (T-cell Depletion Trial): a multi-centre, randomised phase II–III trial. Lancet 2005; 366: 733–741.

    Article  CAS  PubMed  Google Scholar 

  6. Hartwig UF, Nonn M, Khan S, Meyer RG, Huber C, Herr W . Depletion of alloreactive T cells via CD69: implications on antiviral, antileukemic and immunoregulatory T lymphocytes. Bone Marrow Transplant 2006; 37: 297–305.

    Article  CAS  PubMed  Google Scholar 

  7. Davies JK, Koh MB, Lowdell MW . Antiviral immunity and T-regulatory cell function are retained after selective alloreactive T-cell depletion in both the HLA-identical and HLA-mismatched settings. Biol Blood Marrow Transplant 2004; 10: 259–268.

    Article  CAS  PubMed  Google Scholar 

  8. Montagna D, Yvon E, Calcaterra V, Comoli P, Locatelli F, Maccario R et al. Depletion of alloreactive T cells by a specific anti-interleukin-2 receptor p55 chain immunotoxin does not impair in vitro antileukemia and antiviral activity. Blood 1999; 93: 3550–3557.

    CAS  PubMed  Google Scholar 

  9. van Dijk AM, Kessler FL, Stadhouders-Keet SA, Verdonck LF, de Gast GC, Otten HG . Selective depletion of major and minor histocompatibility antigen reactive T cells: towards prevention of acute graft-versus-host disease. Br J Haematol 1999; 107: 169–175.

    Article  CAS  PubMed  Google Scholar 

  10. Caruso A, Licenziati S, Corulli M, Canaris AD, De Francesco MA, Fiorentini S et al. Flow cytometric analysis of activation markers on stimulated T cells and their correlation with cell proliferation. Cytometry 1997; 27: 71–76.

    Article  CAS  PubMed  Google Scholar 

  11. Amrolia PJ, Muccioli-Casadei G, Yvon E, Huls H, Sili U, Wieder ED et al. Selective depletion of donor alloreactive T cells without loss of antiviral or antileukemic responses. Blood 2003; 102: 2292–2299.

    Article  CAS  PubMed  Google Scholar 

  12. Samarasinghe S, Mancao C, Pule M, Nawroly N, Karlsson H, Brewin J et al. Functional characterization of alloreactive T cells identifies CD25 and CD71 as optimal targets for a clinically applicable allodepletion strategy. Blood 2010; 115: 396–407.

    Article  CAS  PubMed  Google Scholar 

  13. Shlomchik WD, Couzens MS, Tang CB, McNiff J, Robert ME, Liu J et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999; 285: 412–415.

    Article  CAS  PubMed  Google Scholar 

  14. Chakraverty R, Sykes M . The role of antigen-presenting cells in triggering graft-versus-host disease and graft-versus-leukemia. Blood 2007; 110: 9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Duffner UA, Maeda Y, Cooke KR, Reddy P, Ordemann R, Liu C et al. Host dendritic cells alone are sufficient to initiate acute graft-versus-host disease. J Immunol 2004; 172: 7393–7398.

    Article  CAS  PubMed  Google Scholar 

  16. Durakovic N, Bezak KB, Skarica M, Radojcic V, Fuchs EJ, Murphy GF et al. Host-derived Langerhans cells persist after MHC-matched allografting independent of donor T cells and critically influence the alloresponses mediated by donor lymphocyte infusions. J Immunol 2006; 177: 4414–4425.

    Article  CAS  PubMed  Google Scholar 

  17. Koyama M, Hashimoto D, Aoyama K, Matsuoka K, Karube K, Niiro H et al. Plasmacytoid dendritic cells prime alloreactive T cells to mediate graft-versus-host disease as antigen-presenting cells. Blood 2009; 113: 2088–2095.

    Article  CAS  PubMed  Google Scholar 

  18. Matte CC, Liu J, Cormier J, Anderson BE, Athanasiadis I, Jain D et al. Donor APCs are required for maximal GVHD but not for GVL. Nat Med 2004; 10: 987–992.

    Article  CAS  PubMed  Google Scholar 

  19. Markey KA, Banovic T, Kuns RD, Olver SD, Don AL, Raffelt NC et al. Conventional dendritic cells are the critical donor APC presenting alloantigen after experimental bone marrow transplantation. Blood 2009; 113: 5644–5649.

    Article  CAS  PubMed  Google Scholar 

  20. Merad M, Hoffmann P, Ranheim E, Slaymaker S, Manz MG, Lira SA et al. Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. Nat Med 2004; 10: 510–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Shlomchik WD, Joe G, Louboutin JP, Zhu J, Rivera A et al. APCs in the liver and spleen recruit activated allogeneic CD8+ T cells to elicit hepatic graft-versus-host disease. J Immunol 2002; 169: 7111–7118.

    Article  CAS  PubMed  Google Scholar 

  22. Wilson J, Cullup H, Lourie R, Sheng Y, Palkova A, Radford KJ et al. Antibody to the dendritic cell surface activation antigen CD83 prevents acute graft-versus-host disease. J Exp Med 2009; 206: 387–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shimabukuro-Vornhagen A, Hallek MJ, Storb RF, von Bergwelt-Baildon MS . The role of B cells in the pathogenesis of graft-versus-host disease. Blood 2009; 114: 4919–4927.

    Article  PubMed  Google Scholar 

  24. Alousi AM, Uberti J, Ratanatharathorn V . The role of B cell depleting therapy in graft versus host disease after allogeneic hematopoietic cell transplant. Leuk Lymphoma 2010; 51: 376–389.

    Article  PubMed  Google Scholar 

  25. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 1994; 83: 435–445.

    CAS  PubMed  Google Scholar 

  26. Arai S, Miklos DB . Rituximab in hematopoietic cell transplantation. Expert Opin Biol Ther 2010; 10: 971–982.

    Article  CAS  PubMed  Google Scholar 

  27. van Dorp S, Pietersma F, Wölfl M, Verdonck LF, Petersen EJ, Lokhorst HM et al. Rituximab treatment before reduced-intensity conditioning transplantation associates with a decreased incidence of extensive chronic GVHD. Biol Blood Marrow Transplant 2009; 15: 671–678.

    Article  CAS  PubMed  Google Scholar 

  28. Christopeit M, Schütte V, Theurich S, Weber T, Grothe W, Behre G . Rituximab reduces the incidence of acute graft-versus-host disease. Blood 2009; 113: 3130–3131.

    Article  CAS  PubMed  Google Scholar 

  29. Cutler C, Miklos D, Kim HT, Treister N, Woo SB, Bienfang D et al. Rituximab for steroid-refractory chronic graft-versus-host disease. Blood 2006; 108: 756–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carella AM, Biasco S, Nati S, Congiu A, Lerma E . Rituximab is effective for extensive steroid-refractory chronic graft-vs-host-disease. Leuk Lymphoma 2007; 48: 623–624.

    Article  CAS  PubMed  Google Scholar 

  31. Bates JS, Engemann AM, Hammond JM . Clinical utility of rituximab in chronic graft-versus-host disease. Ann Pharmacother 2009; 43: 316–321.

    Article  PubMed  Google Scholar 

  32. Arpinati M, Chirumbolo G, Saunthararajah Y, Stanzani M, Bonifazi F, Bandini G et al. Higher numbers of blood CD14+ cells before starting conditioning regimen correlate with greater risk of acute graft-versus-host disease in allogeneic stem cell transplantation from related donors. Biol Blood Marrow Transplant 2007; 13: 228–234.

    Article  PubMed  Google Scholar 

  33. Arpinati M, Chirumbolo G, Nicolini B, Agostinelli C, Rondelli D . Selective apoptosis of monocytes and monocyte-derived DCs induced by bortezomib (Velcade). Bone Marrow Transplant 2009; 43: 253–259.

    Article  CAS  PubMed  Google Scholar 

  34. Sun K, Welniak LA, Panoskaltsis-Mortari A, O’Shaughnessy MJ, Liu H, Barao I et al. Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci USA 2004; 101: 8120–8125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morris EC, Rebello P, Thomson KJ, Peggs KS, Kyriakou C, Goldstone AH et al. Pharmacokinetics of alemtuzumab used for in vivo and in vitro T-cell depletion in allogeneic transplantations: relevance for early adoptive immunotherapy and infectious complications. Blood 2003; 102: 404–406.

    Article  CAS  PubMed  Google Scholar 

  36. Buggins AG, Mufti GJ, Salisbury J, Codd J, Westwood N, Arno M et al. Peripheral blood but not tissue dendritic cells express CD52 and are depleted by treatment with alemtuzumab. Blood 2002; 100: 1715–1720.

    CAS  PubMed  Google Scholar 

  37. Ratzinger G, Reagan JL, Heller G, Busam KJ, Young JW . Differential CD52 expression by distinct myeloid dendritic cell subsets: implications for alemtuzumab activity at the level of antigen presentation in allogeneic graft–host interactions in transplantation. Blood 2003; 101: 1422–1429.

    Article  CAS  PubMed  Google Scholar 

  38. Kottaridis PD, Milligan DW, Chopra R, Chakraverty RK, Chakrabarti S, Robinson S et al. In vivo CAMPATH-1H prevents graft-versus-host disease following nonmyeloablative stem cell transplantation. Blood 2000; 96: 2419–2425.

    CAS  PubMed  Google Scholar 

  39. Pérez-Simón JA, Kottaridis PD, Martino R, Craddock C, Caballero D, Chopra R et al. Nonmyeloablative transplantation with or without alemtuzumab: comparison between 2 prospective studies in patients with lymphoproliferative disorders. Blood 2002; 100: 3121–3127.

    Article  PubMed  Google Scholar 

  40. Chakrabarti S, Mackinnon S, Chopra R, Kottaridis PD, Peggs K, O’Gorman P et al. High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: potential role of Campath-1H in delaying immune reconstitution. Blood 2002; 99: 4357–4363.

    Article  CAS  PubMed  Google Scholar 

  41. Stein R, Qu Z, Chen S, Solis D, Hansen HJ, Goldenberg DM . Characterization of a humanized IgG4 anti-HLA-DR monoclonal antibody that lacks effector cell functions but retains direct antilymphoma activity and increases the potency of rituximab. Blood 2006; 108: 2736–2744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stein R, Gupta P, Chen X, Cardillo TM, Furman RR, Chen S et al. Therapy of B-cell malignancies by anti-HLA-DR humanized monoclonal antibody, IMMU-114, is mediated through hyper-activation of ERK and JNK MAP kinase signaling pathways. Blood 2010; 115: 5180–5190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharkey RM, Juweid M, Shevitz J, Behr T, Dunn R, Swayne LC et al. Evaluation of a complementarity-determining region-grafted (humanized) anti-carcinoembryonic antigen monoclonal antibody in preclinical and clinical studies. Cancer Res 1995; 55: 5935s–5945s.

    CAS  PubMed  Google Scholar 

  44. Stein R, Balkman C, Chen S, Rassnick K, McEntee M, Page R et al. Evaluation of anti-human leukocyte antigen-DR monoclonal antibody therapy in spontaneous canine lymphoma. Leuk Lymphoma 2011; 52: 273–284.

    Article  CAS  PubMed  Google Scholar 

  45. Breedveld F, Agarwal S, Yin M, Ren S, Li NF, Shaw TM et al. Rituximab pharmacokinetics in patients with rheumatoid arthritis: B-cell levels do not correlate with clinical response. J Clin Pharmacol 2007; 47: 1119–1128.

    Article  CAS  PubMed  Google Scholar 

  46. Sheehy ME, McDermott AB, Furlan SN, Klenerman P, Nixon DF . A novel technique for the fluorometric assessment of T lymphocyte antigen specific lysis. J Immunol Methods 2001; 249: 99–110.

    Article  CAS  PubMed  Google Scholar 

  47. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000; 165: 6037–6046.

    Article  CAS  PubMed  Google Scholar 

  48. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C . A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995; 184: 39–51.

    Article  CAS  PubMed  Google Scholar 

  49. Klangsinsirikul P, Carter GI, Byrne JL, Hale G, Russell NH . Campath-1G causes rapid depletion of circulating host dendritic cells (DCs) before allogeneic transplantation but does not delay donor DC reconstitution. Blood 2002; 99: 2586–2591.

    Article  CAS  PubMed  Google Scholar 

  50. Amet N, Gacad M, Petrosyan A, Pao A, Jordan SC, Toyoda M . In vitro effects of everolimus and intravenous immunoglobulin on cell proliferation and apoptosis induction in the mixed lymphocyte reaction. Transpl Immunol 2010; 23: 170–173.

    Article  CAS  PubMed  Google Scholar 

  51. Sato T, Deiwick A, Raddatz G, Koyama K, Schlitt HJ . Interactions of allogeneic human mononuclear cells in the two-way mixed leucocyte culture (MLC): influence of cell numbers, subpopulations and cyclosporin. Clin Exp Immunol 1999; 115: 301–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martins SL, St John LS, Champlin RE, Wieder ED, McMannis J, Molldrem JJ et al. Functional assessment and specific depletion of alloreactive human T cells using flow cytometry. Blood 2004; 104: 3429–3436.

    Article  CAS  PubMed  Google Scholar 

  53. Bacigalupo A . Antilymphocyte/thymocyte globulin for graft versus host disease prophylaxis: efficacy and side effects. Bone Marrow Transplant 2005; 35: 225–231.

    Article  CAS  PubMed  Google Scholar 

  54. Chakraverty R, Orti G, Roughton M, Shen J, Fielding A, Kottaridis P et al. Impact of in vivo alemtuzumab dose before reduced intensity conditioning and HLA-identical sibling stem cell transplantation: pharmacokinetics, GVHD and immune reconstitution. Blood 2010; 116: 3080–3088.

    Article  CAS  PubMed  Google Scholar 

  55. Li H, Kaplan DH, Matte-Martone C, Tan HS, Venkatesan S, Johnson K et al. Langerhans cells are not required for graft-versus-host disease. Blood 2011; 117: 697–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stanzani M, Martins SL, Saliba RM, St John LS, Bryan S, Couriel D et al. CD25 expression on donor CD4+ or CD8+ T cells is associated with an increased risk for graft-versus-host disease after HLA-identical stem cell transplantation in humans. Blood 2004; 103: 1140–1146.

    Article  CAS  PubMed  Google Scholar 

  57. Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 2011; 117: 1061–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Richter WF, Gallati H, Schiller CD . Animal pharmacokinetics of the tumor necrosis factor receptor–immunoglobulin fusion protein lenercept and their extrapolation to humans. Drug Metab Dispos 1999; 27: 21–25.

    CAS  PubMed  Google Scholar 

  59. Munster DJ, MacDonald KP, Kato M, Hart DJ . Human T lymphoblasts and activated dendritic cells in the allogeneic mixed leukocyte reaction are susceptible to NK cell-mediated anti-CD83-dependent cytotoxicity. Int Immunol 2004; 16: 33–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH Grant PO1-CA103985 from the National Cancer Institute (DMG), Grant 09-1976-CCR-EO from the New Jersey Commission on Cancer Research (DMG), a grant from the MGN Foundation (XC) and a grant from the Carvel Foundation (RS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X Chen or D M Goldenberg.

Ethics declarations

Competing interests

C-HC and DMG have employment, stock and/or stock options with Immunomedics Inc., which is developing IMMU-114 and APC-targeting antibodies. The remaining authors declare no competing financial interests.

Additional information

Supplementary Information accompanies the paper on Bone Marrow Transplantation website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Chang, CH., Stein, R. et al. The humanized anti-HLA-DR moAb, IMMU-114, depletes APCs and reduces alloreactive T cells: implications for preventing GVHD. Bone Marrow Transplant 47, 967–980 (2012). https://doi.org/10.1038/bmt.2011.203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2011.203

Keywords

This article is cited by

Search

Quick links