Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cancer stem cells: relevance to SCT

Abstract

The cancer stem cell (CSC) hypothesis suggests that clonogenic growth potential within an individual tumor is restricted to a specific and phenotypically defined cell population. Evidence for CSC in human tumors initially arose from studies of AML, but functionally similar cell populations have been identified in an increasing number of malignancies. Despite these findings, controversy surrounds the CSC hypothesis, especially the generalization that clonogenic tumor cells are rare. Nevertheless, efforts to define the cellular processes regulating self-renewal and resistance to anticancer therapeutics, two of the major properties ascribed to CSC, are likely to provide useful insights into tumor biology as a whole. BMT has been at the forefront of clinically translating basic stem cell concepts starting with the original hypothesis that normal hematopoietic precursors could rescue patients from myeloablative doses of radiation or chemotherapy. Even today, a better understanding of CSC may enhance ongoing efforts to induce specific and effective anti-tumor immune responses in both the allogeneic and autologous setting. It is also likely that new clinical research approaches will be required to accurately evaluate novel CSC-targeting strategies. Owing to the capacity to produce remissions in most diseases, SCT may provide the ideal clinical platform to carry out these investigations by studying the ability of anti-CSC agents to prolong relapse free and overall survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bruce WR, Van der Gaag H . A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 1963; 199: 79–80.

    CAS  PubMed  Google Scholar 

  2. Bergsagel DE, Valeriote FA . Growth characteristics of a mouse plasma cell tumor. Cancer Res 1968; 28: 2187–2196.

    CAS  PubMed  Google Scholar 

  3. Skipper HE, Schabel Jr FM, Wilcox WS . Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with ‘curability’ of experimental leukemia. Cancer Chemother Rep 1964; 35: 1–111.

    CAS  PubMed  Google Scholar 

  4. Southam CM, Brunschwig A . Quantitative studies of autotransplantation of human cancer—Preliminary report. Cancer 1961; 14: 971–978.

    Google Scholar 

  5. Park CH, Bergsagel DE, McCulloch EA . Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst 1971; 46: 411–422.

    CAS  PubMed  Google Scholar 

  6. Hamburger AW, Salmon SE . Primary bioassay of human tumor stem cells. Science 1977; 197: 461–463.

    CAS  PubMed  Google Scholar 

  7. Nowell PC, Hungerford DA . Minute chromosome in human chronic granulocytic leukemia. Science 1960; 132: 1497.

    Google Scholar 

  8. Fialkow PJ, Gartler SM, Yoshida A . Clonal origin of chronic myelocytic leukemia in man. Proc Natl Acad Sci USA 1967; 58: 1468–1471.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Till JE, McCulloch EA . A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 213–222.

    CAS  PubMed  Google Scholar 

  10. Kamel-Reid S, Dick JE . Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 1988; 242: 1706–1709.

    CAS  PubMed  Google Scholar 

  11. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL . The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 1988; 241: 1632–1639.

    CAS  PubMed  Google Scholar 

  12. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    CAS  PubMed  Google Scholar 

  13. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang TC-CJ, Minden M et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    CAS  PubMed  Google Scholar 

  14. Dalerba P, Cho RW, Clarke MF . Cancer stem cells: models and concepts. Annu Rev Med 2007; 58: 267–284.

    CAS  PubMed  Google Scholar 

  15. Lobo NA, Shimono Y, Qian D, Clarke MF . The biology of cancer stem cells. Annu Rev Cell Dev Biol 2007; 23: 675–699.

    CAS  PubMed  Google Scholar 

  16. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A . Tumor growth need not be driven by rare cancer stem cells. Science 2007; 317: 337.

    CAS  PubMed  Google Scholar 

  17. Castor A, Nilsson L, Astrand-Grundstrom I, Buitenhuis M, Ramirez C, Anderson K et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 2005; 11: 630–637.

    CAS  PubMed  Google Scholar 

  18. Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sanz R, Gonzalez M et al. A primitive hematopoietic cell is the target for the leukemic transformation in human Philadelphia-positive acute lymphoblastic leukemia. Blood 2000; 95: 1007.

    CAS  PubMed  Google Scholar 

  19. Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A . Characterization of acute lymphoblastic leukemia progenitor cells. Blood 2004; 104: 2919–2925.

    CAS  PubMed  Google Scholar 

  20. Hotfilder M, Rottgers S, Rosemann A, Jurgens H, Harbott J, Vormoor J . Immature CD34+CD19− progenitor/stem cells in TEL/AML1-positive acute lymphoblastic leukemia are genetically and functionally normal. Blood 2002; 100: 640–646.

    CAS  PubMed  Google Scholar 

  21. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67: 1030–1037.

    CAS  PubMed  Google Scholar 

  22. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007; 1: 313–323.

    CAS  PubMed  Google Scholar 

  23. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007; 104: 10158–10163.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. O'Brien CA, Pollett A, Gallinger S, Dick JE . A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106–110.

    CAS  PubMed  Google Scholar 

  25. Taussig DC, Miraki-Moud F, Anjos-Afonso F, Pearce DJ, Allen K, Ridler C et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 2008; 112: 568–575.

    CAS  PubMed  Google Scholar 

  26. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y et al. Characterization of clonogenic multiple myeloma cells. Blood 2004; 103: 2332–2336.

    CAS  PubMed  Google Scholar 

  27. Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 2008; 68: 190–197.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yaccoby S, Epstein J . The proliferative potential of myeloma plasma cells manifest in the SCID-hu host. Blood 1999; 94: 3576–3582.

    CAS  PubMed  Google Scholar 

  29. Yaccoby S, Barlogie B, Epstein J . Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood 1998; 92: 2908–2913.

    CAS  PubMed  Google Scholar 

  30. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1: 555–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE . Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992; 255: 1137–1141.

    CAS  PubMed  Google Scholar 

  32. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    CAS  PubMed  Google Scholar 

  33. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  34. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003; 100: 15178–15183.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    CAS  PubMed  Google Scholar 

  36. Jamieson CHM, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    CAS  PubMed  Google Scholar 

  37. Huff CA, Matsui W, Smith BD, Jones RJ . The paradox of response and survival in cancer therapeutics. Blood 2006; 107: 431–434.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jones RJ, Matsui WH, Smith BD . Cancer stem cells: are we missing the target? J Natl Cancer Inst 2004; 96: 583–585.

    PubMed  Google Scholar 

  39. Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE 2008; 3: e2428.

    PubMed  PubMed Central  Google Scholar 

  40. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100: 672–679.

    CAS  PubMed  Google Scholar 

  41. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756–760.

    CAS  PubMed  Google Scholar 

  42. Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 2007; 104: 4048–4053.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 2008; 14: 238–249.

    CAS  PubMed  Google Scholar 

  44. Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 2007; 67: 2187–2196.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 2007; 25: 2524–2533.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin T, Wang Q, Brown P, Peacock C, Brennan S, Merchant A et al. Self-renewal of acute lymphocytic leukemia cells is limited by the Hedgehog pathway inhibitors cyclopamine and IPI-926. AACR Meet Abstr 2008; 2008: 4999.

    Google Scholar 

  47. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW et al. Hedgehog signaling and BMI-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006; 66: 6063–6071.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Armstrong F, Brunet de la Grange P, Gerby B, Rouyez MC, Calvo J, Fontenay M et al. NOTCH is a key regulator of human T-cell acute leukaemia initiating cell activity. Blood 2008; e-pub ahead of print November 4.

  49. Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006; 66: 7445–7452.

    CAS  PubMed  Google Scholar 

  50. Deangelo DJ, Stone RM, Silverman LB, Stock W, Attar EC, Fearen I et al. A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias. J Clin Oncol (Meet Abstr) 2006; 24: 6585.

    Google Scholar 

  51. Farnie G, Clarke RB, Spence K, Pinnock N, Brennan K, Anderson NG et al. Novel cell culture technique for primary ductal carcinoma in situ: role of notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst 2007; 99: 616–627.

    CAS  PubMed  Google Scholar 

  52. Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P et al. Expansion of BCR-ABL-positive leukemic stem cells is dependent on hedgehog pathway activation. Cancer Cell 2008; 14: 238–249.

    CAS  PubMed  Google Scholar 

  53. Harley CB . Telomerase and cancer therapeutics. Nat Rev Cancer 2008; 8: 167–179.

    CAS  PubMed  Google Scholar 

  54. Matsui W, Wang Q, Vala M, Barber JP, Meeker A, Tressler R et al. Cancer stem cell targeting in multiple myeloma by grn163 l, a novel and potent telomerase inhibitor. Blood (ASH Annu Meet Abstr) 2006; 108: 2540.

    Google Scholar 

  55. Korkaya H, Paulson A, Iovino F, Wicha MS . HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008; 27: 6120–6130.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yalcintepe L, Frankel AE, Hogge DE . Expression of interleukin-3 receptor subunits on defined subpopulations of acute myeloid leukemia blasts predicts the cytotoxicity of diphtheria toxin interleukin-3 fusion protein against malignant progenitors that engraft in immunodeficient mice. Blood 2006; 108: 3530–3537.

    CAS  PubMed  Google Scholar 

  57. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE . Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12: 1167–1174.

    PubMed  Google Scholar 

  58. Glatting G, Muller M, Koop B, Hohl K, Friesen C, Neumaier B et al. Anti-CD45 monoclonal antibody YAML568: a promising radioimmunoconjugate for targeted therapy of acute leukemia. J Nucl Med 2006; 47: 1335–1341.

    CAS  PubMed  Google Scholar 

  59. Jakubowiak AJ, Hari M, Kendall T, Khaled Y, Mineishi S, Al-Zoubi A et al. Elimination of CD20-expressing cells in multiple myeloma by iodine I-131 tositumomab (Bexxar) correlates with response to therapy. Blood (ASH Annu Meet Abstr) 2008; 112: 5176.

    Google Scholar 

  60. Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 2005; 105: 4163–4169.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 2007; 110: 4427–4435.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yilmaz H, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475–482.

    CAS  PubMed  Google Scholar 

  63. Piccirillo SGM, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 2006; 444: 761–765.

    CAS  PubMed  Google Scholar 

  64. Guzman ML, Li X, Corbett CA, Rossi RM, Bushnell T, Liesveld JL et al. Rapid and selective death of leukemia stem and progenitor cells induced by the compound 4-benzyl, 2-methyl, 1,2,4-thiadiazolidine, 3,5 dione (TDZD-8). Blood 2007; 110: 4436–4444.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Clement V, Sanchez P, de TN, Radovanovic I, Altaba A . HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007; 17: 165–172.

    CAS  PubMed  Google Scholar 

  66. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM et al. Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007; 12: 528–541.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Calado RT, Young NS . Telomere maintenance and human bone marrow failure. Blood 2008; 111: 4446–4455.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. Nuclear factor-κB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2001; 98: 2301–2307.

    CAS  PubMed  Google Scholar 

  69. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000; 14: 1777–1784.

    CAS  PubMed  Google Scholar 

  70. Du X, Ho M, Pastan I . New immunotoxins targeting CD123, a stem cell antigen on acute myeloid leukemia cells. J Immunother 2007; 30: 607–613.

    CAS  PubMed  Google Scholar 

  71. Bedi A, Zehnbauer BA, Collector MI, Barber JP, Zicha MS, Sharkis SJ et al. BCR-ABL gene rearrangement and expression of primitive hematopoietic progenitors in chronic myeloid leukemia. Blood 1993; 81: 2898–2902.

    CAS  PubMed  Google Scholar 

  72. Sirard C, Lapidot T, Vormoor J, Cashman JD, Doedens M, Murdoch B et al. Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood 1996; 87: 1539–1548.

    CAS  PubMed  Google Scholar 

  73. Levis M, Murphy KM, Pham R, Kim KT, Stine A, Li L et al. Internal tandem duplications of the FLT3 gene are present in leukemia stem cells. Blood 2005; 106: 673–680.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cortes J, O'Brien S, Kantarjian H . Discontinuation of imatinib therapy after achieving a molecular response. Blood 2004; 104: 2204–2205.

    CAS  PubMed  Google Scholar 

  75. Rousselot P, Huguet F, Rea D, Legros L, Cayuela JM, Maarek O et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 2007; 109: 58–60.

    CAS  PubMed  Google Scholar 

  76. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R et al. Dasatinib in imatinib-resistant philadelphia chromosome-positive leukemias. N Engl J Med 2006; 354: 2531–2541.

    CAS  PubMed  Google Scholar 

  77. Kantarjian H, Giles F, Wunderle L, Bhalla K, O'Brien S, Wassmann B et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 2006; 354: 2542–2551.

    PubMed  Google Scholar 

  78. Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 2006; 107: 4532–4539.

    CAS  PubMed  Google Scholar 

  79. Jorgensen HG, Allan EK, Jordanides NE, Mountford JC, Holyoake TL . Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 2007; 109: 4016–4019.

    CAS  PubMed  Google Scholar 

  80. Copelan EA . Hematopoietic stem-cell transplantation. N Engl J Med 2006; 354: 1813–1826.

    CAS  PubMed  Google Scholar 

  81. Appelbaum FR . The current status of hematopoietic cell transplantation. Annu Rev Med 2003; 54: 491–512.

    CAS  PubMed  Google Scholar 

  82. Fuchs EJ, Bedi A, Jones RJ, Hess AD . Cytotoxic T cells overcome BCR-ABL-mediated resistance to apoptosis. Cancer Res 1995; 55: 463–466.

    CAS  PubMed  Google Scholar 

  83. Bleakley M, Riddell SR . Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer 2004; 4: 371–380.

    CAS  PubMed  Google Scholar 

  84. Kolb HJ . Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 2008; 112: 4371–4383.

    CAS  PubMed  Google Scholar 

  85. Rajendran JG, Gopal AK, Fisher DR, Durack LD, Gooley TA, Press OW . Myeloablative 131I-tositumomab radioimmunotherapy in treating non-Hodgkin's lymphoma: comparison of dosimetry based on whole-body retention and dose to critical organ receiving the highest dose. J Nucl Med 2008; 49: 837–844.

    PubMed  Google Scholar 

  86. Press OW, Eary JF, Gooley T, Gopal AK, Liu S, Rajendran JG et al. A phase I/II trial of iodine-131-tositumomab (anti-CD20), etoposide, cyclophosphamide, and autologous stem cell transplantation for relapsed B-cell lymphomas. Blood 2000; 96: 2934–2942.

    CAS  PubMed  Google Scholar 

  87. Matthews DC, Appelbaum FR, Eary JF, Fisher DR, Durack LD, Hui TE et al. Phase I study of 131I-anti-cd45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood 1999; 94: 1237–1247.

    CAS  PubMed  Google Scholar 

  88. Pagel JM, Hedin N, Drouet L, Wood BL, Pantelias A, Lin Y et al. Eradication of disseminated leukemia in a syngeneic murine leukemia model using pretargeted anti-CD45 radioimmunotherapy. Blood 2008; 111: 2261–2268.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Pagel JM, Appelbaum FR, Eary JF, Rajendran J, Fisher DR, Gooley T et al. 131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood 2006; 107: 2184–2191.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ratain MJ, Mick R, Schilsky RL, Siegler M . Statistical and ethical issues in the design and conduct of phase I and II clinical trials of new anticancer agents. J Natl Cancer Inst 1993; 85: 1637–1643.

    CAS  PubMed  Google Scholar 

  91. Huff C, Wang Q, Rogers K, Jung M, Bolanos-Meade J, Borrello I et al. Correlation of clonogenic cancer stem cell (CSC) growth with clinical outcomes in multiple myeloma (MM) patients undergoing treatment with high dose cyclophosphamide (Cy) and rituximab. AACR Meet Abstr 2008; 2008: LB-87.

    Google Scholar 

  92. DeVita Jr VT, Chu E . A history of cancer chemotherapy. Cancer Res 2008; 68: 8643–8653.

    CAS  PubMed  Google Scholar 

  93. Little MT, Storb R . History of haematopoietic stem-cell transplantation. Nat Rev Cancer 2002; 2: 231–238.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Matsui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, T., Jones, R. & Matsui, W. Cancer stem cells: relevance to SCT. Bone Marrow Transplant 43, 517–523 (2009). https://doi.org/10.1038/bmt.2009.19

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2009.19

Keywords

This article is cited by

Search

Quick links