Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft-Versus-Host Disease

Selective elimination of alloreactivity in vitro and in vivo while sparing other T-cell-mediated immune responses

Abstract

Selective elimination of alloreactive cells was carried out in the set-up of T-cell-mediated immunotherapy in an effort to gain the benefits of hematopoietic allogeneic transplantation while reducing the risk of GVHD. Low MW chemical compounds were screened for their effect on T-cell-mediated immune responses of murine- and human-derived lymphocytes. Selected compounds were further tested in secondary MLR assays in which sensitization to alloantigens was carried out in vitro, in the presence or absence of a given compound, followed by exposure to related and unrelated alloantigens or T-cell mitogenic stimulation. At a low concentration of <1 μM, a quinazoline derivative named AO#349 [2-(3,4,5-trimethoxyphenyl)-N-p-tolylquinazolin-4-amine], was able to induce 78–90% inhibition of a selective allogeneic response while retaining >92% immune reactivity to unrelated alloantigens and mitogenic stimuli in vitro. Following allogeneic sensitization in the presence of AO#349, elimination of alloreactivity to the priming alloantigens was also proved in a murine model of GVHD: 10 out of 15 sub-lethally irradiated mice inoculated with these sensitized cells were GVHD-free for >200 days. AO#349 was efficient in induction of a selective elimination of alloreactivity and should be considered for clinical application in allogeneic cell-mediated immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mitsuyasu RT, Champlin RE, Gale RP, Ho WG, Lenarsky C, Winston D et al. Treatment of donor bone marrow with monoclonal anti-T-cell antibody and complement for the prevention of graft-versus-host disease. A prospective, randomized, double-blind trial. Ann Intern Med 1986; 105: 20–26.

    Article  CAS  Google Scholar 

  2. Devetten MP, Vose JM . Graft-versus-host disease: how to translate new insights into new therapeutic strategies. Biol Blood Marrow Transplant 2004; 10: 815–825.

    Article  Google Scholar 

  3. Fowler DH . Shared biology of GVHD and GVT effects: potential methods of separation. Crit Rev Oncol Hematol 2006; 57: 225–244.

    Article  Google Scholar 

  4. Shlomchik WD . Graft-versus-host disease. Nat Rev Immunol 2007; 7: 340–352.

    Article  CAS  Google Scholar 

  5. Messina C, Faraci M, de Fazio V, Dini G, Calo MP, Calore E . Prevention and treatment of acute GvHD. Bone Marrow Transplant 2008; 41 (Suppl 2): S65–S70.

    Article  CAS  Google Scholar 

  6. Chao NJ . Are there effective new strategies for the treatment of acute and chronic GvHD? Best Pract Res Clin Haematol 2008; 21: 93–98.

    Article  CAS  Google Scholar 

  7. Panigrahi S, Morecki S, Yacovlev E, Gelfand Y, Kassir J, Slavin S . A novel approach for prevention of lethal GVHD by selective elimination of alloreactive donor lymphocytes prior to stem cell transplantation. Exp Hematol 2004; 32: 756–764.

    Article  CAS  Google Scholar 

  8. Prigozhina TB, Elkin G, Khitrin S, Slavin S . Depletion of donor-reactive cells as a new concept for improvement of mismatched bone marrow engraftment using reduced-intensity conditioning. Exp Hematol 2004; 32: 1110–1117.

    Article  Google Scholar 

  9. Prigozhina TB, Elkin G, Khitrin S, Slavin S . Prevention of acute graft-vs-host disease by a single low-dose cyclophosphamide injection following allogeneic bone marrow transplantation. Exp Hematol 2008; 36: 1750–1759.

    Article  CAS  Google Scholar 

  10. Morecki S, Slavin S, Ben-Sasson SA . Selective abrogation of alloreactivity via priming in the presence of aphidicolin, a specific inhibitor of DNA polymerase. J Immunol 1989; 143: 838–843.

    CAS  PubMed  Google Scholar 

  11. Godfrey WR, Krampf MR, Taylor PA, Blazar BR . Ex vivo depletion of alloreactive cells based on CFSE dye dilution, activation antigen selection, and dendritic cell stimulation. Blood 2004; 103: 1158–1165.

    Article  CAS  Google Scholar 

  12. Mielke S, Solomon SR, Barrett AJ . Selective depletion strategies in allogeneic stem cell transplantation. Cytotherapy 2005; 7: 109–115.

    Article  CAS  Google Scholar 

  13. Aviner S, Yao X, Krauthgamer R, Gan Y, Goren-Arbel R, Klein T et al. Large-scale preparation of human anti-third-party veto cytotoxic T lymphocytes depleted of graft-versus-host reactivity: a new source for graft facilitating cells in bone marrow transplantation. Hum Immunol 2005; 66: 644–652.

    Article  CAS  Google Scholar 

  14. Barrett AJ, Le Blanc K . Prophylaxis of acute GVHD: manipulate the graft or the environment? Best Pract Res Clin Haematol 2008; 21: 165–176.

    Article  CAS  Google Scholar 

  15. Chen BJ, Cui X, Liu C, Chao NJ . Prevention of graft-versus-host disease while preserving graft-versus-leukemia effect after selective depletion of host-reactive T cells by photodynamic cell purging process. Blood 2002; 99: 3083–3088.

    Article  CAS  Google Scholar 

  16. Boumedine RS, Roy DC . Elimination of alloreactive T cells using photodynamic therapy. Cytotherapy 2005; 7: 134–143.

    Article  CAS  Google Scholar 

  17. Harris DT, Sakiestewa D, Lyons C, Kreitman RJ, Pastan I . Prevention of graft-versus-host disease (GVHD) by elimination of recipient-reactive donor T cells with recombinant toxins that target the interleukin 2 (IL-2) receptor. Bone Marrow Transplant 1999; 23: 137–144.

    Article  CAS  Google Scholar 

  18. André-Schmutz I, Le Deist F, Hacein-Bey-Abina S, Vitetta E, Schindler J, Chedeville G et al. Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet 2002; 360: 130–137.

    Article  Google Scholar 

  19. Amrolia PJ, Muccioli-Casadei G, Yvon E, Huls H, Sili U, Wieder ED et al. Selective depletion of donor alloreactive T cells without loss of antiviral or antileukemic responses. Blood 2003; 102: 2292–2299.

    Article  CAS  Google Scholar 

  20. Fehse B, Frerk O, Goldmann M, Bulduk M, Zander AR . Efficient depletion of alloreactive donor T lymphocytes based on expression of two activation-induced antigens (CD25 and CD69). Br J Haematol 2000; 109: 644–651.

    Article  CAS  Google Scholar 

  21. Koh MB, Prentice HG, Lowdell MW . Selective removal of alloreactive cells from haematopoietic stem cell grafts: graft engineering for GVHD prophylaxis. Bone Marrow Transplant 1999; 23: 1071–1079.

    Article  CAS  Google Scholar 

  22. Prigozhina TB, Gurevitch O, Elkin G, Morecki S, Yakovlev E, Slavin S . CD40 ligand-specific antibodies synergize with cyclophosphamide to promote long-term transplantation tolerance across MHC barriers but inhibit graft-vs-leukemia effects of transplanted cells. Exp Hematol 2003; 31: 81–88.

    Article  CAS  Google Scholar 

  23. Ge X, Brown J, Sykes M, Boussiotis VA . CD134-allodepletion allows selective elimination of alloreactive human T cells without loss of virus-specific and leukemia-specific effectors. Biol Blood Marrow Transplant 2008; 14: 518–530.

    Article  CAS  Google Scholar 

  24. Wehler TC, Nonn M, Brandt B, Britten CM, Gröne M, Todorova M et al. Targeting the activation-induced antigen CD137 can selectively deplete alloreactive T cells from antileukemic and antitumor donor T-cell lines. Blood 2007; 109: 365–373.

    Article  CAS  Google Scholar 

  25. Hartwig UF, Robbers M, Wickenhauser C, Huber C . Murine acute graft-versus-host disease can be prevented by depletion of alloreactive T lymphocytes using activation-induced cell death. Blood 2002; 99: 3041–3049.

    Article  CAS  Google Scholar 

  26. Hartwig UF, Nonn M, Khan S, Link I, Huber C, Herr W . Depletion of alloreactive donor T lymphocytes by CD95-mediated activation-induced cell death retains antileukemic, antiviral, and immunoregulatory T cell immunity. Biol Blood Marrow Transplant 2008; 14: 99–109.

    Article  CAS  Google Scholar 

  27. Morecki S, Gelfand Y, Yacovlev E, Eizik O, Shabat Y, Slavin S . CpG-induced myeloid CD11b+Gr-1+ cells efficiently suppress T cell-mediated immunoreactivity and graft-versus-host disease in a murine model of allogeneic cell therapy. Biol Blood Marrow Transplant 2008; 14: 973–984.

    Article  CAS  Google Scholar 

  28. Morecki S, Panigrahi S, Pizov G, Yacovlev E, Gelfand Y, Eizik O et al. Effect of KRN7000 on induced graft-vs-host disease. Exp Hematol 2004; 32: 630–637.

    Article  CAS  Google Scholar 

  29. Morecki S, Yacovlev E, Gelfand Y, Uzi I, Slavin S . Cell therapy with preimmunized effector cells mismatched for minor histocompatible antigens in the treatment of a murine mammary carcinoma. J Immunother 2001; 24: 114–121.

    Article  CAS  Google Scholar 

  30. Kaplan E . Non-parametric estimation from incomplete observation. Am Stat 1958; 53: 457–481.

    Article  Google Scholar 

  31. Mantel N . Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 1966; 50: 163–170.

    CAS  PubMed  Google Scholar 

  32. Gazit A, Yaish P, Gilon C, Levitzki A . Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors. J Med Chem 1989; 32: 2344–2352.

    Article  CAS  Google Scholar 

  33. Säemann MD, Böhmig GA, Osterreicher CH, Staffler G, Diakos C, Krieger PM et al. Suppression of primary T-cell responses and induction of alloantigen-specific hyporesponsiveness in vitro by the janus kinase inhibitor tyrphostin AG490. Transplantation 2000; 70: 1215–1225.

    Article  Google Scholar 

  34. Baeuerle PA, Baichwal VR . NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv Immunol 1997; 65: 111–137.

    Article  CAS  Google Scholar 

  35. Ghosh S, May MJ, Kopp EB . NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 16: 225–260.

    Article  CAS  Google Scholar 

  36. Karin M, Ben-Neriah Y . Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000; 18: 621–663.

    Article  CAS  Google Scholar 

  37. Sun K, Welniak LA, Panoskaltsis-Mortari A, O’Shaughnessy MJ, Liu H, Barao I et al. Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci USA 2004; 101: 8120–8125.

    Article  CAS  Google Scholar 

  38. Vodanovic-Jankovic S, Hari P, Jacobs P, Komorowski R, Drobyski WR . NF-kappaB as a target for the prevention of graft-versus-host disease: comparative efficacy of bortezomib and PS-1145. Blood 2006; 107: 827–834.

    Article  CAS  Google Scholar 

  39. Zhou R, Zhang F, He PL, Zhou WL, Wu QL, Xu JY et al. (5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide analog mediates immunosuppressive effects in vitro and in vivo. Int Immunopharmacol 2005; 5: 1895–1903.

    Article  CAS  Google Scholar 

  40. Fu YF, Zhu YN, Ni J, Zhong XG, Tang W, Zhou R et al. (5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide derivative, prevents experimental autoimmune encephalomyelitis via inhibiting T cell activation. J Neuroimmunol 2006; 175: 142–151.

    Article  CAS  Google Scholar 

  41. Tang W, Zhou R, Yang Y, Li YC, Yang YF, Zuo JP . Suppression of (5R)-5-hydroxytriptolide (LLDT-8) on allograft rejection in full MHC-mismatched mouse cardiac transplantation. Transplantation 2006; 81: 927–933.

    Article  CAS  Google Scholar 

  42. Tang W, Yang Y, Zhang F, Li YC, Zhou R, Wang JX et al. Prevention of graft-versus-host disease by a novel immunosuppressant, (5R)-5-hydroxytriptolide (LLDT-8), through expansion of regulatory T cells. Int Immunopharmacol 2005; 5: 1904–1913.

    Article  CAS  Google Scholar 

  43. Saiga K, Toyoda E, Tokunaka K, Masuda A, Matsumoto S, Mashiba H et al. NK026680, a novel compound suppressive of dendritic cell function, ameliorates mortality in acute lethal graft-versus-host reaction in mice. Bone Marrow Transplant 2006; 37: 317–323.

    Article  CAS  Google Scholar 

  44. Cetkovic-Cvrlje M, Roers BA, Waurzyniak B, Liu XP, Uckun FM . Targeting Janus kinase 3 to attenuate the severity of acute graft-versus-host disease across the major histocompatibility barrier in mice. Blood 2001; 98: 1607–1613.

    Article  CAS  Google Scholar 

  45. Sagiv-Barfi I, Weiss E, Levitzki A . Design, synthesis, and evaluation of quinazoline T cell proliferation inhibitors. Bioorg Med Chem 2010; 18: 6404–6413.

    Article  CAS  Google Scholar 

  46. Prigozhina TB, Gurevitch O, Morecki S, Yakovlev E, Elkin G, Slavin S . Nonmyeloablative allogeneic bone marrow transplantation as immunotherapy for hematologic malignancies and metastatic solid tumors in preclinical models. Exp Hematol 2002; 30: 89–96.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Kirin Brewery Co. Ltd, Tokyo, Japan for its generous support of our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Morecki.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morecki, S., Gelfand, Y., Yacovlev, E. et al. Selective elimination of alloreactivity in vitro and in vivo while sparing other T-cell-mediated immune responses. Bone Marrow Transplant 47, 838–845 (2012). https://doi.org/10.1038/bmt.2011.198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2011.198

Keywords

This article is cited by

Search

Quick links