Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Post-Transplant Events

Factors influencing catheter-related infections in the Dutch multicenter study on high-dose chemotherapy followed by peripheral SCT in high-risk breast cancer patients

Abstract

Neutropenia following high-dose chemotherapy leads to a high incidence of infectious complications, of which central venous catheter-related infections predominate. Catheter-related infections and associated risk factors in 392 patients participating in a randomized adjuvant breast cancer trial and assigned to receive high-dose chemotherapy and peripheral stem-cell reinfusion were evaluated. Median catheter dwell time was 25 days (range 1–141). Catheter-related infections were seen in 28.3% of patients (11 infections per 1000 catheter-days). Coagulase-negative staphylococci were found in 104 of 186 positive blood cultures (56%). No systemic fungal infections occurred. Cox regression analysis showed that duration of neutropenia >10 days (P=0.04), using the catheter for both stem-cell apheresis and high-dose chemotherapy (P=<0.01), and use of total parenteral nutrition (TPN, P=0.04) were predictive for catheter-related infections. In conclusion, a high incidence of catheter-related infections after high-dose chemotherapy was seen related to duration of neutropenia, use of the catheter for both stem-cell apheresis and high-dose chemotherapy, and use of TPN. Selective use and choice of catheters could lead to a substantial reduction of catheter-related infectious complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Farquhar CM, Marjoribanks J, Lethaby A, Basser R . High dose chemotherapy for poor prognosis breast cancer: systematic review and meta-analysis. Cancer Treat Rev 2007; 33: 325–337.

    Article  CAS  PubMed  Google Scholar 

  2. Nitz UA, Mohrmann S, Fischer J, Lindemann W, Berdel WE, Jackisch C et al. Comparison of rapidly cycled tandem high-dose chemotherapy plus peripheral-blood stem-cell support versus dose-dense conventional chemotherapy for adjuvant treatment of high-risk breast cancer: results of a multicentre phase III trial. Lancet 2005; 366: 1935–1944.

    Article  CAS  PubMed  Google Scholar 

  3. Rodenhuis S, Bontenbal M, van Hoesel QG, Smit WM, Nooij MA, Voest EE et al. Efficacy of high-dose alkylating chemotherapy in HER2/neu-negative breast cancer. Ann Oncol 2006; 17: 588–596.

    Article  CAS  PubMed  Google Scholar 

  4. Roche H, Viens P, Biron P, Lotz JP, Asselain B . High-dose chemotherapy for breast cancer: the French PEGASE experience. Cancer Control 2003; 10: 42–47.

    Article  PubMed  Google Scholar 

  5. Rodenhuis S, Bontenbal M, Beex LV, Wagstaff J, Richel DJ, Nooij MA et al. High-dose chemotherapy with hematopoietic stem-cell rescue for high-risk breast cancer. N Engl J Med 2003; 349: 7–16.

    Article  CAS  PubMed  Google Scholar 

  6. Zander AR, Kroger N, Schmoor C, Kruger W, Mobus V, Frickhofen N et al. High-dose chemotherapy with autologous hematopoietic stem-cell support compared with standard-dose chemotherapy in breast cancer patients with 10 or more positive lymph nodes: first results of a randomized trial. J Clin Oncol 2004; 22: 2273–2283.

    Article  CAS  PubMed  Google Scholar 

  7. Lazarus HM, Reed MD, Spitzer TR, Rabaa MS, Blumer JL . High-dose i.v. thiotepa and cryopreserved autologous bone marrow transplantation for therapy of refractory cancer. Cancer Treat Rep 1987; 71: 689–695.

    CAS  PubMed  Google Scholar 

  8. Miller AB, Hoogstraten B, Staquet M, Winkler A . Reporting results of cancer treatment. Cancer 1981; 47: 207–214.

    Article  CAS  PubMed  Google Scholar 

  9. Maki DG, Kluger DM, Crnich CJ . The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc 2006; 81: 1159–1171.

    Article  PubMed  Google Scholar 

  10. Eastridge BJ, Lefor AT . Complications of indwelling venous access devices in cancer patients. J Clin Oncol 1995; 13: 233–238.

    Article  CAS  PubMed  Google Scholar 

  11. Koolen DA, van Laarhoven HW, Wobbes T, Punt CJ . Single-centre experience with tunnelled central venous catheters in 150 cancer patients. Neth J Med 2002; 60: 397–401.

    CAS  PubMed  Google Scholar 

  12. Ray S, Stacey R, Imrie M, Filshie J . A review of 560 Hickman catheter insertions. Anaesthesia 1996; 51: 981–985.

    Article  CAS  PubMed  Google Scholar 

  13. van der Wall E, Nooijen WJ, Baars JW, Holtkamp MJ, Schorangel JH, Richel DJ et al. High-dose carboplatin, thiotepa and cyclophosphamide (CTC) with peripheral blood stem cell support in the adjuvant therapy of high-risk breast cancer: a practical approach. Br J Cancer 1995; 71: 857–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Gaetano Donati K, Tacconelli E, Tumbarello M, Bertagnolio S, Pittiruti M, Leone F et al. Central venous catheter-related sepsis: one year experience in a large university hospital. Infez Med 1999; 7: 227–230.

    PubMed  Google Scholar 

  15. Lai CH, Wong WW, Chin C, Huang CK, Lin HH, Chen WF et al. Central venous catheter-related Stenotrophomonas maltophilia bacteraemia and associated relapsing bacteraemia in haematology and oncology patients. Clin Microbiol Infect 2006; 12: 986–991.

    Article  CAS  PubMed  Google Scholar 

  16. Nosari A, Nichelatti M, De Gasperi A, Nador G, Anghilieri M, Mazza E et al. Incidence of sepsis in central venous catheter-bearing patients with hematologic malignancies: preliminary results. J Vasc Access 2004; 5: 168–173.

    Article  CAS  PubMed  Google Scholar 

  17. Offidani M, Corvatta L, Olivieri A, Rupoli S, Frayfer J, Mele A et al. Infectious complications after autologous peripheral blood progenitor cell transplantation followed by G-CSF. Bone Marrow Transplant 1999; 24: 1079–1087.

    Article  CAS  PubMed  Google Scholar 

  18. Johansson E, Sollen HA, Nilsson AS, Engervall P . Vascular access devices used during harvest of peripheral blood stem cells: high complication rate in patients with a long-term dialysis central venous catheter. Bone Marrow Transplant 1999; 24: 793–797.

    Article  CAS  PubMed  Google Scholar 

  19. Lazarus HM, Trehan S, Miller R, Fox RM, Creger RJ, Raaf JH . Multi-purpose silastic dual-lumen central venous catheters for both collection and transplantation of hematopoietic progenitor cells. Bone Marrow Transplant 2000; 25: 779–785.

    Article  CAS  PubMed  Google Scholar 

  20. Leibundgut K, Muller C, Muller K, Ridolfi-Luthy A, Hirt A . Tunneled, double lumen Broviac catheters are useful, efficient and safe in children undergoing peripheral blood progenitor cell harvesting and transplantation. Bone Marrow Transplant 1996; 17: 663–667.

    CAS  PubMed  Google Scholar 

  21. Madero L, Diaz MA, Benito A, Villa M, Valdivielso A . Non-tunneled catheters for the collection and transplantation of peripheral blood stem cells in children. Bone Marrow Transplant 1997; 20: 53–56.

    Article  CAS  PubMed  Google Scholar 

  22. Miceli MH, Dong L, Coria P, Vila A, Estrada S, Garcia-Damiano MC et al. Leaving previously implanted central venous catheters (ports) in place does not increase morbidity in patients undergoing autologous peripheral stem cell transplantation. Bone Marrow Transplant 2005; 36: 131–134.

    Article  CAS  PubMed  Google Scholar 

  23. Restrepo A, Devore P, Encarnacion CE, Wholey MH, Schneider D, Callander NS et al. Performance of a hybrid central venous catheter utilized for both peripheral blood stem cell harvest and transplant support of patients undergoing autologous peripheral blood stem cell transplantation. Bone Marrow Transplant 2002; 30: 389–395.

    Article  CAS  PubMed  Google Scholar 

  24. Cetin T, Arpaci F, Dere Y, Turan M, Ozturk B, Komurcu S et al. Total parenteral nutrition delays platelet engraftment in patients who undergo autologous hematopoietic stem cell transplantation. Nutrition 2002; 18: 599–603.

    Article  CAS  PubMed  Google Scholar 

  25. Roberts S, Miller J, Pineiro L, Jennings L . Total parenteral nutrition vs oral diet in autologous hematopoietic cell transplant recipients. Bone Marrow Transplant 2003; 32: 715–721.

    Article  CAS  PubMed  Google Scholar 

  26. Ballen KK, Becker PS, Yeap BY, Matthews B, Henry DH, Ford PA . Autologous stem-cell transplantation can be performed safely without the use of blood-product support. J Clin Oncol 2004; 22: 4087–4094.

    Article  PubMed  Google Scholar 

  27. Raad II, Hohn DC, Gilbreath BJ, Suleiman N, Hill LA, Bruso PA et al. Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect Control Hosp Epidemiol 1994; 15: 231–238.

    Article  CAS  PubMed  Google Scholar 

  28. Maki DG, Ringer M, Alvarado CJ . Prospective randomised trial of povidone-iodine, alcohol, and chlorhexidine for prevention of infection associated with central venous and arterial catheters. Lancet 1991; 338: 339–343.

    Article  CAS  PubMed  Google Scholar 

  29. Henrickson KJ, Axtell RA, Hoover SM, Kuhn SM, Pritchett J, Kehl SC et al. Prevention of central venous catheter-related infections and thrombotic events in immunocompromised children by the use of vancomycin/ciprofloxacin/heparin flush solution: a randomized, multicenter, double-blind trial. J Clin Oncol 2000; 18: 1269–1278.

    Article  CAS  PubMed  Google Scholar 

  30. Darouiche RO, Raad II, Heard SO, Thornby JI, Wenker OC, Gabrielli A et al. A comparison of two antimicrobial-impregnated central venous catheters. Catheter Study Group. N Engl J Med 1999; 340: 1–8.

    Article  CAS  PubMed  Google Scholar 

  31. Maki DG, Stolz SM, Wheeler S, Mermel LA . Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter. A randomized, controlled trial. Ann Intern Med 1997; 127: 257–266.

    Article  CAS  PubMed  Google Scholar 

  32. Raad I, Darouiche R, Dupuis J, Abi-Said D, Gabrielli A, Hachem R et al. Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections. A randomized, double-blind trial. The Texas Medical Center Catheter Study Group. Ann Intern Med 1997; 127: 267–274.

    Article  CAS  PubMed  Google Scholar 

  33. Abdelkefi A, Torjman L, Ladeb S, Othman TB, Achour W, Lakhal A et al. Randomized trial of prevention of catheter-related bloodstream infection by continuous infusion of low-dose unfractionated heparin in patients with hematologic and oncologic disease. J Clin Oncol 2005; 23: 7864–7870.

    Article  PubMed  Google Scholar 

  34. Hanna H, Benjamin R, Chatzinikolaou I, Alakech B, Richardson D, Mansfield P et al. Long-term silicone central venous catheters impregnated with minocycline and rifampin decrease rates of catheter-related bloodstream infection in cancer patients: a prospective randomized clinical trial. J Clin Oncol 2004; 22: 3163–3171.

    Article  CAS  PubMed  Google Scholar 

  35. Walshe LJ, Malak SF, Eagan J, Sepkowitz KA . Complication rates among cancer patients with peripherally inserted central catheters. J Clin Oncol 2002; 20: 3276–3281.

    Article  PubMed  Google Scholar 

  36. Biffi R, Pozzi S, Agazzi A, Pace U, Floridi A, Cenciarelli S et al. Use of totally implantable central venous access ports for high-dose chemotherapy and peripheral blood stem cell transplantation: results of a monocentre series of 376 patients. Ann Oncol 2004; 15: 296–300.

    Article  CAS  PubMed  Google Scholar 

  37. Adler A, Yaniv I, Steinberg R, Solter E, Samra Z, Stein J et al. Infectious complications of implantable ports and Hickman catheters in paediatric haematology-oncology patients. J Hosp Infect 2006; 62: 358–365.

    Article  CAS  PubMed  Google Scholar 

  38. Groeger JS, Lucas AB, Thaler HT, Friedlander-Klar H, Brown AE, Kiehn TE et al. Infectious morbidity associated with long-term use of venous access devices in patients with cancer. Ann Intern Med 1993; 119: 1168–1174.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Dutch College for Healthcare Assurances (CVZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W T A van der Graaf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieboer, P., de Vries, E., Mulder, N. et al. Factors influencing catheter-related infections in the Dutch multicenter study on high-dose chemotherapy followed by peripheral SCT in high-risk breast cancer patients. Bone Marrow Transplant 42, 475–481 (2008). https://doi.org/10.1038/bmt.2008.195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2008.195

Keywords

Search

Quick links