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Background: Resistance to chemotherapy is a major obstacle in the treatment of human hepatocellular carcinoma (HCC). Despite
playing an important role in chemoprevention, nuclear factor erythroid 2-related factor 2 (NRF2) also contributes to chemo- and
radio-resistance. The current study focusses on camptothecin as a novel NRF2 inhibitor to sensitise HCC to chemotherapy.

Methods: The expression and transcriptional activity of NRF2 in human HCC biopsies and camptothecin-treated culture cells were
determined using immunostaining, western blot, reverse-transcription quantitative real-time PCR (RT–qPCR) and luciferase
reporter assay. The effect of camptothecin on chemosensitivity of cancer cells was assessed in vitro and in xenografts.

Results: The expression and transcriptional activity of NRF2 were substantially elevated in HCC biopsies compared with
corresponding adjacent tissues, and positively correlated with serum a-fetoprotein, a clinical indicator of pathological progression.
In searching chemicals targeting NRF2 for chemotherapy, we discovered that camptothecin is a potent NRF2 inhibitor.
Camptothecin markedly suppressed NRF2 expression and transcriptional activity in different types of cancer cells including
HepG2, SMMC-7721 and A549. As a result, camptothecin sensitised these cells to chemotherapeutic drugs in vitro and in
xenografts.

Conclusions: Camptothecin is a novel NRF2 inhibitor that may be repurposed in combination with other chemotherapeutics to
enhance their efficacy in treating high NRF2-expressing cancers.

Hepatocellular carcinoma (HCC) is a common human cancer and
one of the leading causes of cancer mortality worldwide (El-Serag,
2012; Attwa and El-Etreby, 2015). Most cases of HCC are

secondary to viral hepatitis infection or cirrhosis resulting from
chronic alcoholism. The extremely poor prognosis of HCC is
mainly attributed to the lack of effective therapeutic options
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(Ferenci et al, 2010). Although surgical resection and liver
transplantation can be effective for early detected HCC, they only
benefit B25% of patients because of scarce matching liver donors
and the fact that HCC is often diagnosed after metastasis occurs
(Llovet et al, 2003). Only a small subset of HCC patients benefit
from radiotherapy, interventional radiotherapy, and targeted
therapy, whereas patients with metastasis have a 5-year survival
rate of o5% (Bertino et al, 2014). Because most HCC patients are
diagnosed at advanced stages, chemotherapeutic treatment is the
most commonly used strategy of intervention, and realistically one
of the few options available. However, chemoresistance can be a
major challenge in advanced-stage HCC. The exact nature of
chemoresistance in HCC is not completely understood. Presently,
efforts are being directed to discovering new therapeutic targets
within HCC cells, and toward developing new chemotherapeutic
drugs that can circumvent chemoresistance.

Many cancer chemotherapeutic agents cause oxidative stress as
part of their mode of action. Therefore, cancer cells may develop
chemoresistance through augmenting their antioxidant capacity.
Nuclear factor-E2-related factor 2 (NRF2) is a CNC-bZIP
transcription factor that is well established as a master regulator
of cytoprotection against oxidative stress. It is negatively regulated
by the redox sensor protein, Kelch-like ECH associated protein
(KEAP1) (Zhang et al, 2004). In parallel with repression by
KEAP1, NRF2 is also negatively controlled via the b-transducin
repeat-containing protein (b-TrCP)/glycogen synthase kinase-3b
(GSK3b) nexus, and thus NRF2 can be partially suppressed by
AKT inhibitors (Rada et al, 2011; Chowdhry et al, 2013; Tebay
et al, 2015). The NRF2 recognises the antioxidant response
elements (AREs) located in the promoters of many antioxidant and
metabolising enzymes (Maher and Yamamoto, 2010; Pi et al,
2010). It is conceivable that once cancer cells are subject to drug-
induced oxidative stress, NRF2 can be activated to diminish the
effects of chemotherapy by means of inducing a battery of
antioxidant and metabolising enzymes and transporters. Indeed,
recent studies showed that persistently high level and activity of
NRF2–ARE can promote cancer formation and contribute to
chemoresistance (Lau et al, 2008; Hayes and McMahon, 2009;
Kensler and Wakabayashi, 2010; Ren et al, 2011). In human HCC,
elevated expression of NRF2 is positively correlated with metastasis
(Wang et al, 2016). Studies have revealed that many NRF2 target
genes, including drug-metabolising enzymes and transporters, play
crucial roles in determining drug response and resistance (Ren
et al, 2011). The NRF2 can lower intracellular drug accumulation
by inducing multidrug resistance proteins (MRPs) (Maher et al,
2007; Chen et al, 2012). Multiple members of MRPs have been
found to be elevated in KEAP1-mutated cancer cells (Mahaffey
et al, 2009; Sasaki et al, 2012). Because of multidrug resistance, the
efficacy of chemotherapy of HCC can be o30% (Van Thiel et al,
2002). Given the significant role of NRF2 in mediating chemore-
sistance, it has become a potential target of drug development for
HCC and other cancers with the goal of identifying specific NRF2
inhibitors to enhance their sensitivity to chemotherapeutics.

In our previous studies using an ARE luciferase reporter stably
expressed in human cell lines including HepG2 and HaCaT cells
(Zhao et al, 2011), we discovered several effective NRF2 inhibitors,
such as isoniazid (INH) (Chen et al, 2013) and ethionamide (ETH)
(Peng et al, 2016). Although INH and ETH both exhibit clear
suppressive effects on the NRF2–ARE pathway, the high concentra-
tions required for these compounds to achieve effective NRF2
inhibition in vitro raise doubts regarding their clinical usefulness in
this regard. In the present study, we identified and characterised
camptothecin (CPT), an antitumour drug for gastrointestinal and
head and neck cancers, as a novel chemical inhibitor of NRF2–ARE
activity. We found that CPT can enhance the sensitivity of different
types of cancer cells, hepatocyte carcinoma cell HepG2 in particular,
to a variety of chemotherapeutic agents.

MATERIALS AND METHODS

Human tissue selection, tissue handling and pathological
analysis. Sixteen hepatectomised specimens including the HCC
tissues and adjacent tissues (AT) to carcinoma were collected from
13 male and 3 female patients at The First Affiliated Hospital of
China Medical University (Shenyang, Liaoning, China). The age of
patients ranged from 43 to 69 years with a mean of 53.6 years.
None of the 16 patients had a history of prior radiation or
chemotherapy. Each tissue was divided into two pieces: one was
formalin fixed and paraffin embedded for immunohistochemistry
(IHC) and the other was stored at � 80 1C for subsequent total
mRNA and protein extraction. Patients were informed about and
consented with the research in accordance with the Declaration of
Helsinki. The study was approved by the Institutional Board of
China Medical University (Shenyang, Liaoning, China). All
methods were performed in accordance with the relevant guide-
lines and regulations.

Immunohistochemical staining and analysis. Human HCC and
AT samples were fixed in formalin (10%, pH 7.4) and embedded in
paraffin wax. Serial sections of 4 mm thickness were cut and
mounted on charged glass slides, and then stained with
haematoxylin and eosin (H&E) or used for IHC staining as
described previously (Pi et al, 2009). Rabbit polyclonal antibody
against NRF2 (sc-13032, Santa Cruz Biotechnology, Santa Cruz,
CA, USA) was used at dilutions of 1 : 500. After counterstaining
slides with H&E or IHC, cover slips were placed over the slides
using Crystal Mount (Electron Microscopy Sciences, Hatfield, PA,
USA). Quantitative analysis of NRF2 staining was carried out using
the Image-Pro Plus v6.0 image analysis software (Media Cyber-
netics, Bethesda, MD, USA). Integrated optical density (IOD) value
of NRF2 immunostaining was measured in five randomly acquired
areas of one visual field in HCC and AT. Mean of IOD was used
for further analyses.

Cell culture and reagents. The HepG2 (hepatocellular carcinoma)
cells and A549 (lung carcinoma) cells were purchased from
American Type Culture Collection (ATCC, Manassas, VA, USA).
The SMMC-7721 (hepatocellular carcinoma) cells were purchased
from KeyGEN BioTECH Co. Ltd (Nanjing, China). The HepG2
cells, A549 cells and SMMC-7721 cells were grown in EMEM
medium (ATCC), DMEM medium (Life Technologies, Carlsbad,
CA, USA) and RPMI1640 (Life Technologies), respectively. All the
media were supplemented with 10% foetal bovine serum (FBS,
Biological Industries, Cromwell, CT, USA), 100 U ml� 1 penicillin
and 100 mg ml� 1 streptomycin. Exponentially growing cultures
were maintained in a humidified atmosphere of 5% CO2 at 37 1C.
Phosphate-buffered saline (PBS, pH 7.4) and supplements for cell
culture were purchased from Life Technologies. Arsenic trioxide
(As2O3), fluorouracil (5-FU) and epirubicin (EPI) were purchased
from Beijing Shuanglu Pharmaceutical Co. (Beijing, China),
Tianjin Jinyao Amino Acid Co. (Tianjin, China) and Pfizer Co.
(Wuxi, China), respectively. Sodium arsenite (NaAsO2, purity
X90%), cisplatin (purity X99%) and cycloheximide (CHX, purity
X94%) were purchased from Sigma-Aldrich (St Louis, MO, USA).
The CPT (purity X99%) was purchased from Cayman Chemical
(Ann Arbor, MI, USA) and was dissolved in DMSO (Sigma-
Aldrich).

Lentivirus-based shRNA transduction. The Mission shRNA
lentiviral particles were purchased from Sigma-Aldrich. Lentiviral
transduction of HepG2 cell with particles for shRNAs targeting
NFE2L2 (NRF2 gene, SHVRS-NM_006164) or scrambled non-
target negative control (sh-Scr/SCR, SHC002V) to achieve NFE2L2
knockdown (NFE2L2-KD) or Scramble cells was performed as
described previously (Woods et al, 2009). The selection media for
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HepG2 cells contained 3.0 mg ml� 1 of puromycin (Life Technol-
ogies). Stable cell lines were continuously grown in the media
containing the same concentration of puromycin.

Cell viability assay. Sensitivity of HepG2, A549 and SMMC-7721
cells to chemotherapeutic drug cytotoxicity was assessed by MTS as
described previously (Pi et al, 2005; Peng et al, 2016). CellTiter 96
AQueous Non-Radioactive Cell Proliferation Assay Kits were
purchased from Promega (Madison, WI, USA). Cells were exposed
to various concentrations of As2O3, 5-Fu, EPI or cisplatin with or
without CPT at a determined concentration for 24 or 48 h.
Measurements were expressed as percentage change from
untreated control (Vehicle) of appropriate cells. The lethal
concentration 50 (LC50) values were determined from analysis of
the log-linear phase of the curves.

The cell growth and proliferation of HepG2 cells were
determined using the RTCA system (ACEA Biosciences, San
Diego, CA, USA). Cell culture media (50 ml) were placed in each
well of the E-plate 16 (ACEA Biosciences, San Diego, CA, USA).
The E-plate 16 was then connected to the RTCA system to obtain
background impedance readings. A total of 20 000 cells in 100 ml
were incubated in the RTCA system overnight. Cells were treated
with 10 mM As2O3, 200 mM 5-FU or 4mM EPI with or without 0.1 mM

CPT for 24 h on the RTCA SP Station located in an incubator at
37 1C with 5% CO2. Cell index values for cell activities were
measured by continuous impedance recording every 5 min (Ren
et al, 2011).

Reverse-transcription quantitative real-time PCR. Total RNA
was isolated and extracted from clinical samples with Trizol
reagent (Life Technologies) using TissueLyser II (Retsch, New-
town, PA, USA). Total RNA in HepG2 cells was extracted with
Trizol reagent directly. The RT–qPCR was performed as described
previously (Yang et al, 2012). The primers (sequences are listed in
Supplementary Table S1) were designed by using Primer Express 4
(Life Technologies) and synthesised by Bioneer, Inc. (Alameda,
CA, USA). Total RNA was reversely transcribed with the High
Capacity cDNA Reverse Transcription kit (Applied Biosystems,
Foster City, CA, USA). A GoTaq qPCR master mix (Promega) was
used for qPCR. Real-time fluorescence detection was performed by
using a QuantStudio 6 Flex Real-time PCR System (Life
Technologies). The GAPDH expression was used for loading
control and normalisation.

Western blot analysis. Collection of sample lysates and western
blotting were performed as detailed previously (Xue et al, 2013).
Antibodies for NRF2 (sc-13032; 1 : 500), NRF1 (sc-13031X,
1 : 1000) and b-actin (A1978; 1 : 3000) were purchased from Santa
Cruz Biotechnology. b-Actin was used as loading control. The
molecular weight (MW) of each protein shown on the immunoblot
was estimated based on the MagicMark XP Western Protein
Standard (Life Technologies) on 10% Tris-Glycine Gel. Quantifica-
tion of the results normalised to b-actin was conducted using
Image J (NIH, Bethesda, MD, USA).

ARE luciferase reporter assay. The ARE luciferase reporter assay
was established previously (Zhao et al, 2012). Cignal Lenti ARE
reporter, which expresses a luciferase gene driven by multiple ARE
(50-TCACAGTGACTCAGCAAAATT-30) repeats, was obtained
from SA Biosciences (Frederick, MD, USA). Cells were grown to
B90% confluence and subcultured in medium containing
3.0mg ml� 1 of puromycin. The luciferase activity was measured
using the Luciferase Reporter Assay System (Promega) according
to the manufacturer’s protocol. The luciferase activity was
normalised to cell viability that was determined by the MTS assay.

Relative NRF2 score calculation and associations with clinical
pathological parameters. Relative NRF2 score calculated based on
the cumulative expression of classic NRF2 target genes was used as

our NRF2 activity index (Liu et al, 2010; DeNicola et al, 2015). In
this study, the NRF2 score was calculated based on seven classic
NRF2 target genes: GCLC, GCLM, NQO1, HMOX-1, Aldoketo
Reductase family 1 member C1 (AKR1C1), C2 (AKR1C2) and C3
(AKR1C3) (Tebay et al, 2015; MacLeod et al, 2016). The expression
of each gene was normalised by GAPDH and the results for these
seven genes were added together for HCC and AT, respectively, to
obtain total relative NRF2 scores. The following clinical data were
collected to explore the potential correlation with relative NRF2
score in HCC: serum a-fetoprotein (AFP) levels, longest diameters
measured with computed tomography (CT, Discovery CT750 HD,
GE Health-Care Biosciences, Pittsburgh, PA, USA) or magnetic
resonance imaging (MRI, MAGNETOM Skyra 3.0T, Siemens
Healthineers, Erlangen, Germany) in mm, Child–Pugh classifica-
tion (A/B/C), Barcelona Clinic Liver Cancer (BCLC) classification
(0, A, B, C, D), tumour pathological differentiated degrees and
plasma biochemical indexes, including alanine transaminase,
aspartate transaminase, albumin, prothrombin time, prothrombin
activity, prothrombin time activity of pre- and post-operation.

Subcutaneous tumour xenografts. BALB/Cnu/nu mice (4–6 weeks,
male) were purchased from Beijing Huafukang Bioscience Co. Inc.
(Beijing, China). Mice were inoculated subcutaneously to the right
upper back region with SMMC-7721 cells (5� 106 cells per mouse)
that were suspended in 0.1 ml of serum-free RPMI-1640. The
tumour xenografts sizes were measured and calculated by a
standard formulate (V¼ length�width2� p/6). Once the tumours
reached 1000 mm3, mice were randomly allocated into four groups
and treated i.p. with Vehicle, CPT (3 mg kg� 1 bodyweight), EPI
(1 mg kg� 1 bodyweight) or in combination twice a week for a total
of three times. All mice were maintained under standard animal
housing conditions with a 12 h dark cycle and allowed access ad
libitum to sterilised water and chow diet. All protocols for animal
were approved by the Animal Ethics Committee of China Medical
University.

Statistical analysis. All statistical analyses were performed using
Graphpad Prism 5 software (San Diego, CA, USA). Statistical
significance was defined as Po0.05. Data are expressed as
mean±s.d. For comparisons between human HCC and AT results,
paired t-tests were performed. For comparisons among multiple
groups, one-way ANOVA followed by Tukey’s multiple compar-
ison tests or two-way ANOVA with the Bonferroni post hoc testing
were performed. Spearman’s analysis was used to derive possible
correlations between relative NRF2 score and parameters of clinical
pathology.

RESULTS

The levels of NRF2 and ARE-dependent genes are elevated in
human HCC tissues and correlate with clinical parameters.
Histological examination was used to distinguish the type of HCC.
Among the 16 cases studied, 10 were moderately differentiated, 4
poorly differentiated and 2 between moderately and poorly
differentiated. The clinical data from all 16 patients with HCC
are shown in Supplementary Table S2. Serial tissue sections of
HCC and corresponding AT were analysed for NRF2 expression by
IHC. The expressions of NRF2 were clearly higher in HCC than
those in AT with nuclear accumulation (Figure 1A and B and
Supplementary Figure S1). The mRNA levels of NFE2L2 and ARE-
dependent genes (GCLC, GCLM, NQO1, HMOX-1, AKR1C1,
AKR1C2 and AKR1C3) were also higher in HCC than those in AT
(Figure 1C).

We then calculated relative NRF2 score by adding the relative
mRNA expression levels of seven well accepted NRF2 targeted
genes: GCLC, GCLM, NQO1, HMOX-1, AKR1C1, AKR1C2 and
AKR1C3 (DeNicola et al, 2015; Tebay et al, 2015; MacLeod et al,
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2016). Each patient has two relative NRF2 scores: one for HCC and
the other for AT. In agreement with the expression of ARE-
dependent genes, relative NRF2 scores in HCC were higher than
those in AT (Figure 1D). Meanwhile, the correlations of relative
NRF2 scores and clinical HCC pathological parameters were
assessed. Using Spearman’s correlation analysis, we found that
among these pathology markers, relative NRF2 score was positively
correlated with serum AFP in HCC (r¼ 0.71, Po0.05), indicating

that relative NRF2 score could predict tumour severity (Figure 1E).
Other measured clinical parameters, including BCLC classification
(Supplementary Figure S2A), differentiation status (Supplementary
Figure S2B), longest diameter and plasma biochemical indexes,
showed no significant correlations with relative NRF2 scores.

Silence of NFE2L2 sensitises HepG2 cells to chemotherapeutic
drug-induced cytotoxicity. To explore the potential role of NRF2
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in chemosensitivity, we developed a HepG2 cell line with stable
knockdown of NFE2L2 (NFE2L2-KD) using a lentiviral shRNA
against NFE2L2. As shown in Figure 2A, mRNA expression of
NFE2L2 was effectively silenced in NFE2L2-KD cells. In agreement
with the critical role of NRF2–ARE in chemoresistance, silencing of
NFE2L2 increased the susceptibility of HepG2 cells to the acute
cytotoxicity of multiple chemotherapeutic drugs, including As2O3,
5-FU and EPI (Figure 2B–D). This finding clearly demonstrates
that reducing NRF2 expression can in principle sensitise HCC cells
to chemotherapeutic agents.

Identification of CPT as a novel inhibitor of the NRF2–ARE
signalling pathway. Our previous studies have shown that INH
and ETH, two widely used anti-tubercular drugs, displayed
substantial inhibitory properties against ARE activities in diverse
mouse and human cells (Chen et al, 2013; Peng et al, 2016). To
discover novel clinically relevant inhibitors of NRF2, a subset of
clinical drugs was tested and several potent inhibitors were
identified. Here we found noncytotoxic concentrations of CPT
(Figure 3A), a potent antitumour agent for gastrointestinal and
head and neck cancers, suppressed the activity of ARE luciferase in
a concentration-dependent manner in HepG2 cells under basal (no
stressor) and NaAsO2-challenged (20 mM for 6 h) conditions
(Figure 3B). We further confirmed the suppression of ARE activity
by noncytotoxic levels of CPT in HepG2 cells by showing
attenuated mRNA expression of multiple ARE-dependent genes,
including GCLC, GCLM and NFE2L2 (Figure 3C and D). In
addition, a western blot analysis showed that CPT suppressed
NRF2 protein levels under basal and As2O3-treated (20 mM for 4 h)
conditions in HepG2 cells (Figure 3E). These results revealed that
CPT inhibited NRF2 at both transcript and protein levels. To verify
that the inhibition of CPT on NRF2 expression and activity is not

HepG2 cell specific, the effects of CPT were determined in another
HCC cell line SMMC-7721 cells. Noncytotoxic concentrations of
CPT (Figure 3F) concentration-dependently reduced the mRNA
expression of NFE2L2 (Figure 3H) and ARE-dependent genes
GCLC and GCLM (Figure 3G).

To explore the mechanisms underlying the inhibition of CPT on
the protein expression of NRF2, a cycloheximide chase assay was
performed. As shown in Supplementary Figure S3, a CHX chase
assay in HepG2 cells showed that CPT had no significant effect on
the protein degradation of NRF2 induced by arsenite pretreatment
(Supplementary Figure S3). To check the specificity of inhibition of
CPT on NRF2, we assessed protein and mRNA levels of NRF1 in
HepG2 cells. Both NRF1 and NRF2 belong to the CNC-bZIP
transcription factor family and regulate ARE-driven genes and
display similar degradation processes (Zhang et al, 2006; Zhao
et al, 2011; Tsujita et al, 2015; Kim et al, 2016). In contrast to the
strong inhibitory effect of CPT on NRF2, even higher concentra-
tions of CPT had no significant effect on NRF1 protein and mRNA
levels in HepG2 cells under basal (no stressor) and As2O3-
challenged (20 mM) conditions (Supplementary Figure S4A and B),
indicating that CPT is not a global protein synthesis inhibitor in
HepG2 cells.

To exclude the possibility that the suppression of CPT on
NRF2–ARE is cell type specific, we examined the effect of CPT on
NRF2 expression and activity in human lung carcinoma A549 cell
that harbours mutations in KEAP1. As shown in Supplementary
Figure S5, the inhibition of CPT on NRF2 protein levels and
expression of ARE-dependent genes was confirmed in A549 cells
(Supplementary Figure S5). This finding indicates that the
inhibitory effect of CPT on NRF2 is not limited in HepG2 cells
and the inhibition appears to be KEAP1 independent.

CPT shows chemosensitising effects in a variety of cancer cells
and a xenograft HCC model in mice. To test whether CPT might
be used as a chemosensitising agent in cancer treatment, we
determined the effects of CPT on various chemotherapeutic drug-
induced cytotoxicity in multiple cancer cell models. As shown in
Figures 4 and 5, CPT at noncytotoxic concentrations sensitised
HepG2 cells (Figure 4 and Figure 5A, B, D and E) and SMMC-
7721 cells (Figure 5C) to chemotherapeutic drugs, including As2O3

(Figure 4A, C and D), EPI (Figure 5A and D) and 5-FU (Figure 5B
and E), induced inhibition of cell viability (Figures 4A, B, D and
5A–C) and/or proliferation (Figures 4C and 5D, E). Importantly,
the sensitisation of HepG2 cells to As2O3-induced cytotoxicity by
CPT was NRF2 dependent as no further increased sensitivity to
As2O3 was observed in NFE2L2-KD cells treated with CPT
(Figure 4D). To further exclude the possibility that the effects of
CPT on chemotherapeutic drug-induced cytotoxicity are cell type
specific, the efficacy of CPT was also investigated in other type of
cancer cells. As shown in Supplementary Figure S6, 0.5 mM CPT
significantly sensitised A549 cells to cisplatin-induced cytotoxicity.

To further confirm the chemosensitising effect of CPT in HCC
treatment, we used a HCC xenograft model developed by SMMC-
7721 cell inoculation in nude mice to test CPT in vivo. Compared
with EPT alone, the combination of CPT and EPI substantially
reduced the tumour growth (Figure 6A) and tumour mass
(Figure 6B), indicating that CPT may improve the efficacy of EPI.

DISCUSSION

The present study showed that NRF2 was highly expressed at both
transcript and protein levels in a subgroup of human HCC. In
accordance with previous studies, we demonstrated that suppres-
sing NRF2 may increase the sensitivity of different types of solid
tumour cells with high basal NRF2 expression to chemotherapeutic
chemicals. We identified CPT as a novel inhibitor of NRF2–ARE
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was assessed by MTS assay following 24 h of treatment with indicated
concentrations of As2O3 (B), 5-FU (C) and EPI (D); n¼ 6. *Po0.05 vs
Scramble with the same treatment.
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activation that, at mM concentrations, can sensitise HepG2, SMMC-
7721 and A549 cells to clinically important chemotherapeutic
drugs. Compared with other known NRF2–ARE inhibitors such as
INH and ETH, CPT has the advantages of being effective at lower

concentrations and is already a conventional antitumour drug.
Thus, CPT can be potentially used with other anticancer drugs in
combination chemotherapy to treat HCC expressing high levels of
NRF2.
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Acquired or inherent chemoresistance is a major obstacle in
therapeutic oncology. Multiple mechanisms, including increased
metabolism and efflux of chemotherapeutic drugs, enhanced DNA
repair and decreased cancer cell apoptosis, have been identified
(Borowski et al, 2005; Deeley et al, 2006; Gao et al, 2013; Tebay
et al, 2015), and NRF2 may be involved in most of the mechanisms
(Hu et al, 2013). However, this dark side of NRF2 needs to be
viewed in light of the fact that NRF2 plays an apparent dual but
conflicting role in cancer. The NRF2-knockout mice are much
more susceptible to carcinogens than genetically normal mice
(Khor et al, 2008) and activation of NRF2 by chemopreventive
compounds can prevent oxidative DNA damage from carcinogens
(Jeong et al, 2006; Bishayee et al, 2010; Itoh et al, 2010). In contrast,
accumulating data strongly indicate that constitutive activation of
NRF2 also protects cancer cells from damage induced by
chemotherapeutic drugs (Moon and Giaccia, 2015; Zhu et al,

2016). The NRF2 can promote tumour cell growth by modulating
the signal transduction pathway mediated through EGFR-MEK1/
2-ERK (Yamadori et al, 2012). The NRF2 is also able to directly
activate the transcription of anti-apoptotic proteins Bcl-2 and Bcl-
XL, increasing cell survival by desensitising many apoptosis-
inducing drugs (Niture and Jaiswal, 2012, 2013). Furthermore, high
expression of various NRF2–ARE genes, including antioxidant and
detoxification enzymes, such as HMOX-1, NQO1 and MRP, has
been implicated in chemotherapeutic resistance (Maher et al, 2007;
Rushworth et al, 2010; Ganan-Gomez et al, 2013). It is also possible
that some anticancer drugs can directly activate NRF2-mediated
adaptive response leading to chemoresistance (Wang et al, 2014).
Thus, NRF2–ARE is a reasonable target to tackle inherent and
acquired chemoresistance in cancer treatments.

Our study showed that a subgroup of human HCC tissue
samples had high levels of both NRF2 transcript and protein
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leading to augmented expression of many NRF2-dependent
antioxidant and detoxification genes, including GCLC, GCLM,
NQO1, HMOX-1, AKR1C1, AKR1C2 and AKR1C3. Several
mechanisms have been reported concerning persistent activation
of NRF2 in HCC. Recent studies using whole-exome sequencing
have revealed mutations of NFE2L2 (NRF2) (6.4%) or KEAP1 (8%)
genes in human HCC (Guichard et al, 2012; Cleary et al, 2013;
Schulze et al, 2015). These somatic mutations alter the interaction
between KEAP1 and NRF2 and result in persistent activation of
NRF2 (Sporn and Liby, 2012; Ganan-Gomez et al, 2013).
Moreover, the mutations tend to occur in pathologically advanced
HCC, indicating that NRF2 hyperactivation may contribute to
HCC progression (Nault et al, 2014; Schulze et al, 2015). In
addition to KEAP1 and NFE2L2 mutation, p62 accumulation is
associated with augmented activation of NRF2 in human HCC
(Inami et al, 2011; Ichimura et al, 2013). The p62 binds with
KEAP1 and inhibits KEAP1-driven ubiquitination of NRF2,
resulting in stabilisation of NRF2 (Jiang et al, 2015). Dysregulation

of the p62–KEAP1–NRF2 axis (e.g., increased aggregation of
phosphorylated p62 and KEAP1) has been frequently observed
in HCC (Ichimura et al, 2013). Moreover, a recent study
indicated that p62-caused persistent activation of NRF2 is
involved in sorafenib and cisplatin resistance in human HCC
(Saito et al, 2016). Apart from gene mutations and p62
accumulation, epigenetic modifications of NRF2 and KEAP1 may
lead to NRF2 upregulation as well (Guo et al, 2015). In addition,
oncogenes such as Kirsten rat sarcoma viral oncogene (kRas),
B-Raf proto-oncogene (bRaf), myelocytomatosis viral oncogene
(Myc) and various microRNAs can also affect the expression of
NRF2 in HCC (Imbeaud et al, 2010; Tew, 2011; Giordano and
Columbano, 2013). The high expression of NRF2 in HCC likely
plays a critical role in the development of chemoresistance in these
tumours by mediating the expression of ARE-dependent genes. It
would be of interest to compare these results with livers from
nontumour-bearing donors, but these were not available to our
group at the time of this study. Although genetically identical,
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AT likely receives inflammatory mediators from the nearby HCC
that could partially activate the NRF2 pathways (Bishayee et al,
2013), and hence these data should be seen in light of this potential
issue.

In the present study there was a strong, positive correlation
between relative NRF2 scores in human HCC and serum AFP
levels. However, there is no consensus on how to most accurately
reflect the activity of NRF2. The genes regulated by NRF2 may be
distinct under different metabolic conditions or in different kinds
of cells. In particular, large differences were detected among
clinical samples in the expression of various NRF2–ARE down-
stream genes. However, as a group, the expression of NRF2–ARE
downstream genes are relatively stable. Therefore, relative NRF2
score calculated based on the cumulative expression of classic

NRF2 target genes has been applied as a NRF2 activity index.
DeNicola et al (2015) proposed the definition of NRF2 score and
calculated the NRF2 score based on 20 NRF2 target genes. Before
the NRF2 score was defined, we utilised eight NRF2 target genes in
the NCI-60 tumour cell panel to calculate NRF2 activity (Liu et al,
2010). In the calculation process, the use of specific NRF2 target
genes were different, but the concept used to quantify NRF2
activity is the same. The AFP is a fairly sensitive and specific
biomarker for detecting HCC and is also considered an indicator of
HCC prognosis (Dwyer et al, 2014). A serum surrogate indicator of
liver NRF2 could be quite valuable in the therapeutic decision-
making process. If a circulating biomarker (e.g., AFP for HCC)
suggests high levels of NRF2 activity in cancer cells, then inhibiting
NRF2 can be recommended as part of the treatment regimen. If the
NRF2 score can be obtained through biopsy, it could be used
together with serum indicators to predict the effectiveness of a
NRF2 inhibition approach.

The CPT is a natural alkaloid isolated from the Chinese
medicinal plant Camptotheca acuminate, and is regarded as an
effective antitumour agent for a wide spectrum of cancers, such as
colon and gastric cancers (Wall and Wani, 1996). It inhibits cancer
growth by inhibiting DNA replication through binding to DNA
topoisomerase I using its acyl position of the lactone ring during
the S stage of mitosis (Tang et al, 2014). The clinical applications of
CPT have been limited by its poor solubility (3.122 mM in water)
and side effects, such as diarrhoea, haemorrhagic cystitis and
unpredictable myelosuppression (Tang et al, 2014). The present
study demonstrated that CPT is an effective NRF2 inhibitor at
much lower concentrations than is needed as a direct antitumour
agent. The inhibited NRF2 expression in HepG2, SMMC-7721 and
A549 cells in a concentration-dependent manner with a minimum
effective concentration of 0.1 mM. In contrast, the half-maximal
inhibitory concentration (IC50) of INH on ARE luciferase activity
is above 10 mM. The minimum concentration of ETH for
suppressing ARE activity and sensitising leukaemia cells to
As2O3-induced cytotoxicity is B0.1 mM (Chen et al, 2013; Peng
et al, 2016). Thus, CPT is a relatively strong inhibitor of NRF2–
ARE activity. Nonetheless, there are scattered reports of activation
of NRF2-mediated adaptive response by CPT in human and rodent
cells. For example, CPT has been shown to upregulate NRF2-
mediated HMOX-1 expression in human prostate cancer DU145
cells (Jayasooriya et al, 2015) and activate NRF2 pathway in rat
pheochromocytoma PC12 cells (Zhang et al, 2015). Therefore,
more accurate and detailed preclinical studies need to be done to
elucidate dose- and cell type-dependent effects of various NRF2
inhibitors (Zhu et al, 2016).

Regarding CPT-induced reduction of NRF2 protein expression,
our data of CHX chase assay do not support that CPT has direct
effect in promoting NRF2 protein degradation. Thus, we propose
that the inhibitory effect of CPT on NRF2 expression may be
through suppressing its transcription, translation and/or promot-
ing mRNA degradation (Figure 7). For CPT to decrease NFE2L2
mRNA levels, one possible mechanism is that NRF2 autoregulates
its own expression through an ARE-like element located on its
promoter (Kwak et al, 2002). Reduced NRF2 protein levels may
unavoidably lead to diminished NRF2 nuclear accumulation and
thus compromised binding to ARE-like elements on the NFE2L2
promoter, and subsequently results in less NFE2L2 transcription.
The inhibitory effect of CPT on NRF2 could be boosted by this
positive loop (Figure 7). Of note, it needs further investigation to
clarify how CPT suppresses the expression of NRF2 in cancer cells.

In summary, this study demonstrated that CPT has a strong
inhibitory effect on the NRF2–ARE pathway in vitro. By lowering
NRF2 activity, CPT enhances the cytotoxicity of chemotherapeutic
drugs in HCC cells. Human HCCs exhibit a positive correlation
between the levels of NRF2–ARE activity and serum AFP,
suggesting that the latter could potentially be used as a circulating
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biomarker to help determine whether usage of NRF2 inhibitors
such as CPT can be useful on top of conventional chemother-
apeutic drugs for HCC. Clearly, further study on repurposing CPT
as a chemotherapeutic adjuvant for chemoresistant cancers
requires more detailed testing in vivo and in humans.
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