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Background: Although the mechanistic target of rapamycin (MTOR) kinase, included in the mTORC1 and mTORC2 signalling
hubs, has been demonstrated to be active in a significant fraction of patients with pancreatic ductal adenocarcinoma (PDAC), the
value of the kinase as a therapeutic target needs further clarification.

Methods: We used Mtor floxed mice to analyse the function of the kinase in context of the pancreas at the genetic level. Using a
dual-recombinase system, which is based on the flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies, we generated a
novel cellular model, allowing the genetic analysis of MTOR functions in tumour maintenance. Cross-species validation and
pharmacological intervention studies were used to recapitulate genetic data in human models, including primary human 3D PDAC
cultures.

Results: Genetic deletion of the Mtor gene in the pancreas results in exocrine and endocrine insufficiency. In established murine
PDAC cells, MTOR is linked to metabolic pathways and maintains the glucose uptake and growth. Importantly, blocking MTOR
genetically as well as pharmacologically results in adaptive rewiring of oncogenic signalling with activation of canonical
extracellular signal-regulated kinase and phosphoinositide 3-kinase-AKT pathways. We provide evidence that interfering with such
adaptive signalling in murine and human PDAC models is important in a subgroup.

Conclusions: Our data suggest developing dual MTORC1/TORC2 inhibitor-based therapies for subtype-specific intervention.
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Understanding the complexity of context-specific oncogenic
signalling, including feedforward and feedbackward loops and
the adaption of signalling upon targeted intervention is a major
goal to develop precision therapies (Schneider et al, 2017). Over
90% of pancreatic ductal adenocarcinoma (PDAC) patients
harbour oncogenic KRAS mutations. Mutated KRAS initiates a
complex and context-specific signalling, including canonical
mitogen-activated protein kinase kinase (MEK)-extracellular
signal-regulated kinase (ERK) or phosphoinositide 3-kinase
(PI3K)-3-phosphoinositide-dependent protein kinase (PDK1)
pathways (Schneeweis et al, 2016). Indeed, the PI3K-PDK1
signalling pathway is a KRAS effector in the pancreas. Genetic
deletion of the PI3K subunit p110a (Baer et al, 2014; Wu et al,
2014) or Pdk1 (Eser et al, 2013; Schonhuber et al, 2014) blocks the
formation of preneoplastic lesions as well as the development of
invasive cancers in genetically engineered mouse models
(GEMMs). Moreover, the H1047R hotspot mutant of p110a drives
carcinogenesis in the pancreas (Eser et al, 2013; Payne et al, 2015).
At the therapeutic level, it has been demonstrated that inhibition of
the PI3K pathway leads to growth inhibition and temporal tumour
stasis in PDAC GEMMs as well as patient-derived orthotopic
xenotransplant models (Cao et al, 2009; Eser et al, 2013; Junttila
et al, 2015; Payne et al, 2015).

The Ser/Thr kinase mechanistic target of rapamycin (MTOR) is
an important downstream target of the PI3K signalling pathway
(Saxton and Sabatini, 2017). Mechanistic target of rapamycin is
included in the two protein complexes mTORC1 and mTORC2.
The mTORC1 complex also contains regulatory-associated protein
of MTOR (RAPTOR) and mammalian lethal with SEC thirteen 8
(mLST8), whereas the mTORC2 complex is characterised by the
presence of rapamycin-insensitive companion of MTOR (RIC-
TOR), SAPK-interacting 1 and mLST8. mTORC1, the activity of
which is controlled by growth factors, cellular energy balance and
nutrient supply, phosphorylates downstream targets including
ribosomal S6 kinase and eIF4E-binding protein 1 (4E-BP1) to
promote protein, nucleotide or lipid synthesis. Growth factors
stimulate mTORC2 to phosphorylate certain kinases of the AGC
family. Pancreatic ductal adenocarcinomas carry phosphorylation
of Ser2448 of MTOR (Kennedy et al, 2011; Kong et al, 2016),
which marks the activation of this signalling node. In line with
activation in a significant fraction of PDAC patients, the MTOR
kinase integrates the signal of the two main driver pathways: the
MEK-ERK (Kong et al, 2016) and the PI3K pathways (Morran
et al, 2014). Together, such data argue that MTOR is a relevant
node and therapeutic target in PDAC.

We conducted this study to further clarify the role of MTOR as
a therapeutic target in PDAC. To fulfil this task, we developed a
new model to genetically inactivate Mtor in established murine
PDAC cells. We show that MTOR is a regulator of metabolic
programmes and growth in PDAC, we describe adaptive rewiring
of oncogenic signalling in response to the MTOR blockade and
point to opportunities for dual MTOR inhibitor-based combina-
tion therapies by addressing adaptive rewiring programmes.

MATERIALS AND METHODS

Compounds. The MK-2206 was purchased from Selleckchem
(Eching, Germany), PD-325901 and camptothecin from Sigma
(Munich, Germany), GDC-0941, bortezomib, and INK-128 from
LC Laboratories (Woburn, MA, USA). AZD2014 was purchased
from BioVision (Milpitas, CA, USA) and MRT67307 from Cayman
Chemicals/Biomol (Hamburg, Germany). 4-Hydroxytamoxifen
was purchased from Sigma.

Mouse lines and blood glucose. The conditional ready Mtor
mouse line (Mtortm1a(EUCOMM)Wtsi) was generated by EUCOMM

and obtained via EMMA. The mouse line was recently used by
Beirowski et al (2014). The line was interbred with Rosa26-Flpo
mice (Raymond and Soriano, 2010) to generate Mtor floxed mice.
The FSF-KrasG12D (Schonhuber et al, 2014), Pdx1-Flp (Schonhuber
et al, 2014), FSF-R26CAG-CreERT2 (Schonhuber et al, 2014), Ptf1aCre

(Eser et al, 2013), LSL-KrasG12D (5) and R26mT/mG (Muzumdar
et al, 2007) lines have been described. Genotyping primers have
been described (Eser et al, 2013; Schonhuber et al, 2014; Diersch
et al, 2015) or are depicted in Supplementary Materials and
Methods (SM&M). Animals were on a mixed C57Bl/6;129S6/SvEv
genetic background. KC;Mtorlox/lox and Ptf1aCre;Mtorlox/lox mice
were fed with a chow diet substituted with 10 g kg� 1 Pancrex-Vet
(Ssniff Spezialdiäten GmBH, Soest, Germany) throughout life. For
monitoring of blood glucose, a glucometer (Abbott Laboratories,
Wiesbaden, Germany) was used and operated according to the
manufacturer’s instructions. Glucose was measured under normal
feeding conditions. Animal studies were conducted in compliance
with European guidelines for the care and use of laboratory
animals and were approved by the Institutional Animal Care and
Use Committees of the Technische Universität München and
Regierung von Oberbayern.

Cell lines. Murine pancreatic cancer cell lines were established
from genetically engineered KrasG12D-driven mouse models and
cultivated as described (von Burstin et al, 2009). All cell lines were
cultured in DMEM medium (Sigma-Aldrich Chemie GmbH,
Munich, Germany) or RPMI supplemented with GlutaMax (Gibco
by Life Technologies, Darmstadt, Germany) containing 10% fetal
calf serum (FCS) (Merck Millipore/Biochrom, Berlin, Germany)
supplemented with 1% (w v� 1) penicillin/streptomycin (Life
Technologies). Identity of the murine pancreatic cancer cell lines
was verified using genotyping PCR. Human cell lines were
authenticated by single-nucleotide polymorphism (SNP) profiling
conducted by Multiplexion GmbH (Heidelberg, Germany). Cell
lines were tested for Mycoplasma contamination by a PCR-based
method described by Ossewaarde et al (1996). To genetically
manipulate Mtor expression, a cell line with the following genotype
was generated: Pdx1-Flp;FSF-KrasG12D;FSF-R26CAG-CreERT2;R26mT/

mG;mTorDE3/lox (cell line: PPT4-ZH363-MtorDE3/lox). As a control
for Cre and tamoxifen toxicity, the PPT-c1674 (Pdx1-Flp;FSF-
KrasG12D;FSF-R26CAG-CreERT2;R26mT/mG) PDAC cell line was used.
Tomato expressing PPT4-ZH363-MtorDE3/lox cells were FACS
sorted as described (Wirth et al, 2014) to assure epithelial identity
and used for all subsequent experiments. To activate CreERT2,
PDAC cells were treated with vehicle (ethanol) or 600 nM 4-
hydroxytamoxifen (4-OHT) for 8 days. Afterwards, cells were used
for individual assays.

Primary human PDAC 3D culture. PDAC tissues (B20: pT3,
pN1, G3; B25: pT3, pN1, G2) were obtained from patients
undergoing surgical resection at the Department of Surgery of the
Technical University of Munich. All tissues were confirmed to be
PDAC by pathological examination. Human primary PDAC 3D
cultures experiments were in accordance with the Declaration of
Helsinki, were approved by the ethical committee of the Technical
University of Munich and written informed consent from the
patients for research use of the cancer tissue was obtained before
the investigation of the specimens. Generation and expansion of
primary PDAC 3D cultures was performed as described (Boj et al,
2015). Furthermore, isolation, culturing and drug treatment is
described in SM&M.

Viability assay, cell-cycle FACS, GI50 calculation and synergy
score. Viability was measured using MTT assays as described in
SM&M. For cell-cycle FACS analysis, cells were detached by
trypsinisation and washed two times in PBS followed by fixation in
1 ml cold 70% EtOH. After 24 h, EtOH was removed and cells were
washed in PBS. RNA was digested by adding RNAse (Sigma) (final
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concentration 0.5 mg ml� 1) for 1 h. Cells were stained by adding
50 ml propidium iodide (PI) (50 mg ml� 1) (Sigma) and analysed
using FACS Gallios (Beckman Coulter, Krefeld, Germany). Data
were analysed by using the FlowJo software (FlowJo, LLC, Ashland,
OR, USA). The growth inhibitory 50% (GI50) concentration of the
inhibitors was calculated with GraphPad Prism6 (GraphPad
Software, San Diego, CA, USA) using a nonlinear regression
model (log inhibitor vs response (three parameters)). The
synergy score (SC) was calculated according to SC¼
log 10(GI50control/GI50combination).

Clonogenic assay. Two thousand dispersed cells were plated in 6-
well plates, and grown for 14 days in growth medium containing
10% FCS supplemented with 1% (w v� 1) penicillin–streptomycin.
Afterwards cells were fixed with methanol, stained with Giemsa
solution (1 : 20 dilution) (Sigma) and scanned for visualisation.

Cell lysis and western blot. To prepare whole-cell extracts
(WCEs), immunoprecipitation buffer (50 mM HEPES, 150 mM

NaCl, 1 mM EDTA, 0.5% NP-40, 10% glycerol) supplemented with
protease and phosphatase inhibitors (cOmplete, EDTA-free
Protease Inhibitor Cocktail (Roche Diagnostics, Mannheim,
Germany) and Phosphatase-Inhibitor-Mix I (Serva, Heidelberg,
Germany)) was used. Whole-cell extracts were normalised
for protein and heated at 95 1C for 5 min in protein loading
buffer (45.6 mM Tris-HCl (pH 6.8), 2% SDS, 10% glycerol,
1% b-mercaptoethanol, 0.01% bromophenol blue). Western
blotting and primary/secondary antibodies are described in
SM&M.

Quantitative reverse-transcriptase PCR. Total RNA was isolated
from PDAC cell lines using the RNeasy Kit (Qiagen, Hilden,
Germany) following the manufacturer’s instructions. Quantitative
mRNA analysis was performed using real-time PCR analysis
system (TaqMan, PE StepOnePlus, Real-Time PCR System;
Applied Biosystems Inc., Carlsbad, CA, USA) by using SYBR
Green Master Mix (Applied Biosystems/ThermoFisher) as fluor-
escent DNA binding dye. Primers can be found in SM&M. Data
analysis was carried out with Stepone software (Applied Biosys-
tem) according to the DDCt method.

Histochemistry and immunohistochemistry. For histopathologi-
cal analysis, murine tissues were fixed in 4% formaldehyde (Carl
Roth, Karlsruhe, Germany), embedded in paraffin and sectioned
(2 mm thick). Tissues were stained with haematoxylin and eosin as
described (Diersch et al, 2013). For immunohistochemistry, see
SM&M.

F-18-FDG uptake assay. A total of 1� 105 murine PDAC cells
were used for quantification of F-18-FDG uptake as described in
SM&M.

RNA-Seq analysis, visualisation, cluster analysis, GSEA, Hall-
mark, GO-Term and KEGG analysis. mRNA was extracted as
described above and quality was controlled by densitometry using
agarose gel electrophoresis. RNA-sequencing (RNA-Seq) was
carried out by the genomics and proteomics core facility of the
DKFZ (Heidelberg, Germany; B25M reads/sample (single-end
reads); Illumina HiSeq 2000, San Diego, CA, USA). Next-
generation sequencing data were analysed using the Galaxy
platform (Goecks et al, 2013; Afgan et al, 2016). The detailed
analysis is described in SM&M. RNA-Seq data were deposited in
the NCBI Gene Expression Omnibus with the Accession ID:
GSE98860. Enrichment analysis was performed using the gene set
enrichment analysis (GSEA) tool (gene set matrix composed files:
h.all.v6.0.symbols.gmt) (Subramanian et al, 2005). The false
discovery rate (FDR) q-values, nominal P-values and family-wise
error rate (FWER) P-values were depicted in the figures. Gene
ontology (GO)-Term and KEGG analysis of genes downregulated
(log 2FCp� 0.58) upon deletion of Mtor was conducted using the

Database for Annotation, Visualisation and Integrated Discovery
(DAVID) (Huang da et al, 2009). Terms and pathways with a
Benjamini-corrected P-value o0.05 were depicted. Heat maps
were generated by Heatmapper (Babicki et al, 2016) or ClustVis
(Metsalu and Vilo, 2015). Human PDAC RNA-Seq data were from
Bailey et al (2016). Cluster and expression analyses of these data
are described in SM&M. TCGA PDAC transcriptome data sets as
well as clinical data of the TCGA PDAC dataset were accessed via
the UCSC cancer genomics browser (https://genome-cancer.ucs-
c.edu). Survival data was extracted and assigned to the LDHA
mRNA expression profile. Low LDHA mRNA expression was
defined as expression o25th percentile; high LDHA mRNA
expression was defined as expression 475th percentile; inter-
mediate expression: remaining PDACs.

Statistical methods. Analysis of variance or two-sided Student’s t-
test was used to investigate statistical significance, as indicated.
Kaplan–Meier curve were analysed by Log-rank test. P-values were
calculated with GraphPad Prism6 (GraphPad Software) and
corrected according to Bonferroni for multiple testing. Unless
otherwise illustrated, all data were determined from at least three
independent experiments and presented as mean and standard
error of the mean (s.e.m.).

RESULTS

Deletion of Mtor in the pancreas induces endocrine and
exocrine insufficiency in the context of oncogenic Kras. Recent
evidence suggests that dual mTORC1/TORC2 inhibition is a
therapeutic option for PDAC (Driscoll et al, 2016). To further
substantiate this note, we used floxed Mtor mice. Mtor alleles are
specifically deleted in the pancreas of Ptf1aCre/þ ;LSL-KrasG12D/þ ;
Mtorlox/lox (KC;Mtorlox/lox) mice (Supplementary Figure 1A). The
median survival of heterozygous Ptf1aCre/þ ;LSL-KrasG12D/þ ;Mtorlox/þ

(KC;Mtorlox/þ ) mice (Supplementary Figure 1B) was similar to our
cohort of Ptf1aCre;LSL-KrasG12D/þ (KC) mice (Diersch et al, 2013).
In contrast, the median survival of homozygous KC;Mtorlox/lox

mice was distinctly reduced (Supplementary Figure 1B). Compared
to controls, the body weight of KC;Mtorlox/lox mice was reduced
(Supplementary Figure 1C) and the pancreas was macroscopically
atrophic (Supplementary Figure 1D). Decreased eosin staining is
evident in the disorganised acinar apparatus of KC;Mtorlox/lox mice
(Supplementary Figure 2A). Acinar structures express amylase
(Supplementary Figure 2B). Acinar to ductal metaplasia and low-
grade pancreatic intraepithelial neoplasias develop in KC;Mtorlox/lox

mice and desmoplasia is observed (Supplementary Figures 2A
and B). Epithelial lesions stain positive for KRT19 (Supplementary
Figure 2B). When substituted with pancreatic enzymes, KC;
Mtorlox/lox mice gained weight (Supplementary Figure 2C).

Immunohistochemistry demonstrates impaired phosphorylation
of eukaryotic translation initiation factor 4E-BP1 (Supplementary
Figure 3A) and the S6 ribosomal protein (S6) (Supplementary
Figure 3B) in the epithelial compartment. Both phosphorylation
events are conducted by MTOR, corroborating the note that the
gene is deleted in the epithelial compartment. Islets of Langerhans
are present in KC;Mtorlox/lox mice, but show impaired staining for
insulin (Supplementary Figure 3C). Coincidently, increased blood
glucose levels were detected and KC;Mtorlox/lox mice, which
develop diabetes mellitus at 11 weeks of age (Supplementary
Figure 3D). A hypothropic pancreas embedded in adipose tissue
was also detected in one analysed Ptf1aCre;Mtorlox/lox mouse
(Supplementary Figure 4A). This phenotype is connected to an
impaired weight gain (Supplementary Figure 4B). Again, Islets of
Langerhans are present in the Ptf1aCre;Mtorlox/lox mouse
(Supplementary Figure 4A), but increased blood glucose was
measured in this mouse (Supplementary Figure 4C). Taken
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together, these data suggest that the Mtor gene is needed for the
functions of the endocrine and exocrine pancreas.

Generation of a novel model allowing genetic inactivation of
MTOR. Since the generation of Mtor knockout PDAC cells is not
possible in the conventional GEMM, we used a novel dual-
recombinase system to generate a cellular model allowing the
genetic inactivation of Mtor in established cancer cells
(Schonhuber et al, 2014) to investigate the function of the kinase
in tumour maintenance. In this model, the Flp-FRT recombination
technology induces the expression of KRASG12D and a tamoxifen-
activatable Cre (CreERT2) in the pancreatic epithelium (Schonhuber
et al, 2014). Therefore, floxed genes can be manipulated in
established PDAC cells by tamoxifen treatment (Figure 1A). To
minimise the probability of escape from Mtor deletion and to allow
efficient genetic inactivation of the pathway, we established a
murine PDAC cell line with already one deleted Mtor allele (PPT4-
ZH363-MtorDE3/lox cells). The presence of a reporter allele allows
monitoring Cre-mediated recombination in PPT4-ZH363-
MtorDE3/lox cells upon treatment with 4-OHT (Figure 1B).

Recombination PCR demonstrates that the remaining Exon 3 of
the Mtor gene is excised after the treatment with 4-OHT
(Figure 1C). Consistently, RNA-Seq data show deletion of exon 3
of the gene upon the treatment with 4-OHT (Supplementary
Figure 5). To further substantiate the loss of MTOR expression, we
tested for mRNA and protein expression. Corresponding to the
reduced expression of the Mtor mRNA over time (Figure 1D),
MTOR protein expression is decreased upon the treatment of cells
with 4-OHT (Figure 1E). No significant reduction of MTOR was
detected in murine PPT-c1647 cells. These PDAC cell line express
CreERT2 and hence can serve control for 4-OHT and Cre toxicities
(Figures 1D and E).

MTOR controls proliferation and clonogenic growth. To
demonstrate the functional blockade of MTOR signalling, we
conducted western blots with phospho-specific antibodies. As
expected, loss of MTOR protein expression leads to impaired
phosphorylation of S6 and 4E-BP1 (Figure 2A). Mostly hypopho-
sphorylated 4E-BP1 is expressed in Mtor-deleted cells, additionally
supporting an efficient inactivation of MTOR signalling
(Figure 2A). To demonstrate a therapeutic potential of MTOR,
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viability of the cells over time was measured. Compared to vehicle-
treated controls, genetic blockade of the MTOR pathway
significantly impaired growth (Figure 2B). Growth of the murine
PDAC control cell line was not changed upon 4-OHT treatment,
thus again excluding tamoxifen and Cre toxicities (Figure 2B). In
addition, clonogenic growth was significantly reduced upon
deletion of the Mtor allele (Figures 2C and D). In FACS assays,
an increase of the cells in the G1 phase of the cell cycle upon
genetic MTOR inhibition was observed (Figure 2E). No overt
increase in the sub-G1 fraction was detected (Figure 2E). Cell-cycle
distribution was not altered in control cells (Figure 2E). To
corroborate these results, we used the dual mTORC1/TORC2
inhibitor INK-128 (Hsieh et al, 2012). This inhibitor has a high
potency towards MTOR (inhibition constant 1.4 nM) and is
currently tested in clinical studies. INK-128 blocks AKT, S6 and
4E-BP1 phosphorylation (Supplementary Figure 6A). The cellular
effect of INK-128 is diminished in Mtor-deleted PDAC cells

(Supplementary Figure 6B), arguing that INK-128 acts at least in
part via MTOR. Consistent with the genetic deletion of Mtor, INK-
128 treatment increased the fraction of cells in the G1 phase of the
cell cycle (Figure 2F). Whereas the proteasome inhibitor
bortezomib, used as a positive control for induction of apoptosis,
increased the sub-G1 fraction of cells, no distinct increase was
observed upon the treatment with INK-128 (Figure 2F). Con-
sistently, while treatment with bortezomib and the chemother-
apeutic camptothecin was followed by cleavage of caspase-3 and
the caspase substrate PARP, neither INK-128 nor genetic deletion
of Mtor induced such changes (Figure 2G). Taken together, the
genetic as well as the pharmacological data argue that MTOR
inhibition acts cytostatic in the investigated model.

MTOR is connected to metabolic programmes of PDAC
cells. To find pathways and processes connected to MTOR in
PDAC cells, we analysed RNA-Seq data of 4-OHT-treated PPT4-
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vehicle or 4-OHT (600 nM) treated. After 8 days, cells were stained with propidium iodide (PI) and used for cell-cycle fluorescence-activated cell
sorting (FACS) analysis. The P-value of a Student’s t-test is indicated. (F) Indicated cells were treated as indicated for 24 h or were left as vehicle-
treated controls. Cells were stained with PI and used for cell-cycle FACS analysis. *P-value of an ANOVA test o0.05 (n¼ 3). (G) Indicated cells were
treated for 24 h with INK-128, camptothecin (20mM) or bortezomib (100 nM), or were left as vehicle-treated controls. In addition, cells were treated
with 4-OHT (600 nM) over 8 days. Western blot of caspase-3, cleaved poly (ADP-ribose) polymerase (PARP) and phospho-S6. Actin: loading control.
Same lysates were blotted to different membranes (n¼3).
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ZH363-MtorDE3/lox cells, using GSEA, GO and KEGG pathway
analysis. In addition to MTOR signalling, signatures and pathways
connected to metabolism were associated with genes down-
regulated upon Mtor deletion (Figures 3A and B, Supplementary
Table 1), arguing that MTOR significantly contributes to maintain
these pathways. KrasG12D signalling drives the glucose uptake of
murine PDAC cells to promote ribose biogenesis and proliferation
(Ying et al, 2012). Consistent with a function as an important
downstream effector of KRAS, glucose uptake was significantly
decreased in Mtor-deleted murine PDAC cells (Figure 3C). Neither
4-OHT nor Cre influences glucose uptake in control cells
(Figure 3C). In addition, expression of enzymes involved in
glucose metabolism, including Ldha and PfkI, decreased upon the
genetic inactivation of Mtor (Figures 3D and E). To test the

relevance of the MTOR-connected glycolytic enzymes in human
PDAC, we accessed RNA-Seq expression data (Bailey et al, 2016).
Cluster analysis of expression of the glycolytic enzymes demon-
strates a PDAC subgroup (12.5%) with high expression of these
enzymes (Supplementary Figure 7A). Consistently, a glycolytic
PDAC subtype, detected by metabolic profiling, has been described
(Daemen et al, 2015). Beyond glycolytic signatures, we observed
MTORC1 signatures, hypoxia signatures and epithelial-to-
mesenchymal transition signatures in the PDACs with high
expression of the glycolytic enzymes (Supplementary Figure 7B).
In addition, high LDHA mRNA expression marks PDACs with a
worse prognosis (Supplementary Figure 7C), in line with recent
observations (He et al, 2015; Mohammad et al, 2016). Such data
argue that the MTOR-connected glycolytic enzymes (Figure 3D)
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are relevant for human PDAC and support the connection of
MTOR signalling to glycolysis in this human PDAC subgroup.

Adaptive rewiring of driver pathways upon Mtor deletion. Early
adaptive rewiring of signalling pathways upon intervention with
targeted therapeutics is an important resistance mechanism

(Chandarlapaty, 2012). To find adaptive signalling processes
occurring after deletion of Mtor we focused on two main driver
pathways in PDAC, the ERK and the PI3K signalling pathways. As
shown in Figure 4A, increased phosphorylation of AKT, as a
surrogate for PI3K pathway activity, as well as an increased
phosphorylation of ERK were observed upon Mtor deletion.
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Quantification of independent biological replicates yields a
significantly increased phosphorylation of AKT at Thr308 and
Ser473 as well as ERK upon the genetic deletion of Mtor
(Figure 4B). To gain further insight into the level at which
signalling rewiring occurs, we firstly determined phosphorylation
of MEK. Applying an antibody which detects Ser217/221
phosphorylated MEK1/2, we observed increased phosphorylation
of MEK1/2 upon deletion of Mtor (Figure 4C). Second, we used the
PI3K (GDC-0941), AKT (MK-2206) or MEK (PD-325901)
inhibitors, in addition to INK-128 (Hsieh et al, 2012). No influence
of the MEK inhibitor towards AKT phosphorylation was detected
irrespective of the presence of MTOR (Figure 4D). This inhibitor
mainly blocks canonical ERK signalling. The PI3K and the AKT
inhibitor block AKT and S6 phosphorylation to different extents in
the MTOR-proficient and -deficient setting (Figure 4D). No effect
of either inhibitor toward ERK phosphorylation was evident
(Figure 4D). In summary, these data may point to a process
upstream of MEK and AKT engaged upon the deletion of Mtor.

To recapitulate such effects observed in the genetic model at the
pharmacological level, INK-128 was used over a time period of 4
days. Blockade of MTOR was monitored by the presence of
hypophosphorylated 4E-BP1 and decreased phosphorylation of S6
(Figure 4E). We detected increased phosphorylation of AKT
Thr308 after 3 days of INK-128 treatment (Figure 4E). AKT Ser473
phosphorylation was decreased after 24 h of INK-128 treatment,
while, in comparison with 24 h, a slightly increased phosphoryla-
tion was observed at day 3 (Figure 4E). Compared to the
reactivation of the PI3K-AKT pathway, phosphorylation of ERK
was detected earlier in the time course of INK-128 treatment
(Figure 4E). Recent investigations demonstrated that AKT Ser473
phosphorylation is significantly blocked in murine PDAC in vivo
upon dual MTOR inhibition (Driscoll et al, 2016). Therefore, to
further consolidate our observations we used another dual MTOR
inhibitor, AZD2014 (Pike et al, 2013). Again, AKT Ser473
phosphorylation was significantly decreased 24 h after treatment
of cells with AZD2014 (Figure 4F). However, an increase of AKT
Ser473 phosphorylation was observed at days 3 and 4 upon
continuous treatment with AZD2014 (Figure 4F). Blockade of
MTOR was verified by investigating phosphorylation of S6, which
was impaired during the treatment period (Figure 4F), demon-
strating potent MTOR inhibition in the experimental setting.
Important recent work has demonstrated that the noncanonical
IkB-related kinase IKBKE phosphorylates Ser473 of AKT upon
dual MTOR inhibition (Rajurkar et al, 2017). To test the
contribution of IKBKE for AKT Ser473 phosphorylation upon
genetic Mtor deletion, we used the IKBKE inhibitor MRT67307
(Clark et al, 2011, 2012). Again, genetic deletion of Mtor increased
phosphorylation of Ser473 of AKT (Supplementary Figure 8).
This effect was diminished upon the treatment of Mtor-deleted
cells with MRT67307 (Supplementary Figure 8). Therefore, our
data support the recent report (Rajurkar et al, 2017) and
might point to a role of IKBKE in adaption upon dual MTOR
inhibition.

In sum, we conclude that rewiring of signalling occurs also after
the pharmacological blockade of the MTOR kinase and is therefore
an important resistance mechanism. The discrepant extent of
reactivation of the pathways in the genetic and pharmacological
models might be explained by different time points analysed, off-
target effects of the inhibitor or threshold effects upon partial
inhibition of the kinase.

Deciphering dual MTOR inhibitor-based combination thera-
pies. Activation of the ERK and the PI3K pathway upon inhibition
of MTOR prompted us to test the dual MTOR inhibitor INK-128
together with PI3K (GDC-0941), AKT (MK-2206) or MEK (PD-
325901) inhibitors in human and murine PDAC models,
respectively. Efficacy of INK-128 was increased to different extents

in the investigated models by combined PI3K, AKT or MEK
inhibition. Figure 5A demonstrates the dose response of INK-128
in a human and murine PDAC cell line in the presence and
absence of MK-2206, GDC-0941 or PD-325901. A favourable
response of these combinations was also detected in clonogenic
assays (Supplementary Figure 9). In Supplementary Table 2, the
influence of the PI3K, AKT or MEK inhibitor to the INK-128 GI50

of 14 human and murine 2D PDAC cell lines is represented.
To further extend the notion that the combined inhibition of

MTOR and the PI3K or canonical KRAS-MEK-ERK pathway is a
therapeutic option for PDAC, we used primary human PDAC 3D
culture models. Such technology provides the unique opportunity
to investigate therapeutic approaches in a human model system,
which recapitulates relevant aspects of the disease (Baker et al,
2016). Again, human primary PDAC 3D cultures were more
sensitive to INK-128 in case of AKT, PI3K or MEK coinhibition
(Figure 5B and Supplementary Table 2). To compare these
combination therapies across species and models, the SC was
calculated (Figure 5C). The SC was heterogeneously distributed for
the individual combination as well as the individual model
(Figure 5C). Heterogeneity of the response of the investigated
combination is further underscored by the observation that the SCs
for the MTOR/AKT inhibitor combination and the MTOR/PI3K
inhibitor combination significantly correlate, whereas the scores of
both combinations to the MTOR/MEK inhibitor combination do
not (Supplementary Figure 10). Analysing all used PDAC models,
the mean SC was highest for the combination of the MTOR
inhibitor with the MEKi inhibitor (mean score 1.34), followed by
the combination of the MTOR inhibitor with the PI3Ki (mean
score 1.09) (Figure 5D). The SC was lowest for the combination of
the MTOR inhibitor with the AKTi (mean score 0.71) (Figure 5D).
Taken together, blocking adaptive rewiring of oncogenic signalling
upon MTOR inhibition is relevant in some of the investigated
PDAC models.

DISCUSSION

Although preclinical data suggest activity of mTORC1 inhibitors in
a PDAC subgroup with hyperactivation of the PI3K-mTOR
pathway (Garrido-Laguna et al, 2010; Morran et al, 2014), clinical
data in non-stratified patients failed to demonstrate a benefit
(Garrido-Laguna et al, 2010; Javle et al, 2010). There is clear
evidence that mTORC1 directs complex negative feedback loops to
restrain upstream signalling. Inhibitors of mTORC1 can drive
activation of PI3K-, AKT- or ERK-directed pathways (Rozengurt
et al, 2014) and the feedback phosphorylation of Ser473 of AKT by
mTORC2 in response to rapalogues is a prominent example
(Rozengurt et al, 2014). Such feedback signalling limits the efficacy
of targeted therapies (Chandarlapaty, 2012).

To completely block MTOR signalling and to increase clinical
efficacy, dual ATP-competitive inhibitors were developed. The dual
mTORC1/TORC2 inhibitor AZD2014 prolonged survival in an
aggressive PDAC mouse model, which relies on the simultaneous
expression of the KrasG12D oncogene and the mutated tumour
suppressor p53R172H (Driscoll et al, 2016). Such data argue that
dual mTORC1/TORC2 inhibitor-based therapies are therapeutic
options in PDAC. To further support such a note and to mimic
specific dual mTORC1/TORC2 inhibitors, we developed a novel
model, allowing the genetic inactivation of MTOR in PDAC cells.
Upon MTOR inactivation or inhibition, impaired growth with
accumulation of cells in the G1 phase of the cell cycle was detected.
Mechanistically, inhibition of MTOR at the genetic level affects
multiple metabolic pathways. We demonstrate impaired glucose
uptake upon MTOR deletion and a reduced expression of
glycolytic enzymes, which are relevant in a subgroup of the human
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disease. Since it is described that glucose in murine PDAC cells
fluxes into the pentose phosphate pathway needed for ribose
biogenesis (Ying et al, 2012), reduced availability of nucleotides
may contribute to the impaired growth of Mtor-deleted PDAC cells
with accumulation of cells in the G1 phase of the cell cycle.
Although we did not observe induction of apoptosis upon MTOR
inactivation or inhibition, other cell fate decisions may contribute
to the observed effects.

Early after the deletion or inhibition of the MTOR kinase in
murine PDAC cells, we detected adaptive activation of the
canonical ERK and PI3K-AKT pathways. Increased phosphoryla-
tion of Thr308 as well as Ser473 of AKT was detected.
Phosphorylation of Ser473 upon MTOR deletion is consistent
with a recent publication, demonstrating phosphorylation of
Ser473 of AKT upon treatment of PDAC cells with the dual
mTORC1/TORC2 inhibitor Torin-1 (Rajurkar et al, 2017). Here,
the noncanonical IkB-related kinase IKBKE was characterised as
an important alternative AKT kinase in PDAC (Rajurkar et al,
2017). We observed that increased phosphorylation of Ser473 of

AKT upon Mtor deletion was partially blocked by MRT67307, an
inhibitor which targets IKBKE (Clark et al, 2011, 2012). Although
we cannot exclude ‘off-target’ effects of MRT67307 contributing to
the observed regulation, our data are supportive for the above-
mentioned study. Whereas Rajurkar et al (2017) and our study
provide evidence that AKT Ser473 re-phosphorylation occurs upon
dual MTOR inhibition in PDAC cells, AKT Ser473 remains
blocked in PDAC in vivo models (Driscoll et al, 2016). Such
discrepant findings may be explained by different detection
thresholds in western blotting vs immunohistochemistry or diverse
effective dosages in the in vitro and in vivo settings. Furthermore,
future experiments should address whether AKT involving
rewiring mechanisms are generally observed in PDAC or restricted
to subtypes and linked to response heterogeneity.

Activation of potent tumour-promoting pathways in response to
dual MTOR inhibition in PDAC models (our work and Rajurkar
et al (2017) and Wei et al (2015)), the progression of tumours in
the KPC mouse models despite dual MTOR inhibition (Driscoll
et al, 2016) and the lack of therapeutic effects of genetic or
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Figure 5. MTOR-based combination therapies. (A) The indicated human and murine cell lines were treated with INK-128, MK-2206, GDC-0941 or
PD-325901, or in combinations thereof as indicated. After 72 h, viability was measured in MTT assays. Viability of vehicle-treated control cells was
arbitrarily set to 1. (B) Primary human PDAC 3D cultures B20 and B25 were treated with INK-128, MK-2206, GDC-0941 or PD-325901, or in
combinations thereof as indicated. After 5 days, ATP levels were measured using a luminometric viability assay. Metabolic activity of untreated
cells was arbitrarily set to 1. (C) Synergy score for the combination of the MTOR inhibitor (INK-128) with the AKT (MK-2206), PI3K (GDC-0941) and
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synergy scores of (C). *P-value of analysis of variance (ANOVA) test o0.05.
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pharmacological MTOR inhibition in certain human in vivo
models (Wei et al, 2015; Rajurkar et al, 2017) argues to establish
dual MTOR inhibitor-based combination therapies. To address the
reactivation of both driver pathways in response to MTOR
inhibition, we tested INK-128 with the MEKi PD-325901, the
PI3Ki GDC-0941 or the AKTi MK-2206. Here, SC was highest for
the combination of INK-128 and PD-325901 and some PDAC
models show an up to a 350-fold increased sensitivity towards the
dual MTOR inhibitor if MEK is blocked. The value of a combined
inhibition of MEK and mTORC1/TORC2 was already analysed in
other preclinical tumour models, including respective models of
lung cancer (Holt et al, 2012), rhabdomyosarcoma (Renshaw et al,
2013) or uveal melanoma (Ho et al, 2012). In colorectal cancer,
MEK inhibition combined with mTORC1/TORC2 inhibition may
show efficacy in context of a p53 wild-type status (Garcia-Garcia
et al, 2015). The molecular and genetic determinates predicting
synergy in PDAC await further investigations.

In addition, we observed a considerable response in some of the
investigated PDAC models towards the combination of mTORC1/
TORC2 inhibition with PI3K inhibition. Consistently, the
combination of a dual mTORC1/TORC2 inhibitor (AZD2014)
with a PI3K inhibitor (AZD8186; proposed to be a PI3Kb
inhibitor) was active in the above-mentioned PDAC in vivo model
(Driscoll et al, 2016). The observation that the combination of
mTORC1/TORC2 inhibition with AKT inhibition is least effective
in the investigated PDAC models might be explained by more than
the AKT pathway branching out of the PI3K-PDK1 node.

Increased MEK-ERK as well as AKT Thr308 phosphorylation
upon a complete block of MTOR may be activated by a signal
upstream of both pathways. Consistently, AKT phosphorylation in
MTOR-deleted cells was sensitive to PI3Ki and ERK phosphoryla-
tion to MEKi but not vice versa. A possibility is the activation of
upstream receptor tyrosine kinases (RTKs) accounting for activa-
tion of both driver pathways upon complete MTOR blockade.
Indeed, in endothelial cells, mTORC1/TORC2 inhibitors were
found to induce a profound reprograming and activation of RTKs,
including the epidermal growth factor receptor (EGFR), the
vascular endothelial growth factor receptor 2, the insulin-like
growth factor 1 receptor or the insulin receptor (Zhuang et al,
2013). Congruently, RTK-dependent adaptive responses occurring
upon the blockade of relevant driver pathways were described in
numerous cancer models involving different molecular mechan-
isms (Prahallad et al, 2012; Bai et al, 2014; Yoshida et al, 2014;
Obenauf et al, 2015; Kim et al, 2016). Feedback activation of the
EGFR upon dual MTOR inhibition was also described in human
PDAC cells (Wei et al, 2015). Considering such a scenario, future
work might consider triple therapies (e.g., mTORC1/TORC2,
MEKi and PI3Ki) or broad-acting RTK inhibitor combinations
with dual mTORC1/TORC2 inhibitors to interfere with both
branches of adaptive signalling. However, toxicity might limit
clinical use of such combinations and alternative dosing and
scheduling regimens are needed. In addition to RTK-dependent
adaption, it is important to consider that canonical RAS-ERK
signalling can be tuned at multiple levels. Since MTOR changes
cellular metabolism of PDAC cells, connections of metabolism to
signalling outputs might contribute. As an example, in melanoma
cells, the ketone body acetoacetate was demonstrated to contribute
to canonical RAS-ERK activity by promoting the interaction of
BRAFV600E with MEK1 (Kang et al, 2015), underscoring the tight
connection of signalling outputs to metabolic states.

The systematic analysis of the combined inhibition of MTOR
with MEK, PI3K or AKT points to a considerable heterogeneity of
the cellular response towards the used combination therapies. In
some of the investigated models the impact of the tested
combination therapies is minor. These data implement that robust
markers have to be developed to stratify for responsive PDAC
subgroups and that clinical testing without prior selection will fail.

Such considerations are underscored by recent preclinical and
clinical observations, which aimed to target the PI3K and MEK-
ERK pathways in PDAC. The combination of a MEKi and a PI3Ki
induced a partial response (430% reduction in tumour volume) in
only B13% of animals in a PDAC mouse model generated by the
activation KrasG12D and simultaneous inactivation of Cdkn2a
(Junttila et al, 2015) and in 50% of animals in a PDAC mouse
model generated by the activation KrasG12D and simultaneous
inactivation of p53 (Alagesan et al, 2015). In the clinic, a recent
trial in patients with metastatic PDAC after failure of gemcitabine-
based first-line therapy demonstrated a partial response towards a
MEKi (AZD-6244; selumetinib) and AKTi (MK-2206) combina-
tion therapy in only 1.7% (Chung et al, 2016).

Although it is currently unclear whether the downstream
blockade (e.g., mTORC1/TORC2 inhibitors) of the PI3K-AKT-
MTOR pathway is superior to upstream interventions (e.g. PI3Ki
or AKTi), our data combined with recent work in PDAC mouse
models (Driscoll et al, 2016) argue for an option to develop
mTORC1/TORC2 inhibitor-based combination therapies for a
PDAC subgroup. Therefore, further work needs to include (I)
predictive biomarkers for mTORC1/TORC2 inhibitor-based
therapies, (II) a detailed molecular understanding of adaptive
rewiring of oncogenic pathways upon mTORC1/TORC2 inhibition
and (III) unbiased MTOR-centred synthetic lethality screens to
increase the chance to successfully establish dual MTOR inhibitor-
based therapies.
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