Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft-Versus-Host Disease

Comparison of two mycophenolate mofetil dosing regimens after hematopoietic cell transplantation

Abstract

Mycophenolic acid (MPA) is the active component of mycophenolate mofetil (MMF). Low MPA exposure is associated with a higher incidence of acute GVHD and possibly worse engraftment. Therapeutic plasma targets have been proposed in hematopoietic cell transplantation (HCT), however, are difficult to achieve in adult patients with MMF doses of 2 g/day. Mycophenolate pharmacokinetics was prospectively studied in adults undergoing nonmyeloablative HCT who received MMF 3 g/day with CYA. The first 15 individuals received 1.5 g every 12 h and the second 15 received 1 g every 8 h. Sampling was performed in each patient with i.v. and oral administration. There were no differences in total or unbound MPA 24-h cumulative area under the curves (AUCs), concentrations at steady state (Css) or troughs between the two dosing regimens (all P>0.01). The previously proposed total MPA Css target of 3 μg/ml and trough 1 μ/ml were achieved in only 13–27% and 20–53% of patients, respectively, on 3 g/day. However, the 3 g/day regimens readily achieved satisfactory unbound 24-h cumulative AUC targets of 0.600 μg*h/ml in 87–100% of subjects. There appears to be no significant difference in daily MPA exposure when MMF of 3 g/day is divided into two or three equal doses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Sorror ML, Storer BE, Maloney DG, Sandmaier BM, Martin PJ, Storb R . Outcomes after allogeneic hematopoietic cell transplantation with nonmyeloablative or myeloablative conditioning regimens for treatment of lymphoma and chronic lymphocytic leukemia. Blood 2008; 111: 446–452.

    Article  CAS  Google Scholar 

  2. Rodriguez R, Nademanee A, Ruel N, Smith E, Krishnan A, Popplewell L et al. Comparison of reduced-intensity and conventional myeloablative regimens for allogeneic transplantation in non-Hodgkin's lymphoma. Biol Blood Marrow Transplant 2006; 12: 1326–1334.

    Article  Google Scholar 

  3. Grosskreutz C, Scigliano E, Osman K, Isola L . Graft versus host disease after stem cell allotransplantation with low-dose total body irradiation, fludarabine, and antithymocyte globulin. Transplantation 2007; 84: 598–604.

    Article  Google Scholar 

  4. Bullingham RE, Nicholls AJ, Kamm BR . Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998; 34: 429–455.

    Article  CAS  Google Scholar 

  5. Bullingham R, Monroe S, Nicholls A, Hale M . Pharmacokinetics and bioavailability of mycophenolate mofetil in healthy subjects after single-dose oral and intravenous administration. J Clin Pharmacol 1996; 36: 315–324.

    Article  CAS  Google Scholar 

  6. Picard N, Ratanasavanh D, Premaud A, Le Meur Y, Marquet P . Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos 2005; 33: 139–146.

    Article  CAS  Google Scholar 

  7. Nowak I, Shaw LM . Mycophenolic acid binding to human serum albumin: characterization and relation to pharmacodynamics. Clin Chem 1995; 41: 1011–1017.

    CAS  PubMed  Google Scholar 

  8. Staatz CE, Tett SE . Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet 2007; 46: 13–58.

    Article  CAS  Google Scholar 

  9. Maris MB, Niederwieser D, Sandmaier BM, Storer B, Stuart M, Maloney D et al. HLA-matched unrelated donor hematopoietic cell transplantation after nonmyeloablative conditioning for patients with hematologic malignancies. Blood 2003; 102: 2021–2030.

    Article  CAS  Google Scholar 

  10. Jenke A, Renner U, Richte M, Freiberg-Richter J, Platzbecker U, Helwig A et al. Pharmacokinetics of intravenous mycophenolate mofetil after allogeneic blood stem cell transplantation. Clin Transplant 2001; 15: 176–184.

    Article  CAS  Google Scholar 

  11. Basara N, Blau WI, Kiehl MG, Schmetzer B, Bischoff M, Kirsten D et al. Mycophenolate mofetil for the prophylaxis of acute GVHD in HLA-mismatched bone marrow transplant patients. Clin Transplant 2000; 14: 121–126.

    Article  CAS  Google Scholar 

  12. Giaccone L, McCune JS, Maris MB, Gooley TA, Sandmaier BM, Slattery JT et al. Pharmacodynamics of mycophenolate mofetil after nonmyeloablative conditioning and unrelated donor hematopoietic cell transplantation. Blood 2005; 106: 4381–4388.

    Article  CAS  Google Scholar 

  13. Jacobson P, Rogosheske J, Barker JN, Green K, Ng J, Weisdorf D et al. Relationship of mycophenolic acid exposure to clinical outcome after hematopoietic cell transplantation. Clin Pharmacol Ther 2005; 78: 486–500.

    Article  CAS  Google Scholar 

  14. Jeong H, Kaplan B . Therapeutic monitoring of mycophenolate mofetil. Clin J Am Soc Nephrol 2007; 2: 184–191.

    Article  CAS  Google Scholar 

  15. van Gelder T, Le Meur Y, Shaw LM, Oellerich M, DeNofrio D, Holt C et al. Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther Drug Monit 2006; 28: 145–154.

    Article  CAS  Google Scholar 

  16. Knight SR, Morris PJ . Does the evidence support the use of mycophenolate mofetil therapeutic drug monitoring in clinical practice? A systematic review. Transplantation 2008; 85: 1675–1685.

    Article  CAS  Google Scholar 

  17. van Hest RM, Hesselink DA, Vulto AG, Mathot RA, van Gelder T . Individualization of mycophenolate mofetil dose in renal transplant recipients. Expert Opin Pharmacother 2006; 7: 361–376.

    Article  CAS  Google Scholar 

  18. Le Meur Y, Buchler M, Thierry A, Caillard S, Villemain F, Lavaud S et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 2007; 7: 2496–2503.

    Article  CAS  Google Scholar 

  19. Gaston R, Kaplan B, Meier-Kriesche H-U, Shaw L, Shah T, Patel D et al. Opticept Trial: efficacy and safety of monitored MMF in combination with CNI in renal transplantation at 12 months. Am J Transplantat 2008; 8 (Suppl 2): 319.

    Google Scholar 

  20. Brunstein CG, Barker JN, Weisdorf DJ, DeFor TE, Miller JS, Blazar BR et al. Umbilical cord blood transplantation after nonmyeloablative conditioning: impact on transplantation outcomes in 110 adults with hematologic disease. Blood 2007; 110: 3064–3070.

    Article  CAS  Google Scholar 

  21. Cockcroft DW, Gault MH . Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41.

    Article  CAS  Google Scholar 

  22. Jacobson PA, Green KG, Hering BJ . Mycophenolate mofetil in islet cell transplant: variable pharmacokinetics but good correlation between total and unbound concentrations. J Clin Pharmacol 2005; 45: 901–909.

    Article  CAS  Google Scholar 

  23. van Hest RM, Doorduijn JK, de Winter BC, Cornelissen JJ, Vulto AG, Oellerich M et al. Pharmacokinetics of mycophenolate mofetil in hematopoietic stem cell transplant recipients. Ther Drug Monit 2007; 29: 353–360.

    Article  CAS  Google Scholar 

  24. Bornhauser M, Schuler U, Porksen G, Naumann R, Geissler G, Thiede C et al. Mycophenolate mofetil and cyclosporine as graft-versus-host disease prophylaxis after allogeneic blood stem cell transplantation. Transplantation 1999; 67: 499–504.

    Article  CAS  Google Scholar 

  25. Nash RA, Johnston L, Parker P, McCune JS, Storer B, Slattery JT et al. A phase I/II study of mycophenolate mofetil in combination with cyclosporine for prophylaxis of acute graft-versus-host disease after myeloablative conditioning and allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2005; 11: 495–505.

    Article  CAS  Google Scholar 

  26. Kiehl MG, Shipkova M, Basara N, Blau IW, Schutz E, Armstrong VW et al. Mycophenolate mofetil in stem cell transplant patients in relation to plasma level of active metabolite. Clin Biochem 2000; 33: 203–208.

    Article  CAS  Google Scholar 

  27. Renner U, Platzbecker U, Freiderg-Richter J, Plettig R, Helwig A, Schafer K et al. Intravenous mycophenolate mofetil (MMF) after allogeneic blood stem cell transplantation. Results of a dose-finding study. Blood 1999; 94: 156a (abstract 681).

    Google Scholar 

  28. Jacobson P, Green K, Rogosheske J, Brunstein C, Ebeling B, Defor T et al. Highly variable mycophenolate mofetil bioavailability following nonmyeloablative hematopoietic cell transplantation. J Clin Pharmacol 2007; 47: 6–12.

    Article  CAS  Google Scholar 

  29. Jacobson P, Huang J, Rydholm N, Tran M, Defor T, Tolar J et al. Higher mycophenolate dose requirements in children undergoing hematopoietic cell transplant (HCT). J Clin Pharmacol 2008; 48: 485–494.

    Article  CAS  Google Scholar 

  30. Osunkwo I, Bessmertny O, Harrison L, Cheung YK, Van de Ven C, del Toro G et al. A pilot study of tacrolimus and mycophenolate mofetil graft-versus-host disease prophylaxis in childhood and adolescent allogeneic stem cell transplant recipients. Biol Blood Marrow Transplant 2004; 10: 246–258.

    Article  CAS  Google Scholar 

  31. Haentzschel I, Freiberg-Richter J, Platzbecker U, Kiani A, Schetelig J, Illmer T et al. Targeting mycophenolate mofetil for graft-versus-host disease prophylaxis after allogeneic blood stem cell transplantation. Bone Marrow Transplant 2008; 42: 113–120.

    Article  CAS  Google Scholar 

  32. Maris MB, Sandmaier BM, Storer BE, Maloney DG, Shizuru JA, Agura E et al. Unrelated donor granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cell transplantation after nonmyeloablative conditioning: the effect of postgrafting mycophenolate mofetil dosing. Biol Blood Marrow Transplant 2006; 12: 454–465.

    Article  CAS  Google Scholar 

  33. Zucker K, Rosen A, Tsaroucha A, de Faria L, Roth D, Ciancio G et al. Unexpected augmentation of mycophenolic acid pharmacokinetics in renal transplant patients receiving tacrolimus and mycophenolate mofetil in combination therapy, and analogous in vitro findings. Transpl Immunol 1997; 5: 225–232.

    Article  CAS  Google Scholar 

  34. Zucker K, Rosen A, Tsaroucha A, de Faria L, Roth D, Ciancio G et al. Augmentation of mycophenolate mofetil pharmacokinetics in renal transplant patients receiving Prograf and CellCept in combination therapy. Transplant Proc 1997; 29: 334–336.

    Article  CAS  Google Scholar 

  35. Zucker K, Tsaroucha A, Olson L, Esquenazi V, Tzakis A, Miller J . Evidence that tacrolimus augments the bioavailability of mycophenolate mofetil through the inhibition of mycophenolic acid glucuronidation. Ther Drug Monit 1999; 21: 35–43.

    Article  CAS  Google Scholar 

  36. Hesselink DA, van Hest RM, Mathot RA, Bonthuis F, Weimar W, de Bruin RW et al. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am J Transplant 2005; 5: 987–994.

    Article  CAS  Google Scholar 

  37. Vidal E, Cantarell C, Capdevila L, Monforte V, Roman A, Pou L . Mycophenolate mofetil pharmacokinetics in transplant patients receiving cyclosporine or tacrolimus in combination therapy. Pharmacol Toxicol 2000; 87: 182–184.

    Article  CAS  Google Scholar 

  38. Weber LT, Shipkova M, Armstrong VW, Wagner N, Schutz E, Mehls O et al. The pharmacokinetic–pharmacodynamic relationship for total and free mycophenolic acid in pediatric renal transplant recipients: a report of the German study group on mycophenolate mofetil therapy. J Am Soc Nephrol 2002; 13: 759–768.

    Article  Google Scholar 

  39. Kuypers DR, de Jonge H, Naesens M, de Loor H, Halewijck E, Dekens M et al. Current target ranges of mycophenolic acid exposure and drug-related adverse events: a 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clin Ther 2008; 30: 673–683.

    Article  CAS  Google Scholar 

  40. Kaplan B, Gruber SA, Nallamathou R, Katz SM, Shaw LM . Decreased protein binding of mycophenolic acid associated with leukopenia in a pancreas transplant recipient with renal failure. Transplantation 1998; 65: 1127–1129.

    Article  CAS  Google Scholar 

  41. Mudge DW, Atcheson BA, Taylor PJ, Pillans PI, Johnson DW . Severe toxicity associated with a markedly elevated mycophenolic acid free fraction in a renal transplant recipient. Ther Drug Monit 2004; 26: 453–455.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIH), National Cancer Institute 5K23CA096622 (PJ) and a seed grant from the University of Minnesota Academic Health Center (PJ). The expert technical assistance of Jason Dagit and Jim Fisher is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Jacobson.

Additional information

Disclosure

Drs Jacobson and Weisdorf have in the past received financial support from Roche Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobson, P., El-Massah, S., Rogosheske, J. et al. Comparison of two mycophenolate mofetil dosing regimens after hematopoietic cell transplantation. Bone Marrow Transplant 44, 113–120 (2009). https://doi.org/10.1038/bmt.2008.428

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2008.428

Keywords

This article is cited by

Search

Quick links