Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Conditioning Regimens

TBI with lung dose reduction does not improve hematopoietic cell homing to BM during allogeneic transplantation

Abstract

To determine the effects of TBI dose, fractionation and lung shielding on hematopoietic stem cell homing to the BM, BM cells were extracted from tibiae and femurs of B6-green fluorescent protein (GFP) mice and transplanted into B6 mice. Recipient mice had either: (i) no radiation, (ii) single-dose TBI at 13.6 Gy, (iii) single-dose TBI at 13.6 Gy with reduced lung exposure to 0.4 Gy by shielding, (iv) split-dose TBI at 12 Gy to twice per day over 4 days or (v) split-dose TBI at 12 Gy to twice per day over 4 days with reduced lung exposure to 0.36 Gy by shielding. The last radiation exposure preceded tail vein injection by 4–6 h. Mice were killed after 18 h. The homing of GFP-positive, lineage-negative cells was not significantly improved in any irradiated group compared with control. The homing of GFP-positive, lineage-negative, Kit-positive cells was significantly worse in all irradiated groups. TBI does not improve the homing of lineage-negative donor BM cells to the recipient marrow. The homing of lineage-negative, Kit-positive donor BM cells was significantly worse following TBI, with or without lung dose reduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Huisman C, Meijer E, Petersen EJ, Lokhorst HM, Verdonck LF . Hematopoietic stem cell transplantation after reduced intensity conditioning in acute myelogenous leukemia patients older than 40 years. Biol Blood Marrow Transplant 2008; 14: 181–186.

    Article  PubMed  Google Scholar 

  2. Rezvani AR, Storer B, Maris M, Sorror ML, Agura E, Maziarz RT et al. Nonmyeloablative allogeneic hematopoietic cell transplantation in relapsed, refractory, and transformed indolent non-Hodgkin's lymphoma. J Clin Oncol 2008; 26: 211–217.

    Article  PubMed  Google Scholar 

  3. Inamoto Y, Suzuki R, Kuwatsuka Y, Yasuda T, Takahashi T, Tsujimura A et al. Long-term outcome after bone marrow transplantation for aplastic anemia using cyclophosphamide and total lymphoid irradiation as conditioning regimen. Biol Blood Marrow Transplant 2008; 14: 43–49.

    Article  CAS  PubMed  Google Scholar 

  4. Bruno B, Rotta M, Patriarca F, Mordini N, Allione B, Carnevale-Schianca F et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med 2007; 356: 1110–1120.

    Article  CAS  PubMed  Google Scholar 

  5. Das-Gupta EP, Russell NH, Shaw BE, Pearce RM, Byrne JL . Long-term outcome of unrelated donor transplantation for AML using myeloablative conditioning incorporating pretransplant Alemtuzumab. Biol Blood Marrow Transplant 2007; 13: 724–733.

    Article  CAS  PubMed  Google Scholar 

  6. Kaplan RN, Psaila B, Lyden D . Niche-to-niche migration of bone-marrow-derived cells. Trends Mol Med 2007; 13: 72–81.

    Article  CAS  PubMed  Google Scholar 

  7. Chute JP . Stem cell homing. Curr Opin Hematol 2006; 13: 399–406.

    Article  PubMed  Google Scholar 

  8. Quesenberry PJ, Colvin G, Abedi M . Perspective: fundamental and clinical concepts on stem cell homing and engraftment: a journey to niches and beyond. Exp Hematol 2005; 33: 9–19.

    Article  PubMed  Google Scholar 

  9. Francois S, Bensidhoum M, Mouiseddine M, Mazurier C, Allenet B, Semont A et al. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 2006; 24: 1020–1029.

    Article  PubMed  Google Scholar 

  10. Collis SJ, Neutzel S, Thompson TL, Swartz MJ, Dillehay LE, Collector MI et al. Hematopoietic progenitor stem cell homing in mice lethally irradiated with ionizing radiation at differing dose rates. Radiat Res 2004; 162: 48–55.

    Article  CAS  PubMed  Google Scholar 

  11. Plett PA, Frankovitz SM, Orschell-Traycoff CM . In vivo trafficking, cell cycle activity, and engraftment potential of phenotypically defined primitive hematopoietic cells after transplantation into irradiated or nonirradiated recipients. Blood 2002; 100: 3545–3552.

    Article  CAS  PubMed  Google Scholar 

  12. Blaise D, Maraninchi D, Michallet M, Reiffers J, Jouet JP, Milpied N et al. Long-term follow-up of a randomized trial comparing the combination of cyclophosphamide with total body irradiation or busulfan as conditioning regimen for patients receiving HLA-identical marrow grafts for acute myeloblastic leukemia in first complete remission. Blood 2001; 97: 3669–3671.

    Article  CAS  PubMed  Google Scholar 

  13. Dusenbery KE, Daniels KA, McClure JS, McGlave PB, Ramsay NK, Blazar BR et al. Randomized comparison of cyclophosphamide-total body irradiation versus busulfan-cyclophosphamide conditioning in autologous bone marrow transplantation for acute myeloid leukemia. Int J Radiat Oncol Biol Phys 1995; 31: 119–128.

    Article  CAS  PubMed  Google Scholar 

  14. Ringden O, Labopin M, Tura S, Arcese W, Iriondo A, Zittoun R et al. A comparison of busulphan versus total body irradiation combined with cyclophosphamide as conditioning for autograft or allograft bone marrow transplantation in patients with acute leukaemia. Acute Leukaemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Br J Haematol 1996; 93: 637–645.

    Article  CAS  PubMed  Google Scholar 

  15. Della Volpe A, Ferreri AJ, Annaloro C, Mangili P, Rosso A, Calandrino R et al. Lethal pulmonary complications significantly correlate with individually assessed mean lung dose in patients with hematologic malignancies treated with total body irradiation. Int J Radiat Oncol Biol Phys 2002; 52: 483–488.

    Article  PubMed  Google Scholar 

  16. Onishi Y, Mori S, Kusumoto S, Sugimoto K, Akahane D, Morita-Hoshi Y et al. Unrelated-donor bone marrow transplantation with a conditioning regimen including fludarabine, busulfan, and 4 Gy total body irradiation. Int J Hematol 2007; 85: 256–263.

    Article  PubMed  Google Scholar 

  17. Majhail NS, Parks K, Defor TE, Weisdorf DJ . Diffuse alveolar hemorrhage and infection-associated alveolar hemorrhage following hematopoietic stem cell transplantation: related and high-risk clinical syndromes. Biol Blood Marrow Transplant 2006; 12: 1038–1046.

    Article  PubMed  Google Scholar 

  18. Labar B, Bogdanic V, Nemet D, Mrsic M, Vrtar M, Grgic-Markulin L et al. Total body irradiation with or without lung shielding for allogeneic bone marrow transplantation. Bone Marrow Transplant 1992; 9: 343–347.

    CAS  PubMed  Google Scholar 

  19. Singh AK, Karimpour SE, Savani BN, Guion P, Hope AJ, Mansueti JR et al. Pretransplant pulmonary function tests predict risk of mortality following fractionated total body irradiation and allogeneic peripheral blood stem cell transplant. Int J Radiat Oncol Biol Phys 2006; 66: 520–527.

    Article  PubMed  Google Scholar 

  20. Crawford SW, Fisher L . Predictive value of pulmonary function tests before marrow transplantation. Chest 1992; 101: 1257–1264.

    Article  CAS  PubMed  Google Scholar 

  21. Carlson K, Backlund L, Smedmyr B, Oberg G, Simonsson B . Pulmonary function and complications subsequent to autologous bone marrow transplantation. Bone Marrow Transplant 1994; 14: 805–811.

    CAS  PubMed  Google Scholar 

  22. Soule BP, Simone NL, Savani BN, Ning H, Albert PS, Barrett AJ et al. Pulmonary function following total body irradiation (with or without lung shielding) and allogeneic peripheral blood stem cell transplant. Bone Marrow Transplant 2007; 40: 573–578.

    Article  CAS  PubMed  Google Scholar 

  23. Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 2009; 457: 97–101.

    Article  CAS  PubMed  Google Scholar 

  24. Chen J, Ellison FM, Eckhaus MA, Smith AL, Keyvanfar K, Calado RT et al. Minor antigen h60-mediated aplastic anemia is ameliorated by immunosuppression and the infusion of regulatory T cells. J Immunol 2007; 178: 4159–4168.

    Article  CAS  PubMed  Google Scholar 

  25. Cao YA, Wagers AJ, Beilhack A, Dusich J, Bachmann MH, Negrin RS et al. Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci USA 2004; 101: 221–226.

    Article  CAS  PubMed  Google Scholar 

  26. Spangrude GJ, Heimfeld S, Weissman IL . Purification and characterization of mouse hematopoietic stem cells. Science 1988; 241: 58–62.

    Article  CAS  PubMed  Google Scholar 

  27. Eto T, Winkler I, Purton LE, Levesque JP . Contrasting effects of P-selectin and E-selectin on the differentiation of murine hematopoietic progenitor cells. Exp Hematol 2005; 33: 232–242.

    Article  CAS  PubMed  Google Scholar 

  28. Forraz N, Pettengell R, McGuckin CP . Characterization of a lineage-negative stem-progenitor cell population optimized for ex vivo expansion and enriched for LTC-IC. Stem Cells 2004; 22: 100–108.

    Article  PubMed  Google Scholar 

  29. Daldrup-Link HE, Rudelius M, Piontek G, Metz S, Brauer R, Debus G et al. Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1 5-T MR imaging equipment. Radiology 2005; 234: 197–205.

    Article  PubMed  Google Scholar 

  30. Kimura T, Boehmler AM, Seitz G, Kuci S, Wiesner T, Brinkmann V et al. The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells. Blood 2004; 103: 4478–4486.

    Article  CAS  PubMed  Google Scholar 

  31. Kovacs CJ, Evans MJ, Daly BM . A hematopoietic stromal lesion associated with fractionated radiotherapy (FxRT): time- and dose-effects. Anticancer Res 2005; 25: 2801–2807.

    CAS  PubMed  Google Scholar 

  32. Bastianutto C, Mian A, Symes J, Mocanu J, Alajez N, Sleep G et al. Local radiotherapy induces homing of hematopoietic stem cells to the irradiated bone marrow. Cancer Res 2007; 67: 10112–10116.

    Article  CAS  PubMed  Google Scholar 

  33. Singh AK, Savani BN, Albert PS, Barrett AJ . Efficacy of CD34+stem cell dose in patients undergoing allogeneic peripheral blood stem cell transplantation after total body irradiation. Biol Blood Marrow Transplant 2007; 13: 339–344.

    Article  PubMed  Google Scholar 

  34. Kamel AM, El-Sharkawy N, Mahmoud HK, Khalaf MR, El Haddad A, Fahmy O et al. Impact of CD34 subsets on engraftment kinetics in allogeneic peripheral blood stem cell transplantation. Bone Marrow Transplant 2005; 35: 129–136.

    Article  CAS  PubMed  Google Scholar 

  35. Mohty M, Bilger K, Jourdan E, Kuentz M, Michallet M, Bourhis JH et al. Higher doses of CD34+peripheral blood stem cells are associated with increased mortality from chronic graft-versus-host disease after allogeneic HLA-identical sibling transplantation. Leukemia 2003; 17: 869–875.

    Article  CAS  PubMed  Google Scholar 

  36. Jin-Xiang F, Xiaofeng S, Jun-Chuan Q, Yan G, Xue-Guang Z . Homing efficiency and hematopoietic reconstitution of bone marrow-derived stroma cells expanded by recombinant human macrophage-colony stimulating factor in vitro. Exp Hematol 2004; 32: 1204–1211.

    Article  PubMed  Google Scholar 

  37. Plett PA, Frankovitz SM, Orschell CM . Distribution of marrow repopulating cells between bone marrow and spleen early after transplantation. Blood 2003; 102: 2285–2291.

    Article  CAS  PubMed  Google Scholar 

  38. Szilvassy SJ, Meyerrose TE, Ragland PL, Grimes B . Differential homing and engraftment properties of hematopoietic progenitor cells from murine bone marrow, mobilized peripheral blood, and fetal liver. Blood 2001; 98: 2108–2115.

    Article  CAS  PubMed  Google Scholar 

  39. Dooner M, Cerny J, Colvin G, Demers D, Pimentel J, Greer D et al. Homing and conversion of murine hematopoietic stem cells to lung. Blood Cells Mol Dis 2004; 32: 47–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A K Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A., Chen, J., Calado, R. et al. TBI with lung dose reduction does not improve hematopoietic cell homing to BM during allogeneic transplantation. Bone Marrow Transplant 45, 25–30 (2010). https://doi.org/10.1038/bmt.2009.121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2009.121

Keywords

Search

Quick links