Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cell Procurement

Pegfilgrastim successfully mobilizes megakaryocyte progenitors into the peripheral blood in subjects with solid tumours

Abstract

Cytokine-mobilized PBPC transplants result in rapid neutrophil and platelet engraftment following high-dose chemotherapy. A total of 61 patients with solid tumours, sensitive to carboplatin and paclitaxol, were recruited as part of a phase I/II study and randomized to receive a single dose of 6, 12 or 18 mg pegfilgrastim on day 1 of a 14-day prechemotherapy cycle or daily filgrastim (10 μg/kg) for up to 7 days. The kinetics of megakaryocyte progenitor mobilization were studied using immunohistochemical assays and flow cytometry in a subset of 31 patients. There was no significant difference among treatment groups with respect to the timing of total progenitor colony-forming units (CFUs) and megakaryocyte progenitor (CFU-MK) mobilization, with the highest median peak falling on day 4/5 in all groups. In the pegfilgrastim 18 mg group, the mean peak total CFUs and CFU-MK were statistically significantly higher than in the filgrastim group (2.031 × 104 vs 8.06 × 103 per millilitre, P=0.024 and 1.12 × 104 vs 4.56 × 103 per millilitre, P=0.024, respectively). The kinetic profiles generated using immunohistochemical assays for CFU-MK and FACS analysis for CD41a were closely correlated suggesting that CD41a can be used as a surrogate marker for megakaryocytic mobilization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Nademanee A, Molina A, Dagis A, Snyder DS, O’Donnell MR, Parker P et al. Autologous stem-cell transplantation for poor-risk and relapsed intermediate- and high-grade non-Hodgkin's lymphoma. Clin Lymphoma 2000; 1: 46–54.

    Article  CAS  PubMed  Google Scholar 

  2. Child JA, Morgan GJ, Davies FE, Owen RG, Bell SE, Hawkins K et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003; 348: 1875–1883.

    Article  CAS  PubMed  Google Scholar 

  3. Fermand JP, Ravaud P, Chevret S, Divine M, Leblond V, Belanger C et al. High-dose therapy and autologous peripheral blood stem cell transplantation in multiple myeloma: up-front or rescue treatment? Results of a multicenter sequential randomized clinical trial. Blood 1998; 92: 3131–3136.

    CAS  PubMed  Google Scholar 

  4. Rodenhuis S, Bontenbal M, Beex LV, Wagstaff J, Richel DJ, Nooij MA et al. High-dose chemotherapy with hematopoietic stem-cell rescue for high-risk breast cancer. N Engl J Med 2003; 349: 7–16.

    Article  CAS  PubMed  Google Scholar 

  5. Ledermann JA, Herd R, Maraninchi D, Viens P, Buclon M, Philip T et al. High-dose chemotherapy for ovarian carcinoma: long-term results from the Solid Tumour Registry of the European Group for Blood and Marrow Transplantation (EBMT). Ann Oncol 2001; 12: 693–699.

    Article  CAS  PubMed  Google Scholar 

  6. Cohena Y, Nagler A . Hematopoietic stem-cell transplantation using umbilical-cord blood. Leuk Lymphoma 2003; 44: 1287–1299.

    Article  PubMed  Google Scholar 

  7. Schmitz N, Linch DC, Dreger P, Goldstone AH, Boogaerts MA, Ferrant A et al. Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 1996; 347: 353–357.

    Article  CAS  PubMed  Google Scholar 

  8. Vicent MG, Madero L, Chamorro L, Madero R, Diaz MA . Comparative cost analysis of autologous peripheral blood progenitor cell and bone marrow transplantation in pediatric patients with malignancies. Haematologica 2001; 86: 1087–1094.

    CAS  PubMed  Google Scholar 

  9. Dawson MA, Schwarer AP, Muirhead JL, Bailey MJ, Bollard GM, Spencer A . Successful mobilization of peripheral blood stem cells using recombinant human stem cell factor in heavily pretreated patients who have failed a previous attempt with a granulocyte colony-stimulating factor-based regimen. Bone Marrow Transplant 2005; 36: 389–396.

    Article  CAS  PubMed  Google Scholar 

  10. Faucher C, Le Corroller AG, Chabannon C, Viens P, Stoppa AM, Bouabdallah R et al. Autologous transplantation of blood stem cells mobilized with filgrastim alone in 93 patients with malignancies: the number of CD34+ cells reinfused is the only factor predicting both granulocyte and platelet recovery. J Hematother 1996; 5: 663–670.

    Article  CAS  PubMed  Google Scholar 

  11. Filshie RJ . Cytokines in haemopoietic progenitor mobilisation for peripheral blood stem cell transplantation. Curr Pharm Des 2002; 8: 379–394.

    Article  CAS  PubMed  Google Scholar 

  12. Linker C, Anderlini P, Herzig R, Christiansen N, Somlo G, Bensinger W et al. Recombinant human thrombopoietin augments mobilization of peripheral blood progenitor cells for autologous transplantation. Biol Blood Marrow Transplant 2003; 9: 405–413.

    Article  CAS  PubMed  Google Scholar 

  13. Sohn SK, Kim JG, Seo KW, Chae YS, Jung JT, Suh JS et al. GM-CSF-based mobilization effect in normal healthy donors for allogeneic peripheral blood stem cell transplantation. Bone Marrow Transplant 2002; 30: 81–86.

    Article  CAS  PubMed  Google Scholar 

  14. Arora M, Burns LJ, Barker JN, Miller JS, Defor TE, Olujohungbe AB et al. Randomized comparison of granulocyte colony-stimulating factor versus granulocyte-macrophage colony-stimulating factor plus intensive chemotherapy for peripheral blood stem cell mobilization and autologous transplantation in multiple myeloma. Biol Blood Marrow Transplant 2004; 10: 395–404.

    Article  CAS  PubMed  Google Scholar 

  15. Somlo G, Sniecinski I, ter Veer A, Longmate J, Knutson G, Vuk-Pavlovic S et al. Recombinant human thrombopoietin in combination with granulocyte colony-stimulating factor enhances mobilization of peripheral blood progenitor cells, increases peripheral blood platelet concentration, and accelerates hematopoietic recovery following high-dose chemotherapy. Blood 1999; 93: 2798–2806.

    CAS  PubMed  Google Scholar 

  16. Diaz MA, Vicent MG, Garcia-Sanchez F, Vicario JL, Madero L . Long-term hematopoietic engraftment after autologous peripheral blood progenitor cell transplantation in pediatric patients: effect of the CD34+ cell dose. Vox Sang 2000; 79: 145–150.

    Article  CAS  PubMed  Google Scholar 

  17. Feng R, Shimazaki C, Inaba T, Takahashi R, Hirai H, Kikuta T et al. CD34+/CD41a+ cells best predict platelet recovery after autologous peripheral blood stem cell transplantation. Bone Marrow Transplant 1998; 21: 1217–1222.

    Article  CAS  PubMed  Google Scholar 

  18. Demetri GD, Griffin JD . Granulocyte colony-stimulating factor and its receptor. Blood 1991; 78: 2791–2808.

    CAS  PubMed  Google Scholar 

  19. Chao NJ, Schriber JR, Grimes K, Long GD, Negrin RS, Raimondi CM et al. Granulocyte colony-stimulating factor ‘mobilized’ peripheral blood progenitor cells accelerate granulocyte and platelet recovery after high-dose chemotherapy. Blood 1993; 81: 2031–2035.

    CAS  PubMed  Google Scholar 

  20. Schmitz N, Linch DC, Dreger P, Goldstone AH, Boogaerts MA, Ferrant A et al. Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 1996; 347: 353–357.

    Article  CAS  PubMed  Google Scholar 

  21. Lickliter JD, Begley CG, Boyd AW, Szer J, Grigg AP . Combined chemotherapy and granulocyte colony-stimulating factor (G-CSF) mobilise large numbers of peripheral blood progenitor cells in pretreated patients. Leuk Lymphoma 1994; 15: 91–97.

    Article  CAS  PubMed  Google Scholar 

  22. Horvath N, Hahn U, Joshua D, Dyson P, Gibson J, Stevens J et al. Long-term follow up of sequential mobilisation and autologous transplantation with CD34-selected cells in multiple myeloma: a multimodality approach. Intern Med J 2004; 34: 167–175.

    Article  CAS  PubMed  Google Scholar 

  23. Stewart DA, Guo D, Luider J, Auer I, Klassen J, Morris D et al. The CD34+90+ cell dose does not predict early engraftment of autologous blood stem cells as well as the total CD34+ cell dose. Bone Marrow Transplant 2000; 25: 435–440.

    Article  CAS  PubMed  Google Scholar 

  24. Diaz MA, Vicent MG, Garcia-Sanchez F, Vicario JL, Madero L . Long-term hematopoietic engraftment after autologous peripheral blood progenitor cell transplantation in pediatric patients: effect of the CD34+ cell dose. Vox Sang 2000; 79: 145–150.

    Article  CAS  PubMed  Google Scholar 

  25. Ayala IA, Tomer A, Kellar KL . Flow cytometric analysis of megakaryocyte-associated antigens on CD34 cells and their progeny in liquid culture. Stem Cells 1996; 14: 320–329.

    Article  CAS  PubMed  Google Scholar 

  26. Hogge DE, Lambie K, Sutherland HJ, Benny WB, Dalal B, Currie C et al. Quantitation of primitive and lineage-committed progenitors in mobilized peripheral blood for prediction of platelet recovery post autologous transplant. Bone Marrow Transplant 2000; 25: 589–598.

    Article  CAS  PubMed  Google Scholar 

  27. Curran MP, Goa KL . Pegfilgrastim. Drugs 2002; 62: 1207–1213.

    Article  CAS  PubMed  Google Scholar 

  28. Molineux G, Kinstler O, Briddell B, Hartley C, McElroy P, Kerzic P et al. A new form of Filgrastim with sustained duration in vivo and enhanced ability to mobilize PBPC in both mice and humans. Exp Hematol 1999; 27: 1724–1734.

    Article  CAS  PubMed  Google Scholar 

  29. Green MD, Koelbl H, Baselga J, Galid A, Guillem V, Gascon P et al. A randomized double-blind multicenter phase III study of fixed-dose single-administration pegfilgrastim versus daily filgrastim in patients receiving myelosuppressive chemotherapy. Ann Oncol 2003; 14: 29–35.

    Article  CAS  PubMed  Google Scholar 

  30. Holmes FA, O’Shaughnessy JA, Vukelja S, Jones SE, Shogan J, Savin M et al. Blinded, randomized, multicenter study to evaluate single administration pegfilgrastim once per cycle versus daily filgrastim as an adjunct to chemotherapy in patients with high-risk stage II or stage III/IV breast cancer. J Clin Oncol 2002; 20: 727–731.

    Article  CAS  PubMed  Google Scholar 

  31. Johnston E, Crawford J, Blackwell S, Bjurstrom T, Lockbaum P, Roskos L et al. Randomized, dose-escalation study of SD/01 compared with daily filgrastim in patients receiving chemotherapy. J Clin Oncol 2000; 18: 2522–2528.

    Article  CAS  PubMed  Google Scholar 

  32. Isidori A, Tani M, Bonifazi F, Zinzani P, Curti A, Motta MR et al. Phase II study of a single pegfilgrastim injection as an adjunct to chemotherapy to mobilize stem cells into the peripheral blood of pretreated lymphoma patients. Haematologica 2005; 90: 225–231.

    CAS  PubMed  Google Scholar 

  33. Demirer T, Buckner CD, Gooley T, Appelbaum FR, Rowley S, Chauncey T et al. Factors influencing collection of peripheral blood stem cells in patients with multiple myeloma. Bone Marrow Transplant 1996; 17: 937–941.

    CAS  PubMed  Google Scholar 

  34. Morris CL, Siegel E, Barlogie B, Cottler-Fox M, Lin P, Fassas A et al. Mobilization of CD34+ cells in elderly patients (>/=70 years) with multiple myeloma: influence of age, prior therapy, platelet count and mobilization regimen. Br J Haematol 2003; 120: 413–423.

    Article  PubMed  Google Scholar 

  35. Tricot G, Jagannath S, Vesole D, Nelson J, Tindle S, Miller L et al. Peripheral blood stem cell transplants for multiple myeloma: identification of favorable variables for rapid engraftment in 225 patients. Blood 1995; 85: 588–596.

    CAS  PubMed  Google Scholar 

  36. Schmitz N, Linch DC, Dreger P, Goldstone AH, Boogaerts MA, Ferrant A et al. Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 1996; 347: 353–357.

    Article  CAS  PubMed  Google Scholar 

  37. Laricchia-Robbio L, Moscato S, Genua A, Liberati AM, Revoltella RP . Naturally occurring and therapy-induced antibodies to human granulocyte colony-stimulating factor (G-CSF) in human serum. J Cell Physiol 1997; 173: 219–226.

    Article  CAS  PubMed  Google Scholar 

  38. Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G . Filgrastim (r-metHuG-CSF): the first 10 years. Blood 1996; 88: 1907–1929.

    CAS  PubMed  Google Scholar 

  39. Chakrabarti S, Takahashi Y, Read EJ, Khuu H, Goodwin R, Leitman S et al. A Comparison of apheresis cell content collected from the same donors mobilized with granulocyte colony stimulating factor (G-CSF) vs a single injection of AMD3100. ASH Annual Meeting Abstracts 2004; 104: 2853.

    Google Scholar 

  40. Dugan MJ, Akard LP, Thompson JM, Nademanee A, Maziarz RT, Bensinger WI et al. Treatment with AMD3100 in multiple myeloma or non-Hodgkin's lymphoma patients to increase the number of peripheral blood stem cells when given with a mobilizing regimen of chemotherapy and G-CSF. ASH Annual Meeting Abstracts 2004; 104: 2860.

    Google Scholar 

  41. D’Hondt V, Humblet Y, Guillaume T, Baatout S, Chatelain C, Berliere M et al. Thrombopoietic effects and toxicity of interleukin-6 in patients with ovarian cancer before and after chemotherapy: a multicentric placebo-controlled, randomized phase Ib study. Blood 1995; 85: 2347–2353.

    PubMed  Google Scholar 

  42. Gordon MS, Nemunaitis J, Hoffman R, Paquette RL, Rosenfeld C, Manfreda S et al. A phase I trial of recombinant human interleukin-6 in patients with myelodysplastic syndromes and thrombocytopenia. Blood 1995; 85: 3066–3076.

    CAS  PubMed  Google Scholar 

  43. Tepler I, Elias L, Smith JW, Hussein M, Rosen G, Chang AY et al. A randomized placebo-controlled trial of recombinant human interleukin-11 in cancer patients with severe thrombocytopenia due to chemotherapy. Blood 1996; 87: 3607–3614.

    CAS  PubMed  Google Scholar 

  44. Molineux G, Hartley C, McElroy P, McCrea C, McNiece IK . Megakaryocyte growth and development factor accelerates platelet recovery in peripheral blood progenitor cell transplant recipients. Blood 1996; 88: 366–376.

    CAS  PubMed  Google Scholar 

  45. Wolff SN, Herzig R, Lynch J, Ericson SG, Greer JP, Stein R et al. Recombinant human thrombopoietin (rhTPO) after autologous bone marrow transplantation: a phase I pharmacokinetic and pharmacodynamic study. Bone Marrow Transplant 2001; 27: 261–268.

    Article  CAS  PubMed  Google Scholar 

  46. Basser RL, O’Flaherty E, Green M, Edmonds M, Nichol J, Menchaca DM et al. Development of pancytopenia with neutralizing antibodies to thrombopoietin after multicycle chemotherapy supported by megakaryocyte growth and development factor. Blood 2002; 99: 2599–2602.

    Article  CAS  PubMed  Google Scholar 

  47. Li J, Yang C, Xia Y, Bertino A, Glaspy J, Roberts M et al. Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood 2001; 98: 3241–3248.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by an unrestricted grant from Amgen. We thank P Woll, DW Fyfe, SD Pledge, WP Steward, C Gallagher and N Davidson, investigators at the study sites for supporting and recruiting patients into this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Willis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willis, F., Theti, D., Dean, S. et al. Pegfilgrastim successfully mobilizes megakaryocyte progenitors into the peripheral blood in subjects with solid tumours. Bone Marrow Transplant 42, 167–173 (2008). https://doi.org/10.1038/bmt.2008.147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2008.147

Keywords

Search

Quick links