Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Clinical impact and resource utilization after stem cell mobilization failure in patients with multiple myeloma and lymphoma

Abstract

High-dose chemotherapy in conjunction with auto-SCT is the preferred treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma and newly diagnosed multiple myeloma. Failure to achieve optimal stem cell mobilization results in multiple subsequent attempts, which consumes large amounts of growth factors and potentially requires antibiotics and transfusions. We retrospectively reviewed the natural history of stem cell mobilization attempts at our institution from 2001 to 2007 to determine the frequency of suboptimal mobilization in patients with hematologic malignancy undergoing autologous transplant and analyzed the subsequent resource utilization in patients with initially failed attempts. Of 1775 patients undergoing mobilization during the study period, stem cell collection (defined by the number of CD34+ cells/kg) was ‘optimal’ (5 × 106) in 53%, ‘low’ (2–5 × 106) in 25%, ‘poor’ (<2 × 106) in 10%, and ‘failed’ (<10 CD34+ cells/μl) in 12%. In the 47% of collections that were less than optimal, increased resource consumption included increased use of growth factors and antibiotics, subsequent chemotherapy mobilization, increased transfusional support, more apheresis procedures, and more frequent hospitalization. This usually unappreciated resource utilization associated with stem cell mobilization failure highlights the need for more effective mobilization strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brice P . Managing relapsed and refractory Hodgkin lymphoma. Br J Haematol 2008; 141: 3–13.

    Article  PubMed  Google Scholar 

  2. Wrench D, Gribben JG . Stem cell transplantation for non-Hodgkin's lymphoma. Hematol Oncol Clin North Am 2008; 22: 1051–1079, xi.

    Article  PubMed  Google Scholar 

  3. Mehta J, Singhal S . Current status of autologous hematopoietic stem cell transplantation in myeloma. Bone Marrow Transplant 2008; 42 (Suppl 1): S28–S34.

    Article  PubMed  Google Scholar 

  4. Kumar S, Lacy MQ, Dispenzieri A, Rajkumar SV, Fonseca R, Geyer S et al. High-dose therapy and autologous stem cell transplantation for multiple myeloma poorly responsive to initial therapy. Bone Marrow Transplant 2004; 34: 161–167.

    Article  CAS  PubMed  Google Scholar 

  5. Jansen J, Hanks S, Thompson JM, Dugan MJ, Akard LP . Transplantation of hematopoietic stem cells from the peripheral blood. J Cell Mol Med 2005; 9: 37–50.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gasova Z, Marinov I, Vodvarkova S, Bohmova M, Bhuyian-Ludvikova Z . PBPC collection techniques: standard versus large volume leukapheresis (LVL) in donors and in patients. Transfus Apher Sci 2005; 32: 167–176.

    Article  PubMed  Google Scholar 

  7. Gidron A, Singh V, Egan K, Mehta J . Significance of low peripheral blood CD34+ cell numbers prior to leukapheresis: what should the threshold required for apheresis be? Bone Marrow Transplant 2008; 42: 439–442.

    Article  CAS  PubMed  Google Scholar 

  8. Moog R . Mobilization and harvesting of peripheral blood stem cells. Curr Stem Cell Res Ther 2006; 1: 189–201.

    Article  CAS  PubMed  Google Scholar 

  9. Jillella AP, Ustun C . What is the optimum number of CD34+ peripheral blood stem cells for an autologous transplant? Stem Cells Dev 2004; 13: 598–606.

    Article  PubMed  Google Scholar 

  10. Siena S, Schiavo R, Pedrazzoli P, Carlo-Stella C . Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy. J Clin Oncol 2000; 18: 1360–1377.

    Article  CAS  PubMed  Google Scholar 

  11. Sautois B, Fraipont V, Baudoux E, Fassotte MF, Hermanne JP, Jerusalem G et al. Peripheral blood progenitor cell collections in cancer patients: analysis of factors affecting the yields. Haematologica 1999; 84: 342–349.

    CAS  PubMed  Google Scholar 

  12. Sheridan WP, Begley CG, To LB, Grigg A, Szer J, Maher D et al. Phase II study of autologous filgrastim (G-CSF)-mobilized peripheral blood progenitor cells to restore hemopoiesis after high-dose chemotherapy for lymphoid malignancies. Bone Marrow Transplant 1994; 14: 105–111. Erratum in: Bone Marrow Transplant 1995; 15: 654.

    CAS  PubMed  Google Scholar 

  13. Putkonen M, Rauhala A, Pelliniemi TT, Remes K . Single-dose pegfilgrastim is comparable to daily filgrastim in mobilizing peripheral blood stem cells: a case-matched study in patients with lymphoproliferative malignancies. Ann Hematol 2009; 88: 673–680.

    Article  PubMed  Google Scholar 

  14. Tricot G, Barlogie B, Zangari M, van Rhee F, Hoering A, Szymonifka J et al. Mobilization of peripheral blood stem cells in myeloma with either pegfilgrastim or filgrastim following chemotherapy. Haematologica 2008; 93: 1739–1742.

    Article  CAS  PubMed  Google Scholar 

  15. Weaver CH, Schulman KA, Buckner CD . Mobilization of peripheral blood stem cells following myelosuppressive chemotherapy: a randomized comparison of filgrastim, sargramostim, or sequential sargramostim and filgrastim. Bone Marrow Transplant 2001; 27 (Suppl 2): S23–S29.

    Article  PubMed  Google Scholar 

  16. Gazitt Y, Callander N, Freytes CO, Shaughnessy P, Liu Q, Tsai TW et al. Peripheral blood stem cell mobilization with cyclophosphamide in combination with G-CSF, GM-CSF, or sequential GM-CSF/G-CSF in non-Hodgkin's lymphoma patients: a randomized prospective study. J Hematother Stem Cell Res 2000; 9: 737–748.

    Article  CAS  PubMed  Google Scholar 

  17. Hiwase DK, Bollard G, Hiwase S, Bailey M, Muirhead J, Schwarer AP . Intermediate-dose CY and G-CSF more efficiently mobilize adequate numbers of PBSC for tandem autologous PBSC transplantation compared with low-dose CY in patients with multiple myeloma. Cytotherapy 2007; 9: 539–547.

    Article  CAS  PubMed  Google Scholar 

  18. Akhtar S, Weshi AE, Rahal M, Khafaga Y, Tbakhi A, Humaidan H et al. Factors affecting autologous peripheral blood stem cell collection in patients with relapsed or refractory diffuse large cell lymphoma and Hodgkin lymphoma: a single institution result of 168 patients. Leuk Lymphoma 2008; 49: 769–778.

    Article  CAS  PubMed  Google Scholar 

  19. Carral A, de la Rubia J, Martin G, Molla S, Martinez J, Sanz GF et al. Factors influencing the collection of peripheral blood stem cells in patients with acute myeloblastic leukemia and non-myeloid malignancies. Leuk Res 2003; 27: 5–12.

    Article  CAS  PubMed  Google Scholar 

  20. Ameen RM, Alshemmari SH, Alqallaf D . Factors associated with successful mobilization of progenitor hematopoietic stem cells among patients with lymphoid malignancies. Clin Lymphoma Myeloma 2008; 8: 106–110.

    Article  CAS  PubMed  Google Scholar 

  21. Gandhi MK, Jestice K, Scott MA, Bloxham D, Bass G, Marcus RE . The minimum CD34 threshold depends on prior chemotherapy in autologous peripheral blood stem cell recipients. Bone Marrow Transplant 1999; 23: 9–13.

    Article  CAS  PubMed  Google Scholar 

  22. Tricot G, Jagannath S, Vesole D, Nelson J, Tindle S, Miller L et al. Peripheral blood stem cell transplants for multiple myeloma: identification of favorable variables for rapid engraftment in 225 patients. Blood 1995; 85: 588–596.

    CAS  PubMed  Google Scholar 

  23. Desikan KR, Dhodapkar MV, Barlogie B . Waldenstrom's macroglobulinemia. Curr Treat Options Oncol 2000; 1: 97–103.

    Article  CAS  PubMed  Google Scholar 

  24. Russell N, Mesters R, Schubert J, Boogaerts M, Johnsen HE, Canizo CD et al. A phase 2 pilot study of pegfilgrastim and filgrastim for mobilizing peripheral blood progenitor cells in patients with non-Hodgkin's lymphoma receiving chemotherapy. Haematologica 2008; 93: 405–412.

    Article  CAS  PubMed  Google Scholar 

  25. Mazumder A, Kaufman J, Niesvizky R, Lonial S, Vesole D, Jagannath S . Effect of lenalidomide therapy on mobilization of peripheral blood stem cells in previously untreated multiple myeloma patients. Leukemia 2008; 22: 1280–1281.

    Article  CAS  PubMed  Google Scholar 

  26. Mishra V, Andresen S, Brinch L, Kvaloy S, Ernst P, Lonset MK et al. Cost of autologous peripheral blood stem cell transplantation: the Norwegian experience from a multicenter cost study. Bone Marrow Transplant 2005; 35: 1149–1153.

    Article  CAS  PubMed  Google Scholar 

  27. Boeve S, Strupeck J, Creech S, Stiff PJ . Analysis of remobilization success in patients undergoing autologous stem cell transplants who fail an initial mobilization: risk factors, cytokine use and cost. Bone Marrow Transplant 2004; 33: 997–1003.

    Article  CAS  PubMed  Google Scholar 

  28. Mishra V, Vaaler S, Brinch L . Cost analysis of autologous peripheral blood stem cell transplantation for multiple myeloma. Clin Lab Haematol 2003; 25: 179–184.

    Article  CAS  PubMed  Google Scholar 

  29. Burgstaler EA, Pineda AA, Winters JL . Hematopoietic progenitor cell large volume leukapheresis (LVL) on the Fenwal Amicus blood separator. J Clin Apher 2004; 19: 103–111.

    Article  PubMed  Google Scholar 

  30. Escalon MP, Stefanovic A, Venkatraman A, Pereira D, Santos ES, Goodman M et al. Autologous transplantation for relapsed non-Hodgkin's lymphoma using intravenous busulfan and cyclophosphamide as conditioning regimen: a single center experience. Bone Marrow Transplant 2009; 44: 89–96.

    Article  CAS  PubMed  Google Scholar 

  31. Harousseau JL . Role of stem cell transplantation. Hematol Oncol Clin North Am 2007; 21: 1157–1174, x.

    Article  PubMed  Google Scholar 

  32. Watts MJ, Ings SJ, Flynn M, Dodds D, Goldstone AH, Linch DC . Remobilization of patients who fail to achieve minimal progenitor thresholds at the first attempt is clinically worthwhile. Br J Haematol 2000; 111: 287–291.

    Article  CAS  PubMed  Google Scholar 

  33. Prajogo J, Neil A, Duke J, Zhang H, Stokes B, Rowlings P . Modelling cost-effectiveness of high-dose chemotherapy as treatment for relapsed aggressive non-Hodgkin lymphoma in an Australian setting. Intern Med J 2009; 39: 519–526.

    Article  CAS  PubMed  Google Scholar 

  34. Meehan KR, Hill JM, Patchett L, Webber SM, Wu J, Ely P et al. Implementation of peripheral blood CD34 analyses to initiate leukapheresis: marked reduction in resource utilization. Transfusion 2006; 46: 523–529.

    Article  PubMed  Google Scholar 

  35. Jacoub JF, Suryadevara U, Pereyra V, Colon D, Fontelonga A, Mackintosh FR et al. Mobilization strategies for the collection of peripheral blood progenitor cells: results from a pilot study of delayed addition G-CSF following chemotherapy and review of the literature. Exp Hematol 2006; 34: 1443–1450.

    Article  CAS  PubMed  Google Scholar 

  36. Hart C, Grassinger J, Andreesen R, Hennemann B . EPO in combination with G-CSF improves mobilization effectiveness after chemotherapy with ifosfamide, epirubicin and etoposide and reduces costs during mobilization and transplantation of autologous hematopoietic progenitor cells. Bone Marrow Transplant 2009; 43: 197–206.

    Article  CAS  PubMed  Google Scholar 

  37. Zappasodi P, Nosari AM, Astori C, Ciapanna D, Bonfichi M, Varettoni M et al. DCEP chemotherapy followed by a single, fixed dose of pegylated filgrastim allows adequate stem cell mobilization in multiple myeloma patients. Transfusion 2008; 48: 857–860.

    Article  CAS  PubMed  Google Scholar 

  38. Fruehauf S, Klaus J, Huesing J, Veldwijk MR, Buss EC, Topaly J et al. Efficient mobilization of peripheral blood stem cells following CAD chemotherapy and a single dose of pegylated G-CSF in patients with multiple myeloma. Bone Marrow Transplant 2007; 39: 743–750.

    Article  CAS  PubMed  Google Scholar 

  39. Gertz MA, Kumar SK, Lacy MQ, Dispenzieri A, Hayman SR, Buadi FK et al. Comparison of high-dose CY and growth factor with growth factor alone for mobilization of stem cells for transplantation in patients with multiple myeloma. Bone Marrow Transplant 2009; 43: 619–625.

    Article  CAS  PubMed  Google Scholar 

  40. Watts MJ, Ings SJ, Leverett D, MacMillan A, Devereux S, Goldstone AH et al. ESHAP and G-CSF is a superior blood stem cell mobilizing regimen compared to cyclophosphamide 1.5 g m−2 and G-CSF for pre-treated lymphoma patients: a matched pairs analysis of 78 patients. Br J Cancer 2000; 82: 278–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moskowitz CH, Bertino JR, Glassman JR, Hedrick EE, Hunte S, Coady-Lyons N et al. Ifosfamide, carboplatin, and etoposide: a highly effective cytoreduction and peripheral-blood progenitor-cell mobilization regimen for transplant-eligible patients with non-Hodgkin's lymphoma. J Clin Oncol 1999; 17: 3776–3785.

    Article  CAS  PubMed  Google Scholar 

  42. Steidl U, Fenk R, Bruns I, Neumann F, Kondakci M, Hoyer B et al. Successful transplantation of peripheral blood stem cells mobilized by chemotherapy and a single dose of pegylated G-CSF in patients with multiple myeloma. Bone Marrow Transplant 2005; 35: 33–36.

    Article  CAS  PubMed  Google Scholar 

  43. Moskowitz CH, Stiff P, Gordon MS, McNiece I, Ho AD, Costa JJ et al. Recombinant methionyl human stem cell factor and filgrastim for peripheral blood progenitor cell mobilization and transplantation in non-Hodgkin's lymphoma patients: results of a phase I/II trial. Blood 1997; 89: 3136–3147.

    CAS  PubMed  Google Scholar 

  44. Perseghin P, Terruzzi E, Dassi M, Baldini V, Parma M, Coluccia P et al. Management of poor peripheral blood stem cell mobilization: incidence, predictive factors, alternative strategies and outcome: a retrospective analysis on 2177 patients from three major Italian institutions. Transfus Apher Sci 2009; 41: 33–37.

    Article  PubMed  Google Scholar 

  45. Callera F, Cavenaghi L, de Melo CM . Peripheral blood progenitor cell collection without close monitoring of peripheral blood CD34+ cells: a feasible strategy for multiple myeloma or pre-treated non-Hodgkin's lymphoma patients mobilized with low-dose cyclophosphamide plus G-CSF. Transfus Apher Sci 2009; 40: 91–95.

    Article  PubMed  Google Scholar 

  46. Weaver CH, Schulman KA, Wilson-Relyea B, Birch R, West W, Buckner CD . Randomized trial of filgrastim, sargramostim, or sequential sargramostim and filgrastim after myelosuppressive chemotherapy for the harvesting of peripheral-blood stem cells. J Clin Oncol 2000; 18: 43–53.

    Article  CAS  PubMed  Google Scholar 

  47. Rick O, Beyer J, Kingreen D, Kuhl JS, Zingsem J, Huhn D et al. Successful autologous bone marrow rescue in patients who failed peripheral blood stem cell mobilization. Ann Hematol 2000; 79: 681–686.

    Article  CAS  PubMed  Google Scholar 

  48. Lefrere F, Levy V, Makke J, Audat F, Cavazzana-Calvo M, Miclea JM . Successful peripheral blood stem cell harvesting with granulocyte colony-stimulating factor alone after previous mobilization failure. Haematologica 2004; 89: 1532–1534.

    PubMed  Google Scholar 

  49. Goldschmidt H, Hegenbart U, Wallmeier M, Hohaus S, Haas R . Factors influencing collection of peripheral blood progenitor cells following high-dose cyclophosphamide and granulocyte colony-stimulating factor in patients with multiple myeloma. Br J Haematol 1997; 98: 736–744.

    Article  CAS  PubMed  Google Scholar 

  50. Marit G, Thiessard F, Faberes C, Cony-Makhoul P, Boiron JM, Bernard P et al. Factors affecting both peripheral blood progenitor cell mobilization and hematopoietic recovery following autologous blood progenitor cell transplantation in multiple myeloma patients: a monocentric study. Leukemia 1998; 12: 1447–1456.

    Article  CAS  PubMed  Google Scholar 

  51. Pusic I, Jiang SY, Landua S, Uy GL, Rettig MP, Cashen AF et al. Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Transplant 2008; 14: 1045–1056.

    Article  CAS  PubMed  Google Scholar 

  52. DiPersio JF, Stadtmauer EA, Nademanee A, Micallef IN, Stiff PJ, Kaufman JL et al. 3102 investigators plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 2009; 113: 5720–5726.

    CAS  PubMed  Google Scholar 

  53. Sartor MM, Garvin F, Antonenas V, Bradstock KF, Gottlieb DJ . Failure to achieve a threshold dose of CD34+ CD110+ progenitor cells in the graft predicts delayed platelet engraftment after autologous stem cell transplantation. Bone Marrow Transplant 2007; 40: 851–857.

    Article  CAS  PubMed  Google Scholar 

  54. Stewart DA, Smith C, MacFarland R, Calandra G . Pharmacokinetics and pharmacodynamics of plerixafor in patients with non-Hodgkin lymphoma and multiple myeloma. Biol Blood Marrow Transplant 2009; 15: 39–46.

    Article  CAS  PubMed  Google Scholar 

  55. Stiff P, Micallef I, McCarthy P, Magalhaes-Silverman M, Weisdorf D, Territo M et al. Treatment with plerixafor in non-Hodgkin's lymphoma and multiple myeloma patients to increase the number of peripheral blood stem cells when given a mobilizing regimen of G-CSF: implications for the heavily pretreated patient. Biol Blood Marrow Transplant 2009; 15: 249–256.

    Article  CAS  PubMed  Google Scholar 

  56. Wagstaff AJ . Plerixafor: in patients with non-Hodgkin's lymphoma or multiple myeloma. Drugs 2009; 69: 319–326.

    Article  CAS  PubMed  Google Scholar 

  57. Porrata LF, Inwards DJ, Micallef IN, Ansell SM, Geyer SM, Markovic SN . Early lymphocyte recovery post-autologous haematopoietic stem cell transplantation is associated with better survival in Hodgkin's disease. Br J Haematol 2002; 117: 629–633.

    Article  PubMed  Google Scholar 

  58. Porrata LF, Gertz MA, Inwards DJ, Litzow MR, Lacy MQ, Tefferi A et al. Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation in multiple myeloma or non-Hodgkin lymphoma. Blood 2001; 98: 579–585.

    Article  CAS  PubMed  Google Scholar 

  59. Porrata LF, Litzow MR, Inwards DJ, Gastineau DA, Moore SB, Pineda AA et al. Infused peripheral blood autograft absolute lymphocyte count correlates with day 15 absolute lymphocyte count and clinical outcome after autologous peripheral hematopoietic stem cell transplantation in non-Hodgkin's lymphoma. Bone Marrow Transplant 2004; 33: 291–298.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Norine Huneke and LeAnn Batterson for expert data management and Denise Chase for expert manuscript preparation. This study was supported in part by a grant from Genzyme Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Gertz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gertz, M., Wolf, R., Micallef, I. et al. Clinical impact and resource utilization after stem cell mobilization failure in patients with multiple myeloma and lymphoma. Bone Marrow Transplant 45, 1396–1403 (2010). https://doi.org/10.1038/bmt.2009.370

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2009.370

Keywords

This article is cited by

Search

Quick links