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Background: Predictive biomarkers or signature(s) for oesophageal cancer (OC) patients undergoing preoperative therapy could
help administration of effective therapy, avoidance of ineffective ones, and establishment new strategies. Since the hedgehog
pathway is often upregulated in OC, we examined its transcriptional factor, Gli-1, which confers therapy resistance, we wanted to
assess Gli-1 as a predictive biomarker for chemoradiation response and validate it.

Methods: Untreated OC tissues from patients who underwent chemoradiation and surgery were assessed for nuclear Gli-1 by
immunohistochemistry and labelling indices (LIs) were correlated with pathologic complete response (pathCR) or opathCR
(resistance) and validated in a unique cohort.

Results: Initial 60 patients formed the discovery set (TDS) and then unique 167 patients formed the validation set (TVS). 16 (27%)
patients in TDS and 40 (24%) patients in TVS achieved a pathCR. Nuclear Gli-1 LIs were highly associated with pathCR based on
the fitted logistic regression models (Po0.0001) in TDS and TVS. The areas under the curve (AUCs) for receiver-operating
characteristics (ROCs) based on a fitted model were 0.813 (fivefold cross validation (0.813) and bootstrap resampling (0.816) for
TDS and 0.902 (fivefold cross validation (0.901) and bootstrap resampling (0.902)) for TVS. Our preclinical (including genetic
knockdown) studies with FU or radiation resistant cell lines demonstrated that Gli-1 indeed mediates therapy resistance in OC.

Conclusions: Our validated data in OC show that nuclear Gli-1 LIs are predictive of pathCR after chemoradiation with desirable
sensitivity and specificity.
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The incidence of oesophageal cancer (OC), particularly adenocar-
cinoma (EAC), has risen in recent decades. In 2015, the estimated
number of new cases and deaths due to OC in the United States
(US) are 16 980 and 15 590, respectively (American Cancer Society
(2015)). In the US, standard approach for localised OC (LOC) is
chemoradiation followed by surgery (when feasible) (van Hagen
et al, 2012; Ajani et al, 2015a). Approximately 25% of patients’ OCs
are highly sensitive to chemoradiation and result in a pathologic
complete response (pathCR, defined as no cancer cells in the
resected specimen). PathCR patients, generally, have a better
outcome than those patients whose OCs achieve opathCR (Berger
et al, 2005; Chirieac et al, 2005; Rohatgi et al, 2005a, b; Rizk et al,
2007; Donahue et al, 2009; Cheedella et al, 2013). However, for a
given patient, the degree of response and the prognosis are
frustratingly unpredictable. Validated reliable clinical variables
(Ajani et al, 2012) or biomarker(s) are currently unavailable. We
have previously reported that ALDH1 in OC tissues appears to be
related to resistance to chemoradiation (Ajani et al, 2014),
however, further research with additional biomarkers is necessary
prior to clinical implementation and the biomarker(s) or
signature(s) must accommodate inherent heterogeneity of OC.

One potential advantage of this research trajectory, although
this concept remains theoretical, is to identify a patient whose OCs
may have extreme results in the response spectrum. For example,
identification of patients whose OC are destined to achieve a
pathCR could be the subjects of an oesophageal preservation
strategy and those with extremely resistant OC could move directly
to surgery (bypassing chemoradiation) until we have tools to
overcome resistance. We have previously reported that the
hedgehog (HH) pathway is dysregulated in OC, it mediates
resistance to therapy, and inhibition of the HH pathway overcomes
resistance to cytotoxics and radiation (Sims-Mourtada et al, 2006,
2007). We also demonstrated that Gli-1 can participate in a
crosstalk with mTOR pathway to induce secondary resistance to
HH inhibition in OC (Wang et al, 2012). The HH pathway and
associated overexpression of Gli-1 has been reported by others as
oncogenic (Onishi and Katano, 2011), including in basal cell
carcinomas (Rudin et al, 2009; Von Hoff et al, 2009), small cell
lung cancer (Park et al, 2011), medulloblastomas (Pasca di
Magliano and Hebrok, 2003), breast cancer (Souzaki et al, 2011),
prostate cancer (Karhadkar et al, 2004), and pancreas cancer
(Nagai et al, 2008; He et al, 2011). In squamous cell OC, the Gli-1
nuclear expression was reported as an independent variable for
relapse and poor prognosis (Yoshikawa et al, 2008). Gli-1
signalling is intertwined with cancer stem cell (CSC) maintenance
(Po et al, 2010; Coni et al, 2013; Ajani et al, 2015b). Gli-1 has been
amply implicated in resistance to therapy through the mechanism
of inducible glucuronidation (Zahreddine et al, 2014). In glioma
patients, a positive correlation was observed between Gli-1
expression and tumour recurrence (Cui et al, 2010). Based on
our research and the contributions by others, we hypothesised that
the expression of nuclear Gli-1 could be predictive of response,
particularly pathCR, to chemoradiation in OC patients. We are
more interested in discovering a predictive biomarker or signature
because it is more likely to help change clinical practice rather than
a prognostic biomarker (where the chance of its being a therapeutic
target could be low). Gli-1 as a predictive biomarker for OC (or in
any other tumour type) has not been reported, to our knowledge.

MATERIALS AND METHODS

Patient population and therapy. Through an institutional review
board (IRB) approved protocol and projects supported by the
National Cancer Institute and UT M. D. Anderson Cancer Center
(MDACC), pre-treatment cancer specimens were obtained from

227 patients who met the following criteria: had localised (T1N1, T2,
T3 with any N or with M1a), histologically confirmed adenocarci-
noma or squamous cell carcinoma of the thoracic esophagus, and
were treated chemoradiation followed by surgery. All patient
material was collected after obtaining an informed written consent.
Following institutional standards, each patient underwent complete
baseline clinical staging and was discussed in the weekly
Oesophageal Cancer Conference prior to the initiation of therapy.
Positron emission tomography was allowed when feasible. Che-
motherapy included a fluoropyrimidine with either a platinum
compound or taxane with concurrent 50.4 Gray radiation in 28
fractions. Surgery was performed B6–7 weeks after the completion
of chemoradiation. The surgical specimens were scored by the
method described by (Chirieac et al, 2005). This method has been
independently validated in a multi-institutional setting (Wu et al,
2007). Specimens were scored by two team members (indepen-
dently) in a blinded manner to prevent the potential bias. Each
specimen was designated as pathCR or opathCR (extreme
resistance defined as 450% residual OC was also assessed).

All patients were followed for 5 years or until death as described
previously (Ajani et al, 2014).

Statistical methods. Patient characteristics were summarised
using median (range) for continuous variables and frequency
(percentage) for categorical variables. Overall survival (OS) was
defined as the time interval between surgery and the date of death
due to any cause. Patients who were alive were censored at the last
follow-up date. Progression-free survival (PFS) was defined as the
time interval between surgery and the date of relapse or death due
to any cause. Patients who were alive and relapse-free were
censored at the last follow-up date. The probabilities of OS and PFS
were estimated using the method of Kaplan and Meier (Kaplan and
Meier, 1958). Log-rank test (Mantel, 1996) was used to assess the
difference in OS or PFS between subgroups of patients. Univariate
logistic regression model was fit to assess the association between
Gli-1 and the probability of achieving pathCR. Based on fitted
model, a plot of Gli-1 LI (%) vs the predicted probability of pathCR
was created. The receiver operating characteristics (ROC) curve
was also generated to derive the area under the curve (AUC) and to
assess the overall predictive ability of the fitted model. Two
resampling techniques (cross validation and bootstrapping) were
used to validate the estimated AUC. The sensitivity, specificity,
positive predictive value, negative predictive value and predictive
accuracy for pathCR based on various cutoff values of Gli-1 are
also summarised. All statistical analyses were performed with SAS
and Splus software.

Preclinical methods

Cell lines and reagents. The human EAC cell lines SKGT4 (SK4)
and Flo-1 were acquired from our institution and described
previously (Soldes et al, 1999; Raju et al, 2006). To establish 5-FU-
resistant subclones, SKGT4-RF (SK4-RF), SK-4 parenteral cells
were treated at their IC50 concentration of 5-FU for 3–5 weeks,
and then the concentration of 5-FU was increased every two to
three weeks until the resistant clones were established. This
procedure was repeated four times. The establishment of these
5-FU-resistant subclones took 3–6 months and newly derived 5-
FU-resistant clones were designated SK4-RF. Similarly; Flo-1 cells
were made resistant to radiation and termed Flo-1 XTR. To
establish radiation resistant subclones, Flo-1 parental clones were
irradiated to 2Gy and maintained in culture. The surviving clones
were allowed to achieve 80% confluency (B1–2 weeks) and again
irradiated to 2Gy. This process was performed a total of four times.
Once complete, cells were stored at � 80 1C until use. Cells were
kept in continuous culture for less than 2–3 weeks, with
subsequent experiments using fresh lots of cells. These cells were
authenticated and re-characterised in the core facility of MDACC
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every 6 months. Cells were cultured in DMEM supplemented with
10% fetal bovine serum and antibiotics (100mg/ml streptomycin
and 100 IU/ml of penicillin; Ajani et al, 2014) and incubated at
37 1C in 5% CO2. 5-FU was purchased from Sigma Chemical Co.
(St Louis, MO, USA).

Gli-1 inhibitor was purchase from Selleck Chemical LLC (Houston,
TX, USA) and reconstituted in 100% ethanol. The Lenticrispr Gli1
was constructed in our lab using the CRISPRs (clustered regularly
interspaced short palindromic repeats)/Cas9 system. Guide RNAs
design follows MIT Feng Zhang’s website http://crispr.mit.edu/ or
German Cancer Research Center’s E-Crisp website http://www.e-
crisp.org/E-CRISP/designcrispr.html. Human Gli1 gene is designed
with 2 targets of guide RNA sequences as below.

hGli1.E5.gRNA3.F 50-caccgGGGAAGGGTCCCCGGGACTG-30

hGli1.E5.gRNA3.R 50-aaacCAGTCCCGGGGACCCTTCCCc-30

hGli1.E5.gRNA4.F 50-caccgAGGAAGGCGAGGGCCCTTTT-30

hGli1.E5.gRNA4.R 50-aaacAAAAGGGCCCTCGCCTTCCTc-30

With 100 mM 50 ml of each primer added together, each pair of
guide RNA sequences is formed into duplexes in a heating block
heated to 100 C and cooled gradually by itself. The duplexes are
then used as inserts ligated using T4 DNA ligase(NEB, Ipswich,
MA, USA) into LGP (lentiGuidePuro, Addgene) cut by BsmbI
(NEB). The ligates are transformed into Stabl3 competent cells,
resultant clones are screened by the sises of inserts and verified by
sequencing.

LGP plasmids with right inserts of Gli1gRNAs are then co-
transfected with pLenti-Cas9-Blast, pCMV.Dr8.2 and pCMV-
VSV.G with ratio of 10 : 10 : 10 : 1 into HEK293T cells with
B70% confluency by Lipofectamine2000 (Carlsbad, CA, USA) in
six-well plates. Supernatants are collected 48 h later and recollected
24 h later for second time. Lentiviral supernatants are centrifuged
and clear upper solutions are used for immediate transduction or
kept in � 80 1C freezer for later use.

Target cell line Flo1-XTR is seeded in six-well plates withB70%
confluency, lentiviral supernatants are added with 8mM polybrene,
transduced cells are then selected by puromycin at concentration
determined by kill curves for 4–6 days. Surviving cells are then
expanded and positive pools are screened by western blot of
appropriate antibodies.

Tissue specimens and handling. Untreated OC biopsies were used
as described previously (Ajani et al, 2014). OC histology and
X50% tumour cellularity were confirmed before staining for Gli-1.
The tissue sections were 4 m thick. Immunohistochemistry staining
for Gli-1 were performed using anti-Gli-1 ab92611 (1 : 400)
antibody. Positive and negative controls were used previously
reported (Sims-Mourtada et al, 2006). Two team members
independently reviewed the slides to establish Gli-1 LIs, on the
basis of percentage of tumour cell nuclei stained and the staining
intensity. Joint consensus was made for discordant cases using a
double-headed microscope for re-review.

Cell proliferation assay. Cell proliferation on SK4 and Flo-1 OC
cells and their resistant counterpart SK4-RF and Flo-1 XTR were
performed using the CellTiter 96 aqueous nonradioactive cell
proliferation assay (MTS) according to the instructions of the
manufacturer (Promega Co., Madison, WI, USA) as described as
before (Song et al, 2015).

Clonogenicity assay. Single cells (800/well) were seeded in
triplicates onto a six-well plate (Falcone). The cell culture medium
and incubation condition have been described in the Cell lines and
reagents. Twenty-four hours later, cells were either treated with
GANT61 (10 mM) or same amount 100% ethanol as negative
control. Nine days after seeding, the cells were washed and then
fixed with 3.7% paraformaldehyde for 20min. Subsequently, the
cells were washed twice in tap water and stained with 0.3% crystal

violet for 2min at room temperature. Following washing with tap
water, colonies were counted by eye.

Tumour sphere formation assay. Single cells (800/well) were seeded
in triplicate onto a 24-well ultra-low attachment plate (Corning) in
serum free DMEM/F-12 supplemented with 10ng epidermal growth
factor, 5mg/ml insulin, 0.5mg/ml hydrocortisone, and bovine pituitary
extract (Invitrogen). After 12 days of culture under the same
condition as described in the Cell lines and reagents, tumour spheres
formed and their number was counted under a microscope.

Matrigel invasion assay. The invasive capacity of cells was studied
by using invasion chambers with 0.8 uM pore sise (Greiner bio-one)
inserted into a 24-well plate (Falcone). A signal cell suspension
containing 2.5� 104 was added into the invasion chamber. After
24 h of incubation in the same environment described in the Cell
lines and reagents, cells on the upper surface of the invasion
chamber were removed with cotton swabs. Invaded cells which
adhered on the lower surface of the membrane were fixed and
stained with Diff-Quik (Siemens), then photographed under a
microscope and counted.

Protein extraction and western blot analysis. Protein isolation
and Western blot analyses were performed in Sk4/Sk4-RF and Flo-
1/Flo-1 XTR OC cells as previously described (Song et al, 2014)
and immunoreactive bands were visualised by chemiluminescence
detection.

Reverse-phase protein arrays. The reverse-phase protein arrays
(RPPA) analysis was performed in Sk4 cells and its resistant clone
Sk4-FR cell lysate in the RPPA core facility of MDACC. Samples
were serially diluted 2-fold for 5 dilutions and probed with 175
antibodies and arrayed on nitrocellulose-coated slides. The relative
protein levels were normalised for protein loading and determined
by interpolation of each dilution curve from the standard curve as
previously described (Hennessy et al, 2010). Gene set enriched
analysis (GSEA) conducted by a bioinformatician (Dr Bin Liu).

Real-time quantitative reverse transcription PCR. Total RNAs
from cell cultures are extracted by using Trizol (Ambion, Austin,
TX, USA) concentrations of RNAs are measured by Nanodrop
1000 (Nanodrop, Wilmington, DE). First strand cDNAs are
synthesised by Reverse transcription PCR using Invitrogen’s
Superscript III kit (Invitrogen, Carlsbad, CA, USA). Quantitative
RT PCR measuring mRNA expression levels are performed by ABI
7500 (Life Technologies, Grand Island, NY, USA) using the
following listed primers. The fluorescence threshold cycle (Ct)
value was determined for each gene and normalised with GAPDH.
Relative quantitation is calculated by using RE¼ 2(�DDCt). The
primers used as followings: Reference primers: hGAPDH 50-
ACCCAGAAGACTGTGGATGG-30, hGAPDH-3 50-TCTA-
GACGGCAGGTCAGGTC-30;

Target genes’ primers are:
hGli1.mRNA.F 50-CCAGCGCCCAGACAGAG-30

hGli1.mRNA.R 50-ACAGTCCTTCTGTCCCCACA-30

hGli2.mRNA.F 50-CTCTCCTTTGGTGGTGGCT-30

hGli2.mRNA.R 50-GGTGTGTGTCCAAAGGCTG-30;
hSHH.mRNA.F 50-CCAATTACAACCCCGACATC-30

hSHH.mRNA.R 50-AGTTTCACTCCTGGCCACTG-30

RESULTS

Patients, chemoradiation response, and survival. Initial 60
patients formed the discovery set (TDS) and subsequent 167
patients formed the validation set (TVS). The group prior to
proceeding with TVS reviewed results on TDS set. Patient
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characteristics of TDS and TVS are summarised in Table 1. For
TDS, the median follow up time was 44.4 months and median OS
was 54.6 months (95% CI: 34.1 to not estimable). In TDS, 31
patients have died and the median PFS was 30.3 months (95% CI:
17 to not estimable). In TVS, the median follow up time of all
patients was 81.5 months and the median OS was 41.8 months
(95% CI: 28.2 -53.3 months). The PFS was 21.6 months (95% CI:
14.4–38.4 months). Sixteen (27%) patients in TDS and 40 (24%)
patients in TVS had a pathCR and the rest had opathCR. The
median OS of pathCR patients was longer than that of those who’s
OCs achieved a opathCR (TDS, median OS not reached in pCR
patients vs median OS of 34.1 months in opCR patients,
P¼ 0.005; TVS, median OS of 60 months in pCR patients vs
36.9 months in opCR patients, P¼ 0.10).

Gli-1 expression and correlation with response. The median
nuclear Gli-1 LI was 20% (range, 0–95%). On the basis of the fitted
the logistic regression model, Gli-1 was significantly associated
with the probability of achieving a pathCR in TDS (Table 2) and in
TVS (Table 3). Patients with a higher Gli-1 LIs had a lower
probability of pathCR (TDS, OR [odds ratio]¼ 0.46; 95% CI 0.33–
0.64; P¼o0.0001. TVS, OR¼ 0.84; 95% CI: 0.78–0.90; P value
o0.0001). Figure 1A and B show that most pathCR patients
gravitated towards lower nuclear Gli-1 LIs and the resistant
population towards higher LIs.

On the basis of the fitted logistic regression model, the AUC of
the ROC (Figure 2A and B) for Gli-1 was 0.813 (fivefold cross
validation (0.813) and bootstrap resampling (0.816) for TDS and
0.902 (fivefold cross validation (0.901) and bootstrap resampling
(0.902)) for TVS. Supplementary Tables 1 and 2 show the
estimated sensitivity, specificity, positive predictive value (PPV)
and negative predictive value (NPV) and the overall predictive
accuracy of pathCR based on choosing different cutoff values for
Gli-1. The results demonstrate a relatively high specificity (485%)
for lower nuclear Gli-1 LIs (p10%).

Chemo/radiation-activated Gli-1 and Shh expression. Gli-1 and
Shh are important hedgehog pathway (Hh) signalling components
and are associated with therapy response/resistance. We observed
that Gli-1 and its ligand Shh have increased expression in EAC
tumour tissues compared to Barrett’s premalignant tissues
(Supplementary Figure S1) and we found nuclear expression of
Gli-1 was significantly associated therapy response. Thus, the
mechanism underlying the effect of chemo/radiation on the Hh
signalling was investigated. It was observed that 5-FU or radiation
induced resistant cells SK4-RF and Flo-1 XTR had higher

expression of nuclear Gli-1 and Shh (Figure 3A). Increased mRNA
levels of Gli-1, Gli-2 and Shh in chemoresistant cells, SK4-RF were
confirmed using quantitative real-time PCR (Figure 3B). RPPA
further demonstrated that many oncogenes were enriched in
therapy resistant cells (SK4-RF) compared to the parental cells
(Figure 3C). These data indicate that chemo/radiation therapy
activates the Hh signalling which may mediate the therapy
response/resistance.

Table 1. Patient characteristics

Covariate Levels
Discovery set

N (%)
Validation set

N (%)
Age (years) Median 59 62

Range 35–76 27–80

Gender Male 59 (98.33) 149 (89.22)

Female 1 (1.67) 18 (10.78)

Ethnicity White 58 (96.67) 152 (91.02)

Hispanic 1 (1.67) 13 (7.78)

African American 1 (1.67) 2 (1.2)

Clinical stagea IIA 24 (40.00) 59 (35.33)

IIB 3 (5.00) 7 (4.19)

III 30 (50.00) 81 (48.5)

IVA 2 (3.33) 9 (5.39)

IVB 1 (1.67) 4 (2.40)

X 0 (0.00) 7 (4.19)
aAJCC 6th edition.

Table 2. Logistic regression model for pathCR in TDS (n¼60;
pathCR¼16)

Variable OR 95% CI P-value
Intercept – – o0.0001

Gli-1*100 0.46 0.33–0.64 o0.0001

Abbreviations: OR¼odds ratio; pathCR¼pathologic complete response; TDS¼ the
discovery set.

Table 3. Logistic regression model for pathCR in TVS (n¼167;
pathCR¼40)

Variable OR 95% CI P-value
Intercept – – 0.003

Gli-1*100 0.84 0.78–0.90 o0.0001

Abbreviations: OR¼odds ration; pathCR¼pathologic complete response; TVS¼ the
validation set.
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Figure 1. (A) Plot of % Gli-1 LI vs the predicted probability of pathCR
based on the fitted model in Table 2 for TDS (the discovery set).
(B) Plot of % Gli-1 LI vs the predicted probability of pathCR based on
the fitted model in Table 3 for TVS (the validation set).
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Chemo/irradiation endows EAC cells with high potentials of cell
proliferation, clonogenecity, and tumour sphere formation
in vitro in OC cells. After showing that chemo/radiation resistant
cells over-expressed Gli-1 and Shh, we sought to determine if the
resistant cells conferred more malignant behaviour. As expected, we
found that both chemo (SK4-RF) and radiation resistant cells (Flo-1
XTR) had higher rates of proliferation compared to their parental
counterparts (Figure 3D). Clonogenicity has also been employed as a
metric of resistance to radiation and chemotherapy. Our colony-
genicity assay further confirmed that radiation resistant Flo-1 XTR
cells dramatically increased colony formation (Figure 3E). The
formation of tumour spheres has been considered as a surrogate
indicator of CSC properties in epithelial cancers (Dontu et al, 2003).
We analysed the tumour sphere formation in Flo-1 XTR as well as in
parental cell line Flo-1. The irradiation survived cells Flo-1 XTR
proliferated and generated larger tumour spheres, while parental
Flo-1 cells did not form any tumour spheres (Figure 3F, left panel).
The number of tumour spheres developed in the radiation resistant
cells (Flo-1 XTR) was significantly higher and larger than that of
parental cell line Flo-1 (Figure 3F, right panel). This indicates that
irradiation treatment endows CSC properties to OC cells.

Higher proliferation and tumour sphere formation rates are
correlated with higher expression of Gli-1. The chemo (SK4-RF)
and radiation (Flo-1 XTR) resistant cell lines showed higher
proliferation and tumour sphere formation rates than the parental
cell lines. To investigate the cause-effect relationship, we used

lentCrisp/cas9 system (Supplementary Figure S2A and B) and
GANT61 (Supplementary Figure S2C and D), a specific Gli-1
inhibitor to genetically knockdown Gli-1 expression or pharma-
cologically block the Gli-1 signalling pathway respectively. We
found that both (genetic knockdown of Gli-1 and pharmacologic
inhibition of Gli-1 protein) significantly decreased cell proliferation
and sensitised cells to radiation (Supplementary Figure S2B and
D). Also, tumour sphere formation (Supplementary Figure S2A)
was dramatically reduced by lentCrisp/cas9 system, while cell
invasion (Supplementary Figure S2C) was decreased as well.

DISCUSSION

The research portfolio for patients with localised OC has generally
been limited to empiric clinical trials to improve the outcome of
patients. In this regard, some advances have been realised (Cooper
et al, 1999; Wu et al, 2007; van Hagen et al, 2012; Ajani et al,
2015a). However, chemoradiation and surgery are associated with
considerable morbidity and surgery particularly results in life-altering
consequences. The current approach that emphasises baseline clinical
staging and stage grouping in order to make initial and long-term
therapy decisions do not account for inherent molecular heterogeneity
of OC. Thus some patients seem to benefit and others do not but at
the outset one has no idea what therapy is optimum for a given
patient. In addition to not being able to select an effective therapy for
a given patient, we also have little knowledge of molecular biology of
OC. Recent effort by The Cancer Genome Atlas (TCGA) has
demonstrated stark biology difference between squamous cell
carcinoma and adenocarcinoma, however, several subgroups (with
different genomic makeups) have also been described. (Cancer
Genome Atlas Research N et al, 2017) TCGA analysis provides
impetus for further exploration before such platforms can provide
clinical guidance. Therefore, our general knowledge needs to
considerably expand. A glaring example is that EGFR is overexpressed
in squamous and adenocarcinoma of the esophagus and is prognostic
(Wang et al, 2007); however, the assumption that these tumours are
primarily driven by EGFR was incorrect as demonstrated by several
clinical trials that attempted inhibition of the EGFR pathway by
various means but failed miserably (Chan et al, 2011; Crosby et al,
2013; Lordick et al, 2013; Waddell et al, 2013). We have shown that
Yap1 upregulates EGFR at the transcription level and therefore,
inhibition of Yap1 lowers the expression of EGFR and reduces cell
survival (Song et al, 2015). However, Yap1 inhibitors have not yet
been tried against OC and not available in the oncology space.

Our quest has been to identify predictive biomarkers to
individualise therapy in patients with OC. Our preclinical data
suggest that CSCs seem to play a major role in mediating resistance
to therapy in OC. Like ALDH-1 (Ajani et al, 2014), Gli-1 (in the
Hh pathway) is related to CSC maintenance. The preclinical data
presented in this report suggest that when sensitive cells are made
resistant to cytotoxic drug or radiation, the Hh pathway
(particularly, Gli-1) is upregulated. Using modern CRISPR/Cas9
technology and prior established clonogenic assay, we document in
the preclinical setting that Gli-1 activates resistance to therapy
(chemotherapy as well as radiation). The clinical data are
compelling. Nuclear Gli-1 LIs highly correlated with response to
chemoradiation. Of great interest here is the tight correlation with
pathCR and data are validated in a large independent cohort. We
acknowledge that considerably more work is needed before
predictive biomarkers can be clinically implemented. However,
we believe these compelling results represent early steps in the
development of personalised medicine. Identification of extreme
resistance affords another opportunity. Here one could conceivably
forego chemoradiation but more importantly, discover novel
therapeutic targets to overcome resistance. In this vein we have

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6

1-specificity

1-specificity

S
en

si
tiv

ity

S
en

si
tiv

ity

0.8 1.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A

B

Figure 2. (A) ROC AUC indicating sensitivity and specificity based on the
fitted model in Supplementary Table S1 for TDS (the discovery set; n¼60).
(B) ROC AUC indicating sensitivity and specificity based on the fitted model
in Supplementary Table S2 for TVS (the validation set; n¼167).

BRITISH JOURNAL OF CANCER Gli-1 predicts oesophageal cancer response

652 www.bjcancer.com |DOI:10.1038/bjc.2017.225

http://www.bjcancer.com


recently discovered that anti-apoptotic agent ABT263 can over-
come radiation/chemo resistance by targeting not only BCL-2
protein but also CSCs (Chen et al, 2015).

On the basis of our discoveries (Sims-Mourtada et al, 2006,
2007; Chen et al, 2007) and those of others regarding Gli-1’s
association with resistance (Zahreddine et al, 2014), we have
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recently initiated a trial with Hh inhibitor with standard
preoperative chemoradiation in patients whose OC’s have X5%
LI of nuclear Gli-1 (NCT02530437). In addition, we acknowledge
the complexity of cancer biology conferred by ability to reprogram
and cross-talk with other pathways to emerge with aggressive
phenotype. We believe, Gli-1 alone will not be able to define such
complexity in each patient’s tumour. Therefore, more work is
needed to develop signature or signatures that might perform
consistently when clinically implemented.

In conclusion, nuclear Gli-1 LIs correlated well with pathCR in
TDS and TVS. We acknowledge that considerably more research
would be needed before clinical implementation.
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