Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Post-Transplant Events

B-cell reconstitution after allogeneic SCT impairs minimal residual disease monitoring in children with ALL

Abstract

Minimal residual disease (MRD) detection using quantification of clone-specific Ig or TCR rearrangements before and after transplantation in children with high-risk ALL is an important predictor of outcome. The method and guidelines for its interpretation are very precise to avoid both false-negative and -positive results. In a group of 21 patients following transplantation, we observed detectable MRD positivities in Ig/TCR-based real-time quantitative PCR (RQ-PCR) leading to no further progression of the disease (11 of 100 (11%) total samples). We hypothesized that these positivities were mostly the result of nonspecific amplification despite the application of strict internationally agreed-upon measures. We applied two non-self-specific Ig heavy chain assays and received a similar number of positivities (20 and 15%). Nonspecific products amplified in these RQ-PCR systems differed from specific products in length and sequence. Statistical analysis proved that there was an excellent correlation of this phenomenon with B-cell regeneration in BM as measured by flow cytometry and Ig light chain-κ excision circle quantification. We conclude that although Ig/TCR quantification is a reliable method for post transplant MRD detection, isolated positivities in Ig-based RQ-PCR systems at the time of intense B-cell regeneration must be viewed with caution to avoid the wrong indication of treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Eckert C, Biondi A, Seeger K, Cazzaniga G, Hartmann R, Beyermann B et al. Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet 2001; 358: 1239–1241.

    Article  CAS  PubMed  Google Scholar 

  2. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grumayer R, van der Velden V, Fischer S et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 2008 (in press).

  3. Pui CH, Schrappe M, Ribeiro RC, Niemeyer CM . Childhood and adolescent lymphoid and myeloid leukemia. Hematology (Am Soc Hematol Educ Program) 2004; 2004: 118–145.

    Article  Google Scholar 

  4. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738.

    Article  CAS  PubMed  Google Scholar 

  5. Bader P, Hancock J, Kreyenberg H, Goulden NJ, Niethammer D, Oakhill A et al. Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia 2002; 16: 1668–1672.

    Article  CAS  PubMed  Google Scholar 

  6. Knechtli CJ, Goulden NJ, Hancock JP, Grandage VL, Harris EL, Garland RJ et al. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood 1998; 92: 4072–4079.

    CAS  PubMed  Google Scholar 

  7. Krejci O, Van der Velden V, Bader P, Kreyenberg H, Goulden N, Hancock J et al. Level of minimal residual disease prior to haematopoietic transplantation predicts prognosis in paediatric patients with acute lymphoblastic leukaemia: a report of the pre-BMT-MRD Study Group. Letter. Bone Marrow Transplant 2003; 32: 849–851.

    Article  CAS  PubMed  Google Scholar 

  8. Sramkova L, Muzikova K, Fronkova E, Krejci O, Sedlacek P, Formankova R et al. Detectable minimal residual disease before allogeneic hematopoietic stem cell transplantation predicts extremely poor prognosis in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 2007; 48: 93–100.

    Article  PubMed  Google Scholar 

  9. Bader P, Beck J, Frey A, Schlegel PG, Hebarth H, Handgretinger R et al. Serial and quantitative analysis of mixed hematopoietic chimerism by PCR in patients with acute leukemias allows the prediction of relapse after allogeneic BMT. Bone Marrow Transplant 1998; 21: 487–495.

    Article  CAS  PubMed  Google Scholar 

  10. Zetterquist H, Mattsson J, Uzunel M, Nasman-Bjork I, Svenberg P, Tammik L et al. Mixed chimerism in the B cell lineage is a rapid and sensitive indicator of minimal residual disease in bone marrow transplant recipients with pre-B cell acute lymphoblastic leukemia. Bone Marrow Transplant 2000; 25: 843–851.

    Article  CAS  PubMed  Google Scholar 

  11. Sanchez J, Serrano J, Gomez P, Martinez F, Martin C, Madero L et al. Clinical value of immunological monitoring of minimal residual disease in acute lymphoblastic leukaemia after allogeneic transplantation. Br J Haematol 2002; 116: 686–694.

    Article  PubMed  Google Scholar 

  12. Radich J, Gehly G, Lee A, Avery R, Bryant E, Edmands S et al. Detection of bcr-abl transcripts in Philadelphia chromosome-positive acute lymphoblastic leukemia after marrow transplantation. Blood 1997; 89: 2602–2609.

    CAS  PubMed  Google Scholar 

  13. Knechtli CJ, Goulden NJ, Hancock JP, Harris EL, Garland RJ, Jones CG et al. Minimal residual disease status as a predictor of relapse after allogeneic bone marrow transplantation for children with acute lymphoblastic leukaemia. Br J Haematol 1998; 102: 860–871.

    Article  CAS  PubMed  Google Scholar 

  14. Miglino M, Berisso G, Grasso R, Canepa L, Clavio M, Pierri I et al. Allogeneic bone marrow transplantation (BMT) for adults with acute lymphoblastic leukemia (ALL): predictive role of minimal residual disease monitoring on relapse. Bone Marrow Transplant 2002; 30: 579–585.

    Article  CAS  PubMed  Google Scholar 

  15. Radich J, Ladne P, Gooley T . Polymerase chain reaction-based detection of minimal residual disease in acute lymphoblastic leukemia predicts relapse after allogeneic BMT. Biol Blood Marrow Transplant 1995; 1: 24–31.

    CAS  PubMed  Google Scholar 

  16. Uzunel M, Jaksch M, Mattsson J, Ringden O . Minimal residual disease detection after allogeneic stem cell transplantation is correlated to relapse in patients with acute lymphoblastic leukaemia. Br J Haematol 2003; 122: 788–794.

    Article  PubMed  Google Scholar 

  17. Spinelli O, Peruta B, Tosi M, Guerini V, Salvi A, Zanotti MC et al. Clearance of minimal residual disease after allogeneic stem cell transplantation and the prediction of the clinical outcome of adult patients with high-risk acute lymphoblastic leukemia. Haematologica 2007; 92: 612–618.

    Article  PubMed  Google Scholar 

  18. Bader P, Klingebiel T, Schaudt A, Theurer Mainka U, Handgretinger R, Lang P et al. Prevention of relapse in pediatric patients with acute leukemias and MDS after allogeneic SCT by early immunotherapy initiated on the basis of increasing mixed chimerism: a single center experience of 12 children. Leukemia 1999; 13: 2079–2086.

    Article  CAS  PubMed  Google Scholar 

  19. Collins Jr RH, Goldstein S, Giralt S, Levine J, Porter D, Drobyski W et al. Donor leukocyte infusions in acute lymphocytic leukemia. Bone Marrow Transplant 2000; 26: 511–516.

    Article  PubMed  Google Scholar 

  20. Dominietto A, Pozzi S, Miglino M, Albarracin F, Piaggio G, Bertolotti F et al. Donor lymphocyte infusions for the treatment of minimal residual disease in acute leukemia. Blood 2007; 109: 5063–5064.

    Article  CAS  PubMed  Google Scholar 

  21. Keil F, Kalhs P, Haas OA, Fritsch G, Reiter E, Mannhalter C et al. Relapse of Philadelphia chromosome positive acute lymphoblastic leukaemia after marrow transplantation: sustained molecular remission after early and dose-escalating infusion of donor leucocytes. Br J Haematol 1997; 97: 161–164.

    Article  CAS  PubMed  Google Scholar 

  22. Loren AW, Porter DL . Donor leukocyte infusions for the treatment of relapsed acute leukemia after allogeneic stem cell transplantation. Bone Marrow Transplant 2008; 41: 483–493.

    Article  CAS  PubMed  Google Scholar 

  23. Mehta PA, Davies SM . Allogeneic transplantation for childhood ALL. Bone Marrow Transplant 2008; 41: 133–139.

    Article  CAS  PubMed  Google Scholar 

  24. Pui CH, Jeha S . New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov 2007; 6: 149–165.

    Article  CAS  PubMed  Google Scholar 

  25. Schilham MW, Balduzzi A, Bader P . Is there a role for minimal residual disease levels in the treatment of ALL patients who receive allogeneic stem cells? Bone Marrow Transplant 2005; 35 (Suppl 1): S49–S52.

    Article  PubMed  Google Scholar 

  26. Yazaki M, Andoh M, Ito T, Ohno T, Wada Y . Successful prevention of hematological relapse for a patient with Philadelphia chromosome-positive acute lymphoblastic leukemia after allogeneic bone marrow transplantation by donor leukocyte infusion. Bone Marrow Transplant 1997; 19: 393–394.

    Article  CAS  PubMed  Google Scholar 

  27. van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007; 21: 604–611.

    Article  CAS  PubMed  Google Scholar 

  28. Pongers-Willemse MJ, Seriu T, Stolz F, d'Aniello E, Gameiro P, Pisa P et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 110–118.

    Article  CAS  PubMed  Google Scholar 

  29. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98–3936. Leukemia 2003; 17: 2257–2317.

    Article  CAS  PubMed  Google Scholar 

  30. Langerak AW, Wolvers-Tettero IL, van Gastel-Mol EJ, Oud ME, van Dongen JJ . Basic helix-loop-helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood 2001; 98: 2456–2465.

    Article  CAS  PubMed  Google Scholar 

  31. van der Velden VH, Wijkhuijs JM, Jacobs DC, van Wering ER, van Dongen JJ . T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 2002; 16: 1372–1380.

    Article  CAS  PubMed  Google Scholar 

  32. van der Velden VH, Willemse MJ, van der Schoot CE, Hahlen K, van Wering ER, van Dongen JJ . Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 2002; 16: 928–936.

    Article  CAS  PubMed  Google Scholar 

  33. Verhagen OJ, Willemse MJ, Breunis WB, Wijkhuijs AJ, Jacobs DC, Joosten SA et al. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2000; 14: 1426–1435.

    Article  CAS  PubMed  Google Scholar 

  34. Pongers Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, Roovers E et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 1998; 12: 2006–2014.

    Article  CAS  PubMed  Google Scholar 

  35. Lucio P, Parreira A, van den Beemd MW, van Lochem EG, van Wering ER, Baars E et al. Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia 1999; 13: 419–427.

    Article  CAS  PubMed  Google Scholar 

  36. van Zelm MC, Szczepanski T, van der Burg M, van Dongen JJ . Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. J Exp Med 2007; 204: 645–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cook GP, Tomlinson IM . The human immunoglobulin VH repertoire. Immunol Today 1995; 16: 237–242.

    Article  CAS  PubMed  Google Scholar 

  38. Raaphorst FM, Raman CS, Tami J, Fischbach M, Sanz I . Human Ig heavy chain CDR3 regions in adult bone marrow pre-B cells display an adult phenotype of diversity: evidence for structural selection of DH amino acid sequences. Int Immunol 1997; 9: 1503–1515.

    Article  CAS  PubMed  Google Scholar 

  39. Hazenberg MD, Verschuren MC, Hamann D, Miedema F, van Dongen JJ . T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. J Mol Med 2001; 79: 631–640.

    Article  CAS  PubMed  Google Scholar 

  40. Van Der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, Van Dongen JJ . Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17: 1013–1034.

    Article  CAS  PubMed  Google Scholar 

  41. van der Velden VH, Wijkhuijs JM, van Dongen JJ . Non-specific amplification of patient-specific Ig/TCR gene rearrangements depends on the time point during therapy: implications for minimal residual disease monitoring. Leukemia 2008; 22: 641–644.

    Article  CAS  PubMed  Google Scholar 

  42. Kook H, Goldman F, Padley D, Giller R, Rumelhart S, Holida M et al. Reconstruction of the immune system after unrelated or partially matched T-cell-depleted bone marrow transplantation in children: immunophenotypic analysis and factors affecting the speed of recovery. Blood 1996; 88: 1089–1097.

    CAS  PubMed  Google Scholar 

  43. Storek J, Joseph A, Espino G, Dawson MA, Douek DC, Sullivan KM et al. Immunity of patients surviving 20–30 years after allogeneic or syngeneic bone marrow transplantation. Blood 2001; 98: 3505–3512.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by MSM0021620813, MZO 00064203, MZdNR8269-3/2005, MZdNR9531-3 and GAUK 7543/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Fronkova.

Additional information

Supplementary Information accompanies the paper on Bone Marrow Transplantation website (http://www.nature.com/bmt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fronkova, E., Muzikova, K., Mejstrikova, E. et al. B-cell reconstitution after allogeneic SCT impairs minimal residual disease monitoring in children with ALL. Bone Marrow Transplant 42, 187–196 (2008). https://doi.org/10.1038/bmt.2008.122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2008.122

Keywords

This article is cited by

Search

Quick links