Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cord Blood Stem Cells

Haematopoietic repopulating activity in human cord blood CD133+ quiescent cells

Abstract

We have demonstrated previously that cord blood CD133+ cells isolated in the G0 phase of the cell cycle are highly enriched for haematopoietic stem cell (HSC) activity, in contrast to CD133+G1 cells. Here, we have analysed the phenotype and functional properties of this population in more detail. Our data demonstrate that a large proportion of the CD133+G0 cells are CD38 negative (60.4%) and have high aldehyde dehydrogenase activity (75.1%) when compared with their CD133+G1 counterparts (13.5 and 4.1%, respectively). This suggests that stem cell activity resides in the CD133+G0 population. In long-term BM cultures, the CD133+G0 cells generate significantly more progenitors than the CD34+G0 population (P<0.001) throughout the culture period. Furthermore, a comparison of CD133+G0 versus CD133+G1 cells revealed that multilineage reconstitution was obtained only in non-obese diabetic/SCID animals receiving G0 cells. We conclude that CD133+ cells in the quiescent phase of the cell cycle have a phenotype consistent with HSCs and are highly enriched for repopulating activity when compared with their G1 counterparts. This cell population should prove useful for selection and manipulation in ex vivo expansion protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wagner JE, Rosenthal J, Sweetman R, Shu XO, Davies SM, Ramsay NK et al. Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood 1996; 88: 795–802.

    CAS  PubMed  Google Scholar 

  2. Rocha V, Wagner Jr JE, Sobocinski KA, Klein JP, Zhang MJ, Horowitz MM et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N Engl J Med 2000; 342: 1846–1854.

    Article  CAS  PubMed  Google Scholar 

  3. Sirchia G, Rebulla P . Placental/umbilical cord blood transplantation. Haematologica 1999; 84: 738–747.

    CAS  PubMed  Google Scholar 

  4. Brunstein CG, Wagner JE . Umbilical cord blood transplantation and banking. Annu Rev Med 2006; 57: 403–417.

    Article  CAS  PubMed  Google Scholar 

  5. Wang J, Kimura T, Asada R, Harada S, Yokota S, Kawamoto Y et al. SCID-repopulating cell activity of human cord blood-derived CD34- cells assured by intra-bone marrow injection. Blood 2003; 101: 2924–2931.

    Article  CAS  PubMed  Google Scholar 

  6. Zanjani ED, Almeida-Porada G, Livingston AG, Porada CD, Ogawa M . Engraftment and multilineage expression of human bone marrow CD34− cells in vivo. Ann N Y Acad Sci 1999; 872: 220–231; discussion 231–232.

    Article  CAS  PubMed  Google Scholar 

  7. Zanjani ED, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M . Human bone marrow CD34− cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp Hematol 1998; 26: 353–360.

    CAS  PubMed  Google Scholar 

  8. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC . Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183: 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  9. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 1997; 3: 1337–1345.

    Article  CAS  PubMed  Google Scholar 

  10. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 1997; 90: 5013–5021.

    CAS  PubMed  Google Scholar 

  11. Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M . Isolation and characterization of human CD34(−)Lin(−) and CD34(+)Lin(−) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 2000; 95: 2813–2820.

    CAS  PubMed  Google Scholar 

  12. Summers YJ, Heyworth CM, de Wynter EA, Chang J, Testa NG . Cord blood G(0) CD34+ cells have a thousand-fold higher capacity for generating progenitors in vitro than G(1) CD34+ cells. Stem Cells 2001; 19: 505–513.

    Article  CAS  PubMed  Google Scholar 

  13. Summers YJ, Heyworth CM, de Wynter EA, Hart CA, Chang J, Testa NG . AC133+ G0 cells from cord blood show a high incidence of long-term culture-initiating cells and a capacity for more than 100 million-fold amplification of colony-forming cells in vitro. Stem Cells 2004; 22: 704–715.

    Article  PubMed  Google Scholar 

  14. Storms RW, Green PD, Safford KM, Niedzwiecki D, Cogle CR, Colvin OM et al. Distinct hematopoietic progenitor compartments are delineated by the expression of aldehyde dehydrogenase and CD34. Blood 2005; 106: 95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilpshaar J, Falkenburg JH, Tong X, Noort WA, Breese R, Heilman D et al. Similar repopulating capacity of mitotically active and resting umbilical cord blood CD34(+) cells in NOD/SCID mice. Blood 2000; 96: 2100–2107.

    CAS  PubMed  Google Scholar 

  16. Kollet O, Peled A, Byk T, Ben-Hur H, Greiner D, Shultz L et al. beta2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood 2000; 95: 3102–3105.

    CAS  PubMed  Google Scholar 

  17. Glimm H, Eisterer W, Lee K, Cashman J, Holyoake TL, Nicolini F et al. Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-beta2 microglobulin-null mice. J Clin Invest 2001; 107: 199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kerre TC, De Smet G, De Smedt M, Zippelius A, Pittet MJ, Langerak AW et al. Adapted NOD/SCID model supports development of phenotypically and functionally mature T cells from human umbilical cord blood CD34(+) cells. Blood 2002; 99: 1620–1626.

    Article  CAS  PubMed  Google Scholar 

  19. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE . Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA 1997; 94: 5320–5325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dao MA, Arevalo J, Nolta JA . Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution. Blood 2003; 101: 112–118.

    Article  CAS  PubMed  Google Scholar 

  21. Christ O, Lucke K, Imren S, Leung K, Hamilton M, Eaves A et al. Improved purification of hematopoietic stem cells based on their elevated aldehyde dehydrogenase activity. Haematologica 2007; 92: 1165–1172.

    Article  CAS  PubMed  Google Scholar 

  22. Gordon PR, Leimig T, Babarin-Dorner A, Houston J, Holladay M, Mueller I et al. Large-scale isolation of CD133+ progenitor cells from G-CSF mobilized peripheral blood stem cells. Bone Marrow Transplant 2003; 31: 17–22.

    Article  CAS  PubMed  Google Scholar 

  23. Venezia TA, Merchant AA, Ramos CA, Whitehouse NL, Young AS, Shaw CA et al. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol 2004; 2: e301.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cashman J, Dykstra B, Clark-Lewis I, Eaves A, Eaves C . Changes in the proliferative activity of human hematopoietic stem cells in NOD/SCID mice and enhancement of their transplantability after in vivo treatment with cell cycle inhibitors. J Exp Med 2002; 196: 1141–1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Passegue E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL . Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 2005; 202: 1599–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gothot A, van der Loo JC, Clapp DW, Srour EF . Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34(+) cells in non-obese diabetic/severe combined immune-deficient mice. Blood 1998; 92: 2641–2649.

    CAS  PubMed  Google Scholar 

  27. Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE . A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 1998; 4: 1038–1045.

    Article  CAS  PubMed  Google Scholar 

  28. Watt SM, Buhring HJ, Rappold I, Chan JY, Lee-Prudhoe J, Jones T et al. CD164, a novel sialomucin on CD34(+) and erythroid subsets, is located on human chromosome 6q21. Blood 1998; 92: 849–866.

    CAS  PubMed  Google Scholar 

  29. Buhring HJ, Seiffert M, Bock TA, Scheding S, Thiel A, Scheffold A et al. Expression of novel surface antigens on early hematopoietic cells. Ann N Y Acad Sci 1999; 872: 25–38; discussion 38–39.

    Article  CAS  PubMed  Google Scholar 

  30. Bhatia M . AC133 expression in human stem cells. Leukemia 2001; 15: 1685–1688.

    Article  CAS  PubMed  Google Scholar 

  31. Wilpshaar J, Bhatia M, Kanhai HH, Breese R, Heilman DK, Johnson CS et al. Engraftment potential of human fetal hematopoietic cells in NOD/SCID mice is not restricted to mitotically quiescent cells. Blood 2002; 100: 120–127.

    Article  CAS  PubMed  Google Scholar 

  32. Hess DA, Wirthlin L, Craft TP, Herrbrich PE, Hohm SA, Lahey R et al. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood 2006; 107: 2162–2169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pina C, May G, Soneji S, Hong D, Enver T . MLLT3 regulates early human erythroid and megakaryocyte cell fate. Cell Stem Cell 2008; 2: 264–273.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Yorkshire Cancer Research and Cancer Research UK, SJH European Commission Consert Grant 005242 and MPB EU Grant: EURO-POLICY-PID: Ref: SP23-CT-2005-006411. We are grateful to Liz Straczynski and Adam Davison for assistance with flow cytometry, our colleagues for cooperation with cord blood collection and Adrian Thrasher for support. We would like to thank Dr L Miall and staff of the Antenatal Unit at St James's University Hospital for their assistance with cord blood collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E A de Wynter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boxall, S., Cook, G., Pearce, D. et al. Haematopoietic repopulating activity in human cord blood CD133+ quiescent cells. Bone Marrow Transplant 43, 627–635 (2009). https://doi.org/10.1038/bmt.2008.368

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2008.368

Keywords

This article is cited by

Search

Quick links