Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft-Versus-Host Disease

Differential chemokine expression in chronic GVHD of the conjunctiva

Abstract

In chronic GVHD after BMT, the conjunctiva represents a target organ. GVHD can lead to severe inflammation and dry-eye syndrome (sicca syndrome). The molecular mechanisms are largely unknown. We examined the expression of chemokines in the conjunctiva in cases of chronic GVHD. In this study, we included 10 patients with chronic GVHD and 10 healthy controls. Clinical data were collected and tear film analysis and conjunctival cytology were carried out. Conjunctival biopsies were taken from all participants. Gene expression profiles of chemokines and their corresponding receptors were evaluated by means of quantitative real-time PCR. Chemokine protein expression was analysed by immunohistochemical analyses. Expressions of the Th1-associated chemokines, chemokine (C-X-C motif) ligand (CXCL) 9 (Mig), CXCL10 (IP-10), and their receptor chemokine (C-X-C motif) receptor 3 (CXCR3) were significantly increased in GVHD patients. Immunohistochemical analysis confirmed marked expression of the inflammatory CXCR3 ligands. A total of six patients had a moderate or severe sicca syndrome. Impression cytology revealed a mild keratinisation, moderate keratinisation or severe squamous metaplasia in three patients, respectively. Chronic GVHD of the conjunctiva is characterised by the expression of Th1-associated chemokines. Taken together, our results confirm that the conjunctiva is a target organ in this T cell-mediated process and add to molecular understanding of conjunctival GVHD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Dickinson A, Charron D . Non-HLA immunogenetics in hematopoietic stem cell transplantation. Curr Opin Immunol 2005; 17: 517–525.

    Article  CAS  Google Scholar 

  2. Fraser C, Scott Baker K . The management and outcome of chronic graft-versus-host disease. Br J Haematol 2007; 138: 131–145.

    Article  Google Scholar 

  3. Filipovich A, Weisdorf D, Pavletic S, Socie G, Wingard J, Lee S et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant 2005; 11: 945–956.

    Article  Google Scholar 

  4. Jabs D, Wingard J, Green W, Farmer E, Vogelsang G, Saral R . The eye in bone marrow transplantation. III. Conjunctival graft-vs-host disease. Arch Ophthalmol 1989; 107: 1343–1348.

    Article  CAS  Google Scholar 

  5. Auw-Haedrich C, Potsch C, Böhringer D, Mittelviefhaus H, Maier P, Reinhard T et al. Histological and immunohistochemical characterisation of conjunctival graft vs host disease following haematopoietic stem cell transplantation. Graefes Arch Clin Exp Ophthalmol 2007; 245: 1001–1007.

    Article  CAS  Google Scholar 

  6. Couriel D, Carpenter P, Cutler C, Bolanos-Meade J, Treister N, Gea-Banacloche J et al. Ancillary therapy and supportive care of chronic graft-versus-host disease: national institutes of health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: V. Ancillary Therapy and Supportive Care Working Group Report. Biol Blood Marrow Transplant 2006; 12: 375–396.

    Article  Google Scholar 

  7. Ogawa Y, Okamoto S, Wakui M, Watanabe R, Yamada M, Yoshino M et al. Dry eye after haematopoietic stem cell transplantation. Br J Ophthalmol 1999; 83: 1125–1130.

    Article  CAS  Google Scholar 

  8. Adrean S, Puklin J . Perforated corneal ulcer with subsequent endophthalmitis in a patient with graft-versus-host disease. Cornea 2007; 26: 107–108.

    Article  Google Scholar 

  9. Heinz C, Steuhl K, Meller D . Corneal perforation associated with vitamin-A-deficiency. Ophthalmologe 2004; 101: 614–617.

    Article  CAS  Google Scholar 

  10. Mohammadpour M . Progressive corneal vascularization caused by graft-versus-host disease. Cornea 2007; 26: 225–226.

    Article  Google Scholar 

  11. Mittelviefhaus H, Auw-Hädrich C . Hornhautkomplikationen nach hämatopoetischer Stammzelltransplantation. Ophthalmologe 2003; 100: 222–229.

    Article  CAS  Google Scholar 

  12. Reddy P, Ferrara J . Immunobiology of acute graft-versus-host disease. Blood Rev 2003; 17: 187–194.

    Article  Google Scholar 

  13. Rojas B, Cuhna R, Zafirakis P, Ramirez JM, Lizan-garciia M, Zhao T et al. Cell populations and adhesion molecules expression in conjunctiva before and after bone marrow transplantation. Exp Eye Res 2005; 81: 313–325.

    Article  CAS  Google Scholar 

  14. Piper KP, Horlock C, Curnow J, Arrazi J, Nicholls S, Mahendra P et al. CXCL10–CXCR3 interactions play an important role in the pathogenesis of acute graft-versus-host disease in the skin following allogeneic stem cell transplantation. Blood 2007; 110: 3827–3832.

    Article  CAS  Google Scholar 

  15. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan M et al. Involvement of chemokine receptors in breast cancer metastasis. Nat Med 2001; 410: 50–56.

    CAS  Google Scholar 

  16. Homey B, Alenius H, Muller A, Soto H, Bowman EP, Yuan W et al. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 2002; 8: 157–165.

    Article  CAS  Google Scholar 

  17. Butcher E, Picker L . Lymphocyte homing and homeostasis. Science 1996; 272: 60–66.

    Article  CAS  Google Scholar 

  18. Zlotnik A, Yoshie O . Chemokines: A New Classification System and Their Role in Immunity. Immunity 2000; 12: 121–127.

    Article  CAS  Google Scholar 

  19. Abu El-Asrar AM, Struyf S, Al-Kharashi SA, Missotten L, Van Damme J, Geboes K . Chemokines in the limbal form of vernal keratoconjunctivitis. Br J Ophthalmol 2000; 84: 1360–1366.

    Article  CAS  Google Scholar 

  20. Abu El-Asrar A, Struyf S, Al-Mosallam AA, Missotten L, Van Damme J, Geboes K . Expression of chemokine receptors in vernal keratoconjunctivitis. Br J Ophthalmol 2001; 85: 1357–1361.

    Article  CAS  Google Scholar 

  21. Yamagami S, Ebihara N, Yokoo S, Amano S . Chemokine receptor gene expression in giant papillae of atopic konjunctivitis. Mol Vis 2005; 11: 192–200.

    CAS  PubMed  Google Scholar 

  22. Miyazaki D, Nakamura T, Komatsu N, Nawata N, Ikeda Y, Inoue Y et al. Roles of chemokines in ocular allergy and possible therapeutic strategies. Cornea 2004; 23 (Suppl 1): S48–S54.

    Article  Google Scholar 

  23. Shirane J, Nakayama T, Nagakubo D, Izawa D, Hieshima K, Shimomura Y et al. Corneal epithelial cells and stromal keratocytes efficiently produce CC chemokine-ligand 20 (CCL20) and attract cells expressing its receptor CCR6 in mouse herpetic stromal keratitis. Curr Eye Res 2004; 28: 297–306.

    Article  CAS  Google Scholar 

  24. Spandau U, Toksoy A, Verhaart S, Gillitzer R, Kruse F . High expression of chemokines Gro-alpha (CXCL-1), IL-8 (CXCL-8), and MCP-1 (CCL-2) in inflamed human corneas in vivo. Arch Ophthalmol 2003; 121: 825–831.

    Article  CAS  Google Scholar 

  25. Romagnani P, Rotondi M, Lazzeri E, Lasagni L, Francalanci M, Buonamano Aea . Expression of IP-10/CXCL10 and MIG/CXCL9 in the thyroid and increased levels of IP-10/CXCL10 in the serum of patients with recent-onset Graves' disease. Am J Pathol 2002; 161: 195–206.

    Article  CAS  Google Scholar 

  26. Nicoletti F, Conget I, Di Mauro M, Di Marco R, Mazzarino M, Bendtzen Kea . Serum concentrations of the interferon-gamma-inducible chemokine IP-10/CXCL10 are augmented in both newly diagnosed Type diabetes mellitus patients and subjects at risk of developing the disease. Diabetologia 2002; 45: 1107–1121.

    Article  CAS  Google Scholar 

  27. Meller S, Winterberg F, Gilliet M, Müller A, Lauceviciute I, Rieker J et al. Ultraviolet radiation-induced injury, chemokines, and leukocyte recruitment: an amplification cycle triggering cutaneous lupus erythematosus. Arthritis Rheum 2005; 52: 1504–1516.

    Article  CAS  Google Scholar 

  28. Ichiba T, Teshima T, Kuick R, Misek D, Liu C, Takada Y et al. Early changes in gene expression profiles of hepatic GVHD uncovered by oligonucleotide microarrays. Blood 2003; 102: 763–771.

    Article  CAS  Google Scholar 

  29. New J, Li B, Koh W, Ng H, Tan S, Yap E et al. T cell infiltration and chemokine expression: relevance to the disease localization in murine graft-versus-host disease. Bone Marrow Transplant 2002; 29: 979–986.

    Article  CAS  Google Scholar 

  30. Przepiorka D, Weisdorf D, Martin P, Klingemann H, Beatty P, Hows J et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant 1995; 15: 825–828.

    CAS  Google Scholar 

  31. Gratwohl A, Brand R, Apperley J, v Biezen A, Bandini G, Devergie A et al. Graft-versus-host disease and outcome in HLA-identical sibling transplantations for chronic myeloid leukemia. Blood 2002; 100: 3877–3886.

    Article  CAS  Google Scholar 

  32. Prabhasawat P, Tseng SC . Frequent association of delayed tear clearance in ocular irritation. Br J Ophthalmol 1998; 82: 666–675.

    Article  CAS  Google Scholar 

  33. Afonso AA, Monroy D, Stern ME, Feuer WJ, Tseng SC, Pflugfelder SC . Correlation of tear fluorescein clearance and Schirmer test scores with ocular irritation symptoms. Ophthalmology 1999; 106: 803–810.

    Article  CAS  Google Scholar 

  34. Lee SH, Tseng SC . Rose bengal staining and cytologic characteristics associated with lipid tear deficiency. Am J Ophthalmol 1997; 124: 736–750.

    Article  CAS  Google Scholar 

  35. Koch JM, Bornfeld N, Waubke TN, Wessing A . Impression cytology of the conjunctiva after high-dose brachytherapy of malignant melanomas of the uvea with 106Ru/106Rh-plaques. Fortschr Ophthalmol 1988; 85: 642–645.

    CAS  PubMed  Google Scholar 

  36. Meller S, Lauerma A, Kopp F, Winterberg F, Anthoni M, Müller A et al. Chemokine responses distinguish chemical-induced allergic from irritant skin inflammation: memory T cells make the difference. J Allergy Clin Immunol 2007; 119: 1470–1480.

    Article  CAS  Google Scholar 

  37. Yang Y, Wang H, Asavaroengchai W, Dey B . Role of Interferon-gamma in GVHD and GVL. Cell Mol Immunol 2005; 2: 323–329.

    CAS  PubMed  Google Scholar 

  38. Farber J . Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol 1997; 61: 246–257.

    Article  CAS  Google Scholar 

  39. Cole K, Strick C, Paradis T, Ogborne K, Loetscher M, Gladue R et al. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 1998; 187: 2009–2021.

    Article  CAS  Google Scholar 

  40. Serody J, Burkett S, Panoskaltsis-Mortari A . T-lymphocyte production of macrophage inflammatory protein-1alpha is critical to the recruitment of CD8(+) T cells to the liver, lung, and spleen during graft-versus-host disease. Blood 2000; 96: 2973–2980.

    CAS  PubMed  Google Scholar 

  41. Faaij C, Lankester A, Spierings E, Hoogeboom M, Bowman E, Bierings M et al. A possible role for CCL27/CTACK-CCR10 interaction in recruiting CD4+ T cells to skin in human graft-versus-host disease. Br J Haematol 2006; 133: 538–549.

    Article  Google Scholar 

  42. Zhou L, Askew D, Wu C, Gilliam AC . Cutaneous gene expression by DNA microarray in murine sclerodermatous graft-versus-host disease, a model for human scleroderma. J Invest Dermatol 2007; 127: 281–292.

    Article  CAS  Google Scholar 

  43. Sasaki M, Hasegawa H, Kohno M, Inoue A, Ito M, Fujita S . Antagonist of secondary lymphoid-tissue chemokine (CCR ligand 21) prevents the development of chronic graft-versus-host disease in mice. J Immunol 2003; 170: 588–596.

    Article  CAS  Google Scholar 

  44. Serody J, Cook D, Kirby S, Reap E, Shea T, Frelinger J . Murine T lymphocytes incapable of producing macrophage inhibitory protein-1 are impaired in causing graft-versus-host disease across a class I but not class II major histocompatibility complex barrier. Blood 1999; 93: 43–50.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Meller.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westekemper, H., Meller, S., Citak, S. et al. Differential chemokine expression in chronic GVHD of the conjunctiva. Bone Marrow Transplant 45, 1340–1346 (2010). https://doi.org/10.1038/bmt.2009.346

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2009.346

Keywords

This article is cited by

Search

Quick links