Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Post-Transplants Events

Subsets of CD34+ and early engraftment kinetics in allogeneic peripheral SCT for AML

Abstract

This study aimed to identify which graft product subset of CD34+ cells might be the most predictive of early hematopoietic recovery following allogeneic peripheral SCT (allo-PBSCT). The relationship between the number of ‘mature’ subsets of CD34+ cells (CD34+/CD33+, CD34+/CD38+, CD34+/DR+ and CD34+/CD133−) and ‘immature’ subsets of CD34+ cells (CD34+/CD33−, CD34+/CD38−, CD34+/DR− and CD34+/CD133+) and early neutrophil and platelet engraftment were studied in a homogeneous series (for disease, pre transplant chemotherapy, conditioning regimen and GVHD prophylaxis) of 30 AML patients after allo-PBSCT from HLA-identical siblings. In our experience, the total CD34+/CD133+ cell number was inversely correlated with the days required for the recovery of 0.5 × 109/l neutrophils (r=−0.82, P=0.02) and platelets of 20 × 109/l (r=−0.60, P=0.06); this correlation was better than the total CD34+ cell dose and neutrophil (r=−0.70, P=0.04) and platelet engraftment (r=−0.56, P=0.07). We suggest that a high number of CD34+/CD133+ PBSC may be associated with faster neutrophil and platelet recovery; these findings may help to predict the repopulating capacity of PBSC in patients after allo-PBSCT, especially when a relatively low number of CD34+ cells is infused.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bensinger WI, Weaver CH, Appelbaum FR, Rowley S, Demirer T, Sanders J et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood 1995; 85: 1655–1658.

    CAS  PubMed  Google Scholar 

  2. Schmitz N, Bacigalupo A, Hasenclever D, Nagler A, Gluckman E, Clark P et al. Allogeneic bone marrow transplantation vs filgrastim-mobilised peripheral blood progenitor cell transplantation in patients with early leukaemia: first results of a randomised multicentre trial of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 1998; 21: 995–1003.

    Article  CAS  Google Scholar 

  3. Bensinger WI, Martin PJ, Storer B, Clift R, Forman SJ, Negrin R et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 2001; 344: 175–181.

    Article  CAS  Google Scholar 

  4. Flynn CM, Hirsch B, Defor T, Barker JN, Miller JS, Wagner JE et al. Reduced intensity compared with high dose conditioning for allotransplantation in acute myeloid leukemia and myelodysplastic syndrome: a comparative clinical analysis. Am J Hematol 2007; 82: 867–872.

    Article  Google Scholar 

  5. Anderlini P, Korbling M, Dale D, Gratwohl A, Schmitz N, Stroncek D et al. Allogeneic blood stem cell transplantation: considerations for donors. Blood 2000; 95: 2993–2994.

    Google Scholar 

  6. Korbling M, Anderlini P . Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood 2001; 98: 2900–2908.

    Article  CAS  Google Scholar 

  7. Ringden O, Labopin M, Bacigalupo A, Arcese W, Schaefer UW, Willemze R et al. Transplantation of peripheral blood stem cells as compared with bone marrow from HLA-identical siblings in adult patients with acute myeloid leukemia and acute lymphoblastic leukemia. J Clin Oncol 2002; 20: 4655–4664.

    Article  CAS  Google Scholar 

  8. Brendel C, Neubauer A . Characteristics and analysis of normal and leukemic stem cells: current concepts and future directions. Leukemia 2000; 14: 1711–1717.

    Article  CAS  Google Scholar 

  9. Henon P, Solovat H, Bourderont D, Ojeda-Uribe M, Arkan Y, Raidot JP et al. Role of the CD34+ 38- in posttransplant hematopoietic recovery. Stem Cells 1998; 16: 113–122.

    Article  Google Scholar 

  10. Menendez P, del Canizo MC, Orfao A . Immunophenotypic characteristics of PB-mobilized CD34+ hematopoietic progenitor cells. J Biol Regul Homeost Agents 2001; 15: 53–61.

    CAS  PubMed  Google Scholar 

  11. Allan DS, Keeney M, Howson-Jan K, Popma J, Weir K, Bhatia M et al. Number of viable CD34+ cells reinfused predicts engraftment in autologous hematopoietic stem cell transplantation. Bone Marrow Transplant 2002; 29: 967–972.

    Article  CAS  Google Scholar 

  12. Perez-Simon JA, Caballero MD, Corral M, Nieto MJ, Orfao A, Vazquez L et al. Minimal number of circulating CD34+ cells to ensure successful leukapheresis and engraftment in autologous peripheral blood progenitor cell transplantation. Transfusion 1998; 38: 385–391.

    Article  CAS  Google Scholar 

  13. Pecora AL, Preti RA, Gleim GW, Jennis A, Zahos K, Cantwell S et al. CD34+CD33− cells influence days to engraftment and transfusion requirements in autologous blood stem-cell recipients. J Clin Oncol 1998; 16: 2093–2104.

    Article  CAS  Google Scholar 

  14. Shimazaki C, Sumikuma T, Inaba T . CD34+CD90+ cells and late hematopoietic reconstitution after autologous peripheral blood stem cell transplantation. Leuk Lymphoma 2004; 45: 661–668.

    Article  Google Scholar 

  15. Specchia G, Pastore D, Mestice A, Liso A, Carluccio P, Leo M et al. Early and long-term engraftment after autologous peripheral stem cell transplantation in acute myeloid leukemia patients. Acta Haematol 2006; 116: 229–237.

    Article  Google Scholar 

  16. Meldgaard Knudsen LM, Jensen L, Jarlbaek L, Hansen PG, Hansen SW, Drivsholm L et al. Subsets of CD34+ hematopoietic progenitors and platelet recovery after high dose chemotherapy and peripheral blood stem cell transplantation. Haematologica 1999; 84: 517–524.

    CAS  PubMed  Google Scholar 

  17. Stewart DA, Guo D, Luider J, Auer I, Klassen J, Morris D et al. The CD34+90+ cell dose does not predict early engraftment of autologous blood stem cell as well as the total CD34+ cell dose. Bone Marrow Transplant 2000; 25: 435–440.

    Article  CAS  Google Scholar 

  18. Menendez P, Perez-Simon JA, Mateos MV, Caballero MD, Gonzalez M, San-Miguel JF et al. Influence of the different CD34+ and CD34− cell subsets infused on clinical outcome after non-myeloablative allogeneic peripheral blood transplantation from human leucocyte antigen-identical sibling donors. Br J Haematol 2002; 119: 135–143.

    Article  Google Scholar 

  19. Kamel AM, El-Sharkawy N, Mahmound HK, Khalaf MR, Haddan AE, Fahmy O et al. Impact of CD34 subsets on engraftment kinetics in allogeneic peripheral blood stem cell transplantation. Bone Marrow Transplant 2005; 35: 129–136.

    Article  CAS  Google Scholar 

  20. Ilhan O, Arslan O, Arat M, Beksac M, Akan H, Ozcan M et al. The impact of the CD34+ cell dose on engraftment in allogeneic peripheral blood stem cell transplantation. Transfus Sci 1999; 20: 69–71.

    Article  CAS  Google Scholar 

  21. Keeney M, Brown W, Gratama J, Papa S, Lanza F, Sutherland DR . Immunophenotypic characterization of CD34(pos) cells. J Biol Regul Homeost Agents 2003; 17: 254–260.

    CAS  PubMed  Google Scholar 

  22. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997; 90: 5002–5012.

    CAS  PubMed  Google Scholar 

  23. Goussetis E, Theodosaki M, Paterakis G, Tsecoura C, Graphakos S . In vitro identification of a cord blood CD133+CD34-Lin+ cell subset that gives rise to myeloid dendritic precursors. Stem Cells 2006; 24: 1137–1140.

    Article  Google Scholar 

  24. Bornhauser M, Eger L, Oelschlaegel U, Auffermann-Gretzinger S, Kiani A, Schetelig J et al. Rapid reconstitution of dendritic cells after allogeneic transplantation of CD133+ selected hematopoietic stem cells. Leukemia 2005; 19: 161–165.

    Article  CAS  Google Scholar 

  25. Bitan M, Shapira MY, Resnick IB, Zilberman I, Miron S, Samuel S et al. Successful transplantation of haploidentically mismatched peripheral blood stem cells using CD133+-purified stem cells. Exp Hematol 2005; 33: 713–718.

    Article  CAS  Google Scholar 

  26. Lang P, Bader P, Schumm M, Feuchtinger T, Einsele H, Fuhrer M et al. Transplantation of a combination of CD133+ and CD34+ selected progenitor cells from alternative donors. Br J Haematol 2004; 124: 72–79.

    Article  Google Scholar 

  27. Hess DA, Wirthlin L, Craft TP, Herrbrich PE, Hohm SA, Lahey R et al. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood 2006; 107: 2162–2169.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fondazione Cassa di Risparmio di Puglia ‘Progetto integrato per la salvaguardia della salute dell'uomo’. We thank Ms MVC Pragnell BA for language assistance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Specchia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastore, D., Mestice, A., Perrone, T. et al. Subsets of CD34+ and early engraftment kinetics in allogeneic peripheral SCT for AML. Bone Marrow Transplant 41, 977–981 (2008). https://doi.org/10.1038/bmt.2008.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2008.87

Keywords

This article is cited by

Search

Quick links